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ABSTRACT 
 

Currently, the role of liquid-liquid phase separation (LLPS) in cancer has been preliminarily explained. However, 
the significance of LLPS in breast cancer is unclear. In this study, single cell sequencing datasets GSE188600 and 
GSE198745 for breast cancer were downloaded from the GEO database. Transcriptome sequencing data for 
breast cancer were downloaded from UCSC database. We divided breast cancer cells into high-LLPS group and 
low-LLPS group by down dimension clustering analysis of single-cell sequencing data set, and obtained 
differentially expressed genes between the two groups. Subsequently, weighted co-expression network 
analysis (WGCNA) was performed on transcriptome sequencing data, and the module genes most associated 
with LLPS were obtained. COX regression and Lasso regression were performed and the prognostic model was 
constructed. Subsequently, survival analysis, principal component analysis, clinical correlation analysis, and 
nomogram construction were used to evaluate the significance of the prognostic model. Finally, cell 
experiments were used to verify the function of the model’s key gene, PGAM1. We constructed a LLPS-related 
prognosis model consisting of nine genes: POLR3GL, PLAT, NDRG1, HMGB3, HSPH1, PSMD7, PDCD2, NONO and 
PGAM1. By calculating LLPS-related risk scores, breast cancer patients could be divided into high-risk and low-
risk groups, with the high-risk group having a significantly worse prognosis. Cell experiments showed that the 
activity, proliferation, invasion and healing ability of breast cancer cell lines were significantly decreased after 
knockdown of the key gene PGAM1 in the model. Our study provides a new idea for prognostic stratification of 
breast cancer and provides a novel marker: PGAM1. 

mailto:wangming@jsph.org.cn
mailto:drshi_njmu@163.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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INTRODUCTION 
 

The physiological process of each component in the cell 

is finely adjusted in time and space [1]. It has been 

known from previous studies that the presence of 

organelle membranes facilitates the formation of spacings 

between components, allowing chemical reactions in 

different organelles to proceed in a stable and orderly 

manner [2]. However, there are also membraneless 

structures in which metabolic processes are observed to 

proceed in an orderly manner, and similar spacers are 

formed around these structures [3–5]. This is generally 

thought to occur through a physicochemical process of 

liquid-liquid phase separation (LLPS) [6]. Membraneless 

structures formed by LLPS are called biomolecular 

condensates [7]. And the balance of LLPS is dynamic 

[8]. These separated condensates can dynamically 

exchange substances with the surrounding cytoplasm, 

thus mediating the regulation of cell metabolism and 

signal transduction [9]. Thus, LLPS is a basic process in 

cell homeostasis regulation [10]. However, LLPS is also 

associated with many pathophysiological processes [11]. 

LLPS was initially thought to be associated with the 

accumulation of abnormal proteins in neurodegeneration 

[12]. In recent years, the role of LLPS in tumors has also 

been preliminarily proposed, and it is involved in gene 

regulation and signal activation in tumors [13]. In a 

nutshell, LLPS, like the yin-yang balance in traditional 

Chinese culture, is a basic process in cells. Under normal 

circumstances, LLPS is in a coordinated dynamic 

balance, while under pathological conditions, LLPS will 

be unbalanced. 

 

Tumors are complex systems composed of a diverse 

array of cells and extracellular components. LLPS has 

been implicated in several aspects of tumor biology, 

including the formation of membrane-less organelles 

involved in signaling pathways and the sequestration of 

specific proteins [14]. These processes can impact 

various cellular functions, such as gene expression, 

protein synthesis, and cell signaling, ultimately 

influencing tumor growth, invasion, and metastasis [15]. 

One example of LLPS involvement in tumors is seen in 

the formation of stress granules (SGs) and other related 

membrane-less organelles [15]. SGs are dynamic 

structures that assemble in response to cellular stress, 

such as oxidative stress, heat shock, or nutrient 

deprivation [16]. They function as sites for mRNA 

storage and protection, allowing cells to rapidly adapt to 

stress conditions. However, dysregulation of SGs can 

promote tumor progression by facilitating cell survival, 

resistance to therapy, and the formation of metastases 

[17]. Another aspect of LLPS in tumors is the 
sequestration of specific proteins within liquid-like 

droplets [18]. This phenomenon can affect the 

availability and localization of key tumor suppressors 

and oncogenes, altering their regulatory functions. For 

example, liquid-like droplets containing the tumor 

suppressor protein p53 have been observed in cancer 

cells. The sequestration of p53 within these droplets can 

lead to its inactivation, impairing its ability to suppress 

tumor growth and promoting oncogenesis [18]. 

 

Although the role of LLPS in tumors is still being 

actively studied, it is clear that this phenomenon 

contributes to the complexity and heterogeneity of 

tumor biology. By influencing cellular processes and 

regulating protein localization and function, LLPS can 

impact various aspects of tumor development and 

progression. 

 

Breast cancer, now one of the most common cancers 

worldwide, is the leading cause of cancer-related death 

in women [19]. In 2018, about 2.1 million women were 

newly diagnosed with breast cancer, with about 62,000 

deaths [20]. Mutation activation of genes associated 

with multiple signaling pathways is considered to be a 

key factor in the progression of breast cancer [21]. The 

complexity of the tumor microenvironment in breast 

cancer is the source of heterogeneity and is associated 

with breast cancer resistance to treatment [22]. 

Although the early diagnosis methods of breast cancer 

have made rapid progress, including molybdenum 

target, ultrasound, needle biopsy, etc., there are still 

some patients with advanced and metastatic breast 

cancer, and the prognosis of these patients is very poor 

[23]. Currently, the treatment of metastatic breast 

cancer and triple-negative breast cancer (TNBC) 

remains a challenge, characterized by high drug 

resistance and rapid progression [23]. Therefore, we 

need to explore the tumor microenvironment of breast 

cancer in depth. Now, the role of liquid-liquid phase 

separation in cancer genomics and proteomics has been 

preliminarily explained. Li et al. discovered a novel 

regulatory role of tumor-promoting lncRNAs (i.e. 

SNHG9) in signal transduction and cancer development 

by promoting LLPS of signal kinase (i.e. LATS1) [24]. 

However, the role of fluid-liquid phase separation in 

breast cancer has not been clearly defined. 

 

Here, we performed single-cell sequencing analysis and 

transcriptome analysis to explore the role of LLPS in 

breast cancer. The LLPS heterogeneity in breast cancer 

was investigated by single-cell sequencing analysis. 

Combined with weighted co-expression network 

analysis and Lasso regression analysis, we constructed a 

prognostic signature associated with LLPS. This 

signature can accurately predict the prognosis and 

immunity of breast cancer patients. Our study can 
provide some potential targets for the precision 

treatment of breast cancer and provide a certain 

reference for the study of LLPS in breast cancer. 
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MATERIALS AND METHODS 
 

Transcriptome data download and processing 

 

UCSC Xena (http://xena.ucsc.edu/) is a comprehensive 

website that collects and collates sequencing data and 

clinical data from multiple cancer databases. In this 

paper, the breast cancer cohort GDC TCGA Breast 

Cancer (BRCA) was downloaded from this database, 

including standardized transcriptomic data (HTSEQ-

FPKM) and corresponding clinical data. A total of 1050 

patients with both transcriptome data and clinical 

characteristics were obtained by matching gene 

expression data with patients’ clinical data and removing 

patients with survival time of 0. Breast cancer cohort 

Caldas 2007 was downloaded through UCSC database, 

including gene expression data and clinical data. Then, 

113 samples containing both expression data and clinical 

data were matched. The expression data were 

transformed by log2 for subsequent analysis. 

 

Single cell sequencing data download and processing 

 

The Gene Expression Omnibus (GEO) database contains 

chip data, high-throughput gene expression data and 

single-cell sequencing data submitted by research 

institutions around the world. In this paper, a single cell 

dataset GSE188600 containing one sample of breast 

cancer and a single cell dataset GSE198745 containing 

two samples of breast cancer were obtained by GEO 

database. Quality control procedures were as follows: 1) 

Remove genes expressed in less than 3 cells and cells with 

less than 200 genes expressed; 2) Remove cells with more 

than 10% mitochondrial gene content by calculating 

mitochondrial genes; 3) 2000 anchor points were set for 

analysis by FindIntegrationAnhors function of Seurat 

package, and the samples were integrated by IntegrateData 

function. The batch effect between samples was removed 

by SCT method, and then the number of PCS was set to 

25, and the dimension was reduced by PCA method. 

UMAP was used to show the results of reduction and 

clustering. Cell types were annotated synthetically by 

surface marker genes of cell types. Then, we used LLPS-

related genes in each cell using the PercentageFeatureSet 

function of the Seurat package to get the score of LLPS 

phenotype in each cell and divided it into high-LLPS and 

low-LLPS groups based on the median score. 

 

Acquisition of genes related to liquid-liquid phase 

separation 

 

DrLLPS website (http://llps.Biocuckoo.cn/) is a 

comprehensive website on LLPS related analysis. In this 
study, LLPS-related genes were downloaded from this 

website, and only genes encoding proteins were retained, 

with a total of 3,611 genes for subsequent analysis. 

Single sample gene set enrichment analysis (ssGSEA) 

 

ssGSEA is implemented through extended Gene Set 

Enrichment Analysis (GSEA), which allows the 

definition of a enrichment score that represents the 

degree of enrichment in the Gene Set for each sample in 

a given data set. In this paper, the enrichment fraction of 

LLPS in each breast cancer sample was calculated by 

ssGSEA method. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

Weighted genes Correlation network analysis 

(WGCNA) is a system biology method used to 

describe the gene association pattern between different 

samples, which can be used to identify highly 

synergistic gene sets. We set the range of soft field 

value as follows: step size between 1-10 was 1, step 

size between 10-20 was 2. Then, the optimal soft 

domain value is calculated by the pickSoftThreshold 

function of WGCNA package, which is 6. In this 

study, candidate genes related to LLPS were obtained 

by WGCNA analysis. 

 

Construction of the prognostic model 

 

The differentially expressed genes between high-LLPS 

group and low-LLPS group obtained by single-cell 

sequencing analysis were intersected with the module 

genes obtained by WGCNA. Subsequently, univariate 

COX analysis was performed on the genes mentioned 

above, and the prognostic genes were preliminarily 

obtained by setting the domain value p <0.05. Then, 

further analysis of the Least Absolute Shrinkage and 

Selection Operator (LASSO) was conducted, with the 

random seed set as 55555. By constructing a penalty 

function and compressing some regression coefficients, 

the optimal prognostic model is finally obtained. 

 

Evaluation of the prognostic model 

 

Independent external cohort was used to verify the 

accuracy of the model. The prognostic differences 

between the high-risk and low-risk groups and the 

model’s ability to distinguish breast cancer patients 

were compared. 

 

The construction of a nomogram 

 

Nomograms were constructed to predict mortality at 1, 

3 and 5 years by integrating patients’ model risk scores 

and clinical data. Subsequently, the calibration curve, 
AUC curve, and decision curve of the nomogram were 

constructed to evaluate the clinical value of the 

nomogram. 

http://xena.ucsc.edu/
http://llps.biocuckoo.cn/
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Cell experiments to verify the function of key gene 

PGAM1 

 

Breast cancer cell lines MDA-MB-231 and MDA-MB-

468 were purchased from the Cell Bank of the Chinese 

Academy of Sciences (Shanghai, China). Cells were 

grown on DMEM supplemented with 10% fetal bovine 

serum (Gibco). Using Lipofectamine3000 (Thermo 

Fisher Scientific, Waltham, MA, USA), the cells were 

transfected with small interfering RNA (GenePharma 

Inc., Shanghai, China) of the previously synthesized 

targeted gene PGAM1. The siRNA sequences of 

PGAM1 gene are as follows: si-PGAM1-1: Forward: 

CUGGCUAUGAGUUUGACAUTT; Reverse: AUGU 

CAAACUCAUAGCCAGTT. si-PGAM1-2: Forward: 

GGUCUCAAUAAAGCAGAAATT; Reverse: UUUC 

UGCUUUAUUGAGACCTT. si-PGAM1-3: Forward: 

CCUUCUGGAAUGAAGAAAUTT; Reverse: AUUU 

CUUCAUUCCAGAAGGTT. Primer sequences used 

in PCR experiments are as follows: PGAM1 

(Forward): GGGTCATTGATGAGGCACAGG; PGAM1 

(Reverse):CAAACTCATAGCCAGCATCAGA. GAPDH 

(Forward):GAACGGGAAGCTCACTGG;GAPDH(Re

verse):GCCTGCTTCACCACCTTCT. Methods of PCR, 

CCK8, Transwell, and wound healing have been 

described in our previously published studies [25]. 

 

Statistical analysis 

 

The prognostic genes were identified by univariate 

COX analysis. Survival analysis used KM analysis 

method. Comparison of model value LLPS in breast 

cancer patients living and dying was performed using 

the rank-sum test. Comparison of model values between 

multiple groups was performed using the rank-sum  

test. p<0.05 was defined as statistically significant 

difference. 

 

Data availability statement 

 

The datasets generated and analysed during the  

current study are available in the TCGA [https:// 

www.cancer.gov/about-nci/organization/ccg/research/ 

structural-genomics/tcga] and GEO repository, 

[GSE188600 and GSE198745]. 

 

RESULTS 
 

The flow chart of this work was shown in Supplementary 

Figure 1. 
 

Screening genes associated with LLPS by WGCNA 
 

In the TCGA cohort, the LLPS enrichment score of 

each breast cancer patient was quantified by ssGSEA 

analysis. Then, WGCNA was used to further find 

genes related to LLPS phenotype in breast cancer. It 

was found that when the soft domain value was set to 

6, not only R^2>0.8, indicating that the data was in line 

with power law distribution and suitable for WGCNA 

analysis, but also mean connectivity tended to be 

stable (Figure 1A). Then, the minimum number of 

genes in the module was set as 100, deepSplit = 3, and 

similar modules were merged by setting cutHight = 

0.4, and 14 non-gray gene modules were finally 

obtained, as shown in Figure 1B. Among these 

modules, we found that both brown and midnightblue 

modules had the strongest correlation with LLPS (Cor 

= 0.71&p<0.001; Cor = 0.49&p<0.001, Figure 1C), 

suggesting that these two modules are closely related 

to LLPS in breast cancer. Subsequently, we explored 

the correlation of genes within the Module and found 

that, as shown in Figure 1D, 1E, there is a strong 

positive correlation between Module membership and 

the importance of genes in brown and midnightblue 

modules (cor = 0.78&p<0.001; Cor = 0.59&p<0.001). 

We then selected genes from these modules for 

subsequent analysis. 

 

Single cell sequencing data analysis 

 

Figure 2A showed the gene expression of the 

remaining 22,941 cells after quality control, and the 

percentage of mitochondrial genes is less than 10 

percent. As shown in Figure 2B, we found that the 

sum of gene expression values was strongly positively 

correlated with the number of genes, cor was 0.94, 

and the percentage of mitochondrial genes was less 

than 10 percent. As shown in Figure 2C, cells were 

evenly distributed among the 3 samples, and no 

obvious batch effect was observed. As shown in 

Figure 2D, all cells are clustered into 26 clusters in 

total. Therefore, cells were annotated according to 

marker genes of each cell type (Supplementary Table 1) 

and their expression among cell clusters (Figure 2E), 

and cells were finally annotated into 6 categories. As 

shown in Figure 2F, they are basal epithelial cell, 

endothelial cell, luminal epithelial cells, macrophage, 

stromal cells and T Cells respectively. It was found 

that stromal cells and luminal epithelial cells 

accounted for a higher proportion of all cells. Next, 

we divided the cells into high-LLPS group and low-

LLPS group according to the enrichment fraction of 

LLPS-related genes. As shown in Figure 2G, we 

found that low_LLPS were mainly distributed in 

luminal epithelial cells and stromal cells, while 

high_LLPS were mainly distributed in basal epithelial 

cell, endothelial cell, macrophage, and T cells. Then, 

the differential expression analysis of genes between 
high-LLPS and low-LLPS groups was carried out,  

and 2518 genes related to LLPS were obtained by 

setting p<0.05. 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Construction and validation of the LLPS-related 

prognostic model 

 

The LLPS-related genes obtained by single-cell 

sequencing analysis were intersections with the module 

genes obtained by WGCNA analysis, and the genes that 

could be detected in both TCGA and Caldas-2007 

cohorts were selected. A total of 127 genes were finally 

obtained. Subsequently, in the TCGA cohort, genes 

related to prognosis were initially screened by 

univariate COX analysis, and a total of 15 candidate 

genes were obtained when p<0.05 was set. The names 

of these genes as well as HR and p-values were shown 

in Figure 3A. Then, through LASSO regression, random 

seed was set as 55555 and maxit = 1000, as shown in 

Figure 3B, 3C. The best lambad value was 0.06, and 

signature composed of 9 genes was obtained, including 

POLR3GL, PLAT, NDRG1, HMGB3, HSPH1, 

PSMD7, PDCD2, NONO and PGAM1. The risk value 

of the model was LLPS = (-0.240)*POLR3GL + (-

0.017) * PLAT + 0.062*NDRG1 + 0.039*HMGB3 + 

0.058*HSPH1 +0.020*PSMD7 + 0.262* PDCD2 

NONO + 0.147*PGAM1. According to the median 

value of model value (LLPS), all breast cancer samples 

were divided into LLPS_high risk group and LLPS_low 

risk group. Prognosis was then compared between the 

different subgroups. As shown in Figure 3D–3F, LLPS 

scores in the TCGA cohort were different between the 

 

 
 

Figure 1. Weighted Co-expression Network Analysis (WGCNA). (A) When the soft domain value is set to 6, data becomes stable and 

is suitable for WGCNA. (B) Merging of modules. The minimum number of genes for modules was 100, deepSplit = 3, and cutHight =0.4. 
Finally, 14 non-grey modules were obtained. (C) Brown and midnightblue modules were most strongly correlated with LLPS (cor = 
0.71&p<0.001 and cor = 0.49&p<0.001). (D, E) In brown and midnightblue modules, there was a strong positive correlation between module 
membership and gene importance (cor = 0.78&p<0.001, cor = 0.59&p<0.001). 
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Figure 2. Single cell sequencing analysis. (A, B) Quality control of single cell sequencing data. (C) Cells were evenly distributed among the 

three samples, and no obvious batch effect was observed. (D) All cells are grouped into 26 clusters. (E, F) Cell annotation. All cells were 
annotated as basal epithelial cell, endothelial cell, luminal epithelial cells, macrophage, stromal cells and T cells. (G) According to the LLPS-
related genes, the cells were divided into high-LLPS group and low-LLPS group, and the differentially expressed genes between the two 
groups were obtained. 
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dead patients and the living patients, and LLPS scores 

were higher in the dead patients (p<0.001). Meanwhile, 

survival curve analysis suggested that the LLPS_high 

group had a poor prognosis (p<0.001). At the same 

time, PCA analysis showed that the model could 

distinguish breast cancer patients well. Similarly, in the 

external validation cohort, as shown in Figure 3G–3I, 

LLPS scores in the dead patients were different from 

those in the living patients, and LLPS in the dead 

patients is higher (p<0.001). Meanwhile, survival 

analysis suggested that the prognosis of the LLPS_high 

group is worse (p<0.001). At the same time, PCA 

analysis showed that the model could distinguish breast 

cancer patients well. 

 

Clinical correlation analysis of the model 

 

As shown in Figure 4A, we found that Age, T, N, M, 

Stage and LLPS were all influential factors for the 

prognosis of breast cancer through univariate COX 

 

 
 

Figure 3. Construction and validation of the prognostic model. (A) Univariate COX analysis of intersection genes. (B, C) Prognostic 

model was established by Lasso regression. (D) Survival analysis of TCGA cohort. The LLPS_high group had a significantly worse prognosis 
(p<0.0001). (E) LLPS score was higher in dead patients of TCGA cohort. (F) Principal component analysis (PCA). (G) The prognostic model can 
divide breast cancer patients into two groups well. (G–I) External independent cohort verification. 
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Figure 4. Clinical correlation analysis. (A) Univariate COX regression analysis. (B) Multivariate COX regression analysis. (C–H) The 

relationship between LLPS score and clinical characteristics such as age, sex, total stage, T stage, N stage and M stage. 
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analysis. However, multivariate COX analysis showed 

that only LLPS and age were independent prognostic 

factors (Figure 4B). Subsequently, we explored  

the relationship between the model and clinical 

characteristics, and found that, as shown in Figure 4C, 

4D, there was no significant difference in LLPS values 

between different gender and age groups. In terms of 

clinical staging, LLPS values were higher in Stage II 

compared to stage I and stage III (Figure 4E). In T 

stage, the LLPS in T2 stage was higher than that in T1, 

and the LLPS in T4 stage was also higher than that in 

T1 and T2 (Figure 4F). In N stage, we found that the 

LLPS in N2 stage was higher than that in N1 stage 

(Figure 4G). However, there was no significant 

difference in LLPS value in M stage (Figure 4H). 

 

The construction of a nomogram 

 

As shown in Figure 5A, we found that the 1-, 3- and 5-

year mortality rates of patients TCGA-D8-A1X9 were 

0.022, 0.120 and 0.215, respectively. Subsequently, to 

further evaluate the accuracy of nomogram’s prediction 

 

 
 

Figure 5. Construction and evaluation of the nomogram. (A) Nomogram combining LLPS score and other clinical features. The 1-, 3- 
and 5-year mortality rates of patient TCGA-D8-A1x9 were 0.022, 0.120 and 0.215 respectively. (B) Calibration curve. (C) Continuous 
prognostic ROC found that the AUC fluctuation of nomograms was 0.8. (D) Decision curve was analyzed and it was found that patients 
benefited the most from clinical intervention based on model value LLPS. 
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of patient prognosis, a calibration curve analysis was 

performed, as shown in Figure 5B. The 5-year predicted 

calibration curve was basically consistent with the 

actual results. Moreover, continuous prognostic ROC 

found that the AUC fluctuation of nomograms was 0.8, 

which was significantly higher than other clinical 

characteristics, such as age, gender, T, N, and stage, 

suggesting that nomograms had high accuracy in 

predicting the prognosis of patients (Figure 5C). 

Subsequently, the decision curve was analyzed and it 

was found that patients benefited the most from clinical 

intervention based on model value LLPS (Figure 5D). 

 

Cellular localization of model genes 

 

Subsequently, we investigated expression of genes in 

the model at the single-cell level. As shown in Figure 6, 

we found that HMGB3 and HSPH1 were mainly 

expressed in luminal epithelial cells, NDRG1 and PLAT 

were mainly expressed in stroma cells, while NONO, 

PDCD2, PSMD7, PAGM1 were mainly expressed in 

luminal epithelial cells and stroma cells, while 

POLR3GL was low in all cell types. 

Expression and survival analysis of PAGM1 gene 

 

Subsequently, we selected the genes with a greater 

prognostic impact among the nine genes in the model. 

Among the 9 genes, PAGM1 not only had the largest HR 

value in univariate COX results, but also had the largest 

coefficient value in LASSO regression, suggesting that 

PAGM1 may have a greater impact on prognosis. We 

then analyzed the correlation between the expression of 

PGAM1 and prognosis. As shown in Figure 7A, 7B, 

PAGM1 was highly expressed in breast cancer, and K-M 

survival analysis suggested that patients with high 

expression of PGAM1 have a poor prognosis (p<0.01). 

 

Cell experiments to verify the function of key gene 

PGAM1 

 

After the breast cancer cell lines MDA-MB-231 and 

MDA-MB-468 were transfected with three siRNA, the 

PCR experiment found that si-PGAM1-1 had the 

highest knockdown efficiency, so the cell experiment 

was carried out in this group. PGAM1 was significantly 

knocked down in both two cell lines (Figure 8A). CCK-8 

 

 
 

Figure 6. Cellular localization of model genes. The expression of genes in the model at the single-cell level. HMGB3 and HSPH1 were 

mainly expressed in luminal epithelial cells, NDRG1 and PLAT were mainly expressed in stroma cells, while NONO, PDCD2, PSMD7, PAGM1 
were mainly expressed in luminal epithelial cells and stroma cells, while POLR3GL was low in all cell types. 
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assay showed that the activity of MDA-MB-231 and 

MDA-MB-468 breast cancer cell lines was significantly 

decreased after PGAM1 knockdown (Figure 8B). 

Clonal formation experiments showed that after 

PGAM1 knockdown, the proliferation ability of MDA-

MB-231 and MDA-MB-468 breast cancer cell lines was 

significantly reduced (Figure 8C, 8D). Transwell assay 

showed that the migration and invasion of MDA-MB-

231 and MDA-MB-468 cell lines were significantly 

reduced after PGAM1 knockdown (Figure 8E–8H). 

Wound healing experiments showed that the healing 

abilities of MDA-MB-231 and MDA-MB-468 cell lines 

were significantly reduced after PGAM1 knockdown 

(Figure 8I–8L) (*p<0.05, **p<0.01, ***p<0.001). 
 

DISCUSSION 
 

Breast cancer accounts for a significant portion of the 

global cancer burden and has become one of the most 

common tumors in the world, as well as the cancer type 

with the highest morbidity and mortality in women  

[25–27]. It can be seen that the age trend of breast  

cancer onset is getting younger and younger, which 

harms women’s physical and mental health [28]. The 

combination of surgery with chemotherapy, radiotherapy, 

and targeted therapy has become the main treatment 

method for breast cancer [29, 30]. However, these 

treatments only seem to work in 70 to 80 percent of early, 

non-metastatic lesions [31]. For patients with advanced 

metastatic or triple-negative breast cancer, surgical 

recurrence, chemotherapy resistance, and radiation 

resistance are common [32]. At present, the mechanism 

of treatment resistance in breast cancer is not clear. It is 

speculated that drug external transport pump, activation 

of new signaling pathways, and characteristics of tumor 

stem cells are related to treatment resistance of breast 

cancer, and their cross-talk constitutes the complex tumor 

microenvironment of breast cancer [33]. 

 

Liquid-liquid phase separation (LLPS) was originally 

defined as an engineering technique in physics and 

chemistry [34]. In recent years, the role of liquid-liquid 

phase separation in cell biology and oncology has been 

preliminarily elucidated. LLPS is thought to be involved 

in the formation of membraneless aggregates in cells 

[35]. In normal physiological processes, LLPS can 

mediate many reactions, including transcription, protein 

degradation, DNA damage repair, and so on, to take 

place methodically in different spaces and times [36]. In 

tumor cells, LLPS may mediate the formation of some 

carcinogenic condensates, leading to the activation  

of downstream signaling pathways or mediating 

extracellular matrix interactions [37]. 

 

In this study, we used WGCNA to identify the modules 

most associated with LLPS in breast cancer, which may 

play an important role in the development and 

progression of breast cancer. Subsequently, we divided 

breast cancer cells into high-LLPS group and low-LLPS 

group by single-cell sequencing analysis, and identified 

differentially expressed genes between the two groups. 

This provides a reference for us to understand the 

 

 
 

Figure 7. Expression and survival analysis of PGAM1. (A) PGAM1 expression was upregulated in breast cancer compared with normal 

controls. (B) Survival analysis showed that the prognosis of breast cancer patients with high PGAM1 expression was significantly worse 
(p<0.01). 
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heterogeneity of LLPS in breast cancer at the single-cell 

level. Subsequently, after the intersection of 

differentially expressed genes and module genes 

obtained by WGCNA, 127 of the most critical LLPS-

related genes were obtained. COX regression and Lasso 

regression were used to construct prognostic models for 

the above 127 genes. Finally, a prognostic model 

consisting of nine genes was developed. Using this 

prognostic model, each patient could be calculated to 

obtain an LLPS score, with a significantly worse 

prognosis in the LLPS_high group. These results provide 

reference for the prognostic evaluation of breast cancer. 

The subsequent ROC curve, principal component 

analysis and decision curve showed that the LLPS-

related prognosis model had good clinical application 

value. Finally, cell experiments verified the function of 

the key gene PGAM1 in the model, providing a potential 

biomarker for breast cancer. 

 

 
 

Figure 8. Cell experiments to verify the function of key gene PGAM1. (A) After transfection with SI-PGAM1-1, PGAM1 expression in 
MDA-MB-231 and MDA-MB-468 cell lines was significantly down-regulated. (B) CCK-8 assay showed that PGAM1 knockdown significantly 
reduced the activity of both two cell lines. (C) Cloning formation assay of MDA-MB-231 cell line. PGAM1 knockdown significantly reduced the 
proliferation ability of breast cancer cells. (D) Cloning formation assay of MDA-MB-468 cell line. (E) Transwell experiment of MDA-MB-231 cell 
line. PGAM1 knockdown significantly reduced the invasion and migration of breast cancer cells. (F) Transwell experiment of MDA-MB-468 cell 
line. (G) Transwell statistical histogram of MDA-MB-231 cell line. (H) Transwell statistical histogram of MDA-MB-468 cell line. (I) Wound 
healing experiment of MDA-MB-231 cell line. After PGAM1 knockdown, the healing ability of breast cancer cells was significantly reduced.  
(J) Wound healing experiment of MDA-MB-468 cell line. (K) Statistical histogram of wound healing experiment of MDA-MB-231 cell line.  
(L) Statistical histogram of wound healing experiment of MDA-MB-468 cell line. (*p<0.05, **p<0.01, ***p<0.001). 
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The goal of breast cancer treatment is to increase the 

therapeutic effect and reduce complications [38]. The 

combination of multiple treatment schemes and 

multidisciplinary comprehensive treatment is beneficial 

to patients with breast cancer in many ways [39]. For 

example, the advent of neoadjuvant chemotherapy has 

reduced the staging of many unresectable breast cancers 

to resectable ones [40]. Breast-conserving surgery 

combined with postoperative radiotherapy not only 

allows women to preserve their breasts and thus avoid 

psychological damage but also reduces the postoperative 

recurrence rate [41]. Mastectomy combined with breast 

reconstruction also improves the psychological well-

being of many breast cancer patients, leading to better 

integration into society [42]. However, the treatment of 

metastatic or triple-negative breast cancer is currently 

difficult. It is urgent to find a new prognostic 

stratification method for breast cancer patients and 

explore new markers of breast cancer. In our study, we 

stratified the risk of breast cancer patients with a novel 

idea of fluid-liquid phase separation, which is a good way 

to evaluate the prognosis, immune microenvironment, 

and mutation load of breast cancer patients. This has 

implications for the diagnosis and treatment of breast 

cancer. 

 

PGAM1, or phosphoglycerate mutase 1, is an enzyme 

involved in the glycolytic pathway, which plays a 

critical role in energy metabolism [43]. While PGAM1 

is primarily known for its metabolic function, emerging 

research has revealed its significance in cancer biology 

and immunology, highlighting its multifaceted roles in 

these fields [44]. 

 

In cancer biology, PGAM1 has garnered attention due 

to its association with tumorigenesis, tumor progression, 

and therapeutic resistance [44]. Several studies have 

demonstrated that PGAM1 is frequently upregulated in 

various types of cancers, including lung, breast, 

colorectal, and liver cancers [45, 46]. Elevated 

expression of PGAM1 is often correlated with 

aggressive tumor phenotypes, poor prognosis, and 

reduced patient survival rates [46]. 

 

The overexpression of PGAM1 in cancer cells confers 

several advantages. Firstly, PGAM1 promotes glycolysis 

by facilitating the conversion of 3-phosphoglycerate (3-

PG) to 2-phosphoglycerate (2-PG), leading to increased 

ATP production and lactate production, even in the 

presence of sufficient oxygen (aerobic glycolysis or the 

Warburg effect) [45]. This metabolic alteration provides 

cancer cells with a growth advantage by supporting their 

high energy demands and biomass synthesis. 
 

Moreover, PGAM1 has been implicated in promoting 

cell proliferation and tumor growth. It exerts its 

oncogenic effects by influencing key signaling 

pathways involved in cell cycle progression, such as the 

AKT/mTOR pathway and the MAPK pathway [45]. 

Additionally, PGAM1 enhances the resistance of cancer 

cells to oxidative stress and apoptosis, enabling their 

survival and contributing to chemoresistance [46]. 

 

In recent years, the immunological aspects of PGAM1 

have also come to light. Studies have revealed that 

PGAM1 plays a role in modulating the immune 

response and influencing immune cell function. It has 

been found to regulate the metabolic programming of 

immune cells, particularly T cells and macrophages, 

thereby impacting their effector functions and immune 

responses [47]. 

 

The significance of PGAM1 in cancer biology and 

immunology suggests its potential as a therapeutic target. 

Inhibiting PGAM1 activity or targeting its downstream 

signaling pathways may represent a promising approach 

to disrupt tumor metabolism, enhance chemosensitivity, 

and modulate immune responses in cancer. In our study, 

the function of PGAM1 was verified in vitro. Although 

we lack in vivo experimental verification, it can still 

provide reference for prognosis assessment and diagnosis 

of breast cancer. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. The flow chart. 
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Supplementary Table 
 

 

Supplementary Table 1. The cell markers. 

Marker Celltype Cluster 

GATA3 Luminal epithelial 0 

FAP Stroma 1 

COL1A1 Stroma 2 

MUC1 Luminal epithelial 3 

COL3A1 Stroma 4 

CD2 T cell 5 

COL5A1 Stroma 6 

CSF1R Macrophage 7 

PECAM1 Endothelial 8 

CD24 Luminal epithelial 9 

ACTA2 Stroma 10 

TAGLN Stroma 11 

KIT Luminal epithelial 12 

GABRP Luminal epithelial 13 

LUM Stroma 14 

TP63 Basal epithelial 15 

FBLN1 Stroma 16 

CD68 Macrophage 17 

CD3D T cell 18 

FOXA1 Luminal epithelial 19 

KRT19 Luminal epithelial 20 

BLNK Macrophage 21 

CD163 Macrophage 22 

COL6A3 Stroma 23 

COL1A2 Stroma 24 

KRT18 Luminal epithelial 25 

EPCAM Epithelial 26 

ECFR Epithelial 27 

CDH1 Epithelial 28 

KRT14 Basal epithelial 29 

ITGA6 Basal epithelial 30 

KRT5 Basal epithelial 31 

KRT17 Basal epithelial 32 

MME Basal epithelial 33 

KRT8 Luminal epithelial 34 

COL6A1 Stroma 35 

COL6A2 Stroma 36 

VWF Endothelial 37 

CDH5 Endothelial 38 

SELE Endothelial 39 

PTPRC Immune 40 

CD3E T cell 41 

CD3G T cell 42 

CD8A T cell 43 

CD8B T cell 44 
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MS4A1 Macrophage 45 

CD79A Macrophage 46 

CD79B Macrophage 47 

CD14 Macrophage 48 

 


