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INTRODUCTION 
 
Recent studies have suggested that tumorigenesis is 
closely related to the alteration of genetic material and 
the deterioration of the environment of the organism  
[1, 2]. Moreover, environmental degradation can cause 

somatic cell biological dysfunction, such as impaired 
DNA damage repair [3], abnormal activation or 
inhibition of signalling pathways [4], and dysregulation 
of protein production and degradation [5], which can lead 
to the deterioration of normal epithelial cells into tumour 
cells. The most common gastrointestinal cancer is colon 
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ABSTRACT 
 
Background: Tumour-dependent genes identified in CRISPR‒Cas9 screens have been widely reported in Cancer 
Dependency Maps (CDMs). CDM-derived tumour-dependent genes play an important role in tumorigenesis and 
progression; however, they have not been investigated in colon cancer (CC).  
Methods: CDM genes overexpressed in CC were identified from the TCGA-COAD dataset and CDM platform. A 
CDM signature and prognostic nomogram were constructed by Lasso Cox regression and multivariate Cox 
analyses. A weighted correlation network analysis (WGCNA) and consensus clustering were used to define 
coexpressed genes with CDM risk scores and to determine two new immune subtypes. A comprehensive 
investigation was performed between the two subtypes and immune regulation, the immune 
microenvironment and the impact of immunotherapy. 
Results: First, 1304 overexpressed CDM genes were identified. Then, a CDM signature with five cancer-
dependent genes (MMS19, NOP14, POLRMT, SNAPC5 and TIGD1) and a prognostic nomogram were 
constructed, and they demonstrated robust predictive performance and a close relationship with clinical 
characteristics in different CC datasets. Patients with high CDM risk scores showed worse survival outcome and 
weaker response to chemotherapy. Additionally, TIGD1 genes were oncogenes that affected the CC cell cycle, 
according to cell functional experiments that involved the suppression of the TIGD1 gene. Furthermore, 
WGCNA and consensus clustering were used to define coexpressed genes with CDM risk scores and to 
determine two new immune subtypes. Finally, systematic investigations were conducted with the relationship 
between the CDM subtypes and immune regulation. 
Conclusions: This study constructed a CDM signature consisting of five risk genes that predict survival in CC 
patients. In addition, the immune subtypes provided valuable insights into immunotherapy for CC patients. TIGD1, 
as an oncogene, is independent prognostic factors for CC, and contributes to CC progression. 
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cancer (CC), and the number of new cases is increasing 
every year [6]. However, the pathogenesis of CC has  
yet to be fully elucidated. Normal intestinal mucosal 
epithelium-proliferating microadenoma-early adenoma-
intermediate adenoma-advanced adenoma-cancer-cancer 
metastasis, seems to be the growth history chain of most 
CC. How to interrupt this growth chain and identify 
oncogenes associated with tumour growth have become 
the keys to preventing and treating CC. 
 
The Cancer Dependency Map (CDM) project [7], 
initiated by scientists at the Broad Institute and Dana-
Farber Cancer Institute, aims to use RNA interference 
(RNAi) and CRISPR‒Cas9, two gene-silencing 
technologies, to uncover genes that drive cancer cell 
proliferation. The CDM project’s dataset is updated 
quarterly, and data published in 2017 revealed that the 
screening of hundreds of cancer cell lines was 
completed and that 769 strongly associated tumour-
dependent genes were identified [8]. Data released in 
April 2022 show that the project has screened 1,393 cell 
lines for 33 cancers, and identified 19,177 genes. Due to 
its excellent non-off-target effects, CRISPR‒Cas9 has 
been employed extensively in gene editing in recent 
years [9]. Therefore, the basis of our study was built on 
CRISPR‒Cas9 technology and the CDM project. 
 
Tumour cells of different origins, and even cells of the 
same tumour, have different genomic mechanisms, 
which determines the diversity and complexity of 
tumour-dependent genes. This poses a great challenge 
to screening for tumour-dependent genes and exploring 
the relationship between genes. Methyl-
methanesulfonate sensitivity 19 (MMS19) has been 
found in a variety of tumours [10–12] and is involved in 
DNA metabolism and genomic stability through the 
regulation of nucleotide excision repair and Fe-S 
protein expression, thereby affecting tumor progression 
[13]. Recently, studies regarding the influence of 
nucleolar complex protein 14 (NOP14) on cancers have 
been conducted, and this protein has been shown to play 
an important role in cancer migration and invasion [14, 
15]. In addition, Yin et al. [16] discovered that Trigger 
transposable element-derived 1 (TIGD1) is coupled with 
a malignancy survival and associated with regulating 
cell-cycle progression in human cancer. Mitochondrial 
RNA polymerase (POLRMT) is often reported as a 
target protein for the treatment of malignant tumours 
[17], however snRNA-activating protein complex 5 
(SNAPC5), also named SNAP19 [18], has rarely been 
reported in tumours. 
 
We constructed a valid and robust CDM signature and 
predictive nomogram by organically combining RNA 
sequencing data from The Cancer Genome Atlas–colon 
adenocarcinoma (TCGA-COAD) tumour samples with 

data on the tumour-dependent gene interference 
efficiency of CC cells in the CDM; the signature and 
nomogram were validated with both internal and external 
data. Furthermore, two novel immune subtypes were 
established by weighted correlation network analysis 
(WGCNA) and consensus clustering, that can be used to 
precisely determine whether patients will benefit from 
immunotherapy. Finally, functional experiments revealed 
thatTIGD1 genes was oncogenes that impacted the CC 
cell cycle. 
 
MATERIALS AND METHODS 
 
Identifying CDM genes from COAD cells 
 
Interference efficiency files identified by CRISPR‒Cas9 
for 55 CC cell lines with dependent genes were 
downloaded from the CDM (https://depmap.org/portal/) 
[19]. As of April 2022, the CDM has validated 19,177 
genes covering 1,393 cell lines from 33 malignancies, 
making it the most comprehensive research database of 
tumour cells available. A negative value of interference 
efficiency indicated that knockdown of a gene inhibited 
the growth of tumour cells, while a positive value 
promoted cell growth. When the interference efficiency 
of a gene was less than -0.5, knockdown of the gene 
was considered to significantly inhibit the growth of 
tumour cells, and it was referred to as a cancer 
dependent gene. A total of 1,613 genes were considered 
CC dependent genes, as their interference efficiency 
averaged less than -0.5 in 55 types of CC cells. 
 
Downloading and preprocessing of TCGA and GEO 
data 
 
TCGA-COAD RNA-Seq and clinical information data, 
including 452 samples, were downloaded from TCGA 
(https://portal.gdc.cancer.gov) in March 2022. The format 
of RNA-Seq expression data was converted from FPKM 
to TPM, which is more in consistent with the GEO (Gene 
Expression Omnibus) (https://www.ncbi.nlm.nih.gov/ 
geo/) chip data and provides more convenience for joint 
analysis of TCGA and GEO data. The GSE17536 
microarray dataset contained 177 CC sample RNA-Seq 
expression and clinical data (Supplementary Table 1). 
Subsequently, CC datasets from different data sources 
were log2 (value+1) normalized using the “limma” and 
“sva” bioconductor packages in the 4.10 R software. 
 
Intersecting genes among the upregulated and CDM 
genes 
 
The “limma” package was used to compare the 
differences in gene expression between normal tissue 
and tumour tissue for the corrected TCGA-COAD data 
and a p value less than 0.05 and log2-fold change 
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(logFC) greater than 1 indicated upregulated COAD 
genes. The “VennDiagram” package was used to 
identify 1,034 intersecting genes among the upregulated 
and CDM genes. 
 
Functional enrichment analysis of intersecting 
genes 
 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) analyses were performed using 
the “clusterProfiler”, “org.Hs.eg.db”, “enrichplot” and 
“ggplot2” packages. 
 
Constructing and validating the CDM signature and 
nomogram 
 
First, univariate Cox hazard analysis was used to 
screen for prognostic genes via the “limma” and 
“survival” packages. Then, the TCGA-COAD data 
were randomly separated into a training group and a 
test group at a 1:1 ratio. Next, Lasso Cox regression 
analysis was used to reduce the effect of 
multicollinearity among multiple genetic variables. 
Multivariate Cox analysis was performed to construct 
the CDM risk model based on the genes identified in 
the Lasso analysis. The validity of the CDM signature 
containing the TCGA-COAD training cohort, TCGA-
COAD training cohort, TCGA-COAD all cohort and 
GSE17536 cohort was evaluated using a time-
dependent receiver operating characteristic (ROC) 
curve with the R package “timeROC”. Based on the 
signature, the risk score of each sample in the TCGA-
COAD and GSE17536 cohorts was determined, and 
risk curves and patient survival status corresponding to 
each sample were plotted along with the expression 
heatmap of the five genes in the signature. 
Subsequently, the Kaplan–Meier plot was used to 
investigate the overall survival heterogeneity between 
the high- and low- risk groups. Finally, a nomogram 
evaluating the survival time of CC patients was 
created and validated by R package “rms”, combined 
with patient clinical characteristics. Decision curve 
analysis (DCA) and ROC curves were calculated to 
detect the accuracy of the nomogram using the R 
packages “ggDCA” and “timeROC”. 
 
Signature gene interference effects from CRISPR‒
Cas9 screens 
 
The interference efficiency of each gene in CC cells 
was collated from the CDM, and the interference 
efficiency of the SNAPC5, TIGD1, NOP14, MMS19 
and POLRMT genes in the signature was extracted and 
visualized using GraphPad 7.0 software. We also 
further calculated the efficiency of the risk model in 
determining cell growth interference in common CC 

cells, including DLD1, HCT116, HT29 and SW620 
cells. 
 
Immunohistochemical (IHC), immunofluorescence 
(IF) and Western blotting (WB) 
 
The Human Protein Atlas (HPA) [20] 
(https://www.proteinatlas.org/) has been developing of 
antibodies to human-encoded proteins, and the database 
includes a large number of immunohistochemical 
sections of normal and pathological human tissues and 
partial immunofluorescence sections of cells. The 
protein expression and intracellular localization of five 
genes were exhibited on the HPA platform. Western 
blotting was performed according to a previous study 
[21]. The following antibodies were used in this study: 
GAPDH (No. 60004-1-Ig, 1:10000 dilution, 
Proteintech, China), MMS19 (No: 66049-1-Ig, 1:1000 
dilution, Proteintech, China), NOP14 (No:26854-1-AP, 
1:500 dilution, Proteintech, China), POLRMT (No: 
A15605, 1:500 dilution, ABclonal, China), SNAPC5 
(No:17272-1-AP, 1:500 dilution, Proteintech, China), 
and TIGD1 (No:13833-1-AP, 1:500 dilution, 
Proteintech, China). 
 
Cell culture, infection, siRNAs, and cell function 
assays 
 
The COAD cells DLD1, HT29, HCT116, and SW620 
and the normal-derived colon mucosal cells (NCM460) 
were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) with 10% foetal bovine serum 
(HyClone GE Healthcare Life Sciences, Logan, UT, 
USA) at 37° C in a 5% CO2 atmosphere. Small 
interfering RNA (siRNA) targeting the TIGD1 genes 
and a negative control were purchased from 
GenePharma Company (Shanghai, China). These 
siRNAs and negative control RNA were transfected into 
HCT116 and SW620 cells. The sequences of siRNAs 
that disturbed TIGD1 gene are shown in Table 1. 
 
Colony formation: The experimental procedure can be 
found in our previous study [21]. Cell proliferation 
assay: A total of 1000 cells were inoculated in 96-well 
culture plates, and 10 µl Cell Counting Kit (CCK8) 
reagent (Beyotime Biotechnology Company, 
Shanghai, China) was added to each well at hours 24, 
48, 72, and 96. The cells were cultured for 2 hours, the 
absorbance was detected at 450 nm, and the growth 
curve was plotted. Cell cycle assay: The transfected 
cells were inoculated into 6-well plates, and when the 
cell abundance reached 80%, the cells were digested 
and fixed in 70% alcohol overnight. The next day, the 
fixed cells were stained with a cell cycle kit (Dojindo 
Laboratories, Japan) and the cell cycle was detected by 
flow cytometry. 

https://www.proteinatlas.org/
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Table 1. TIGD1 gene siRNA sequence. 

Gene name 
Sequences 

Sense (5'-3') Antisense (5'-3') 
TIGD1-988 CCAGAACAAAGCCCUAACUTT AGUUAGGGCUUUGUUCUGGTT 
TIGD1-1170 CAGAAGCUUUAGCUAAGAUTT AUCUUAGCUAAAGCUUCUGTT 
Negative control UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT 

 

Drug IC50 analysis based on the CDM signature 
 
The half maximal inhibitory concentration (IC50) 
values for dozens of drugs were evaluated in both the 
high- and low- risk groups with the R package 
“pRRophetic” [22]. 
 
Screening hub oncogene in CDM risk genes 
 
Sangerbox 3.0 (http://www.sangerbox.com/) [23] was 
used to analysis TIGD1 expression, the relationship  
with clinical characteristic and overall survival in  
TCGA-COAD dataset. The PrognoScan (http://www. 
prognoscan.org/) [24] database was used to analyse  
the prognostic value of gene from the GSE17536 
dataset. 
 
Weighted gene coexpression network analysis 
(WGCNA) and CDM immune subtypes construction 
 
WGCNA is a method for clustering genes with  
similar expression patterns and further investigating 
the association between the modules of various 
clusters and clinical phenotypes, and is therefore 
widely used in the analysis of the correlation  
between clinical phenotypes and gene expression in 
tumours. WGCNA, as an algorithm for gene 
coexpression networks, involves three main 
principles: 1) assuming that gene expression obeys a 
scale-free distribution, 2) defining the expression 
matrix of genes and the adjacency function formed by 
the gene network, and 3) calculating the dissimilarity 
coefficients of different nodes to construct 
hierarchical clustering trees. Following the risk 
scoring of the TCGA-COAD samples, the risk score 
was incorporated into the WGCNA as a significant 
clinical phenotype with the following relevant 
parameters: minModuleSize = 30, MEDissThres = 0.3 
and R package “WGCNA”. After obtaining the black 
module genes associated with the risk model, we 
acquired the differentially expressed black module 
genes by intersecting the black module genes with the 
differentially expressed genes, and then divided the 
TCGA samples into two types by the R package 
“ConsensusClusterPlus”. The two types were termed 
CDM subtypes. 

Immunity analysis of CDM-associated immune 
subtypes 
 
TCGA-COAD expression data were used to 
investigate the relationship between the two CDM-
associated subtypes and immunity. First, we calculated 
the immune microenvironment score of the samples  
by the R package “estimate”; second, we used  
the Microenvironment Cell Populations counter 
(MCPcounter) algorithm to calculate the immune cell 
score of the samples by the R package “MCPcounter” 
[25]; finally, we estimated the difference between 
subtypes by the R package “limma” and drew a violin 
map. Based on the strong association between CDM 
subtypes and immune cell infiltration, we downloaded 
TCGA-COAD immunotherapy data from The Cancer 
Imaging Archive [26] (TCIA: https://tcia.at/home) and 
performed subtype correlation analysis with 
programmed cell death protein 1 (PD1) and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4) 
immunotherapy using the R package “ggpubr”. Sankey 
diagrams were used to explore the association between 
the CDM subtypes and immune subtypes commonly 
found in clinical tumours: namely, wound healing 
(C1), IFN-dominant (C2), inflammatory (C3), 
lymphocyte depleted (C4), immunologically quiet (C5) 
and TGF-dominant (C6), by the R packages “ggplot2”, 
“ggalluvial” and “dplyr”. 
 
Data availability statement 
 
The inquiries of original data can be directed to the 
corresponding authors. 
 
Code availability 
 
Bioinformatics analysis was based on R 4.1.0, and the 
involved R packages were described in detail in the 
methods section. All codes were written and reviewed 
by GY.Z and ZF.F, respectively. GY.Z and ZF.F had 
the ultimate power of interpretation and ownership of 
the code. 
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RESULTS 
 
CDM analysis with CC flow chart 
 
A series of procedures was designed to investigate the 
prognosis of CC based on the characteristics of the 
CDM genes (Figure 1). 
 
Expression of upregulated CDM genes and 
functional enrichment analysis 
 
After normalization of the TCGA-COAD data, 8,179 
genes with upregulated expression in CC were screened 
by the selection criteria of p<0.05 and logFC>1. 
Additionally, 1,613 CC-dependent genes were 
discovered by collating interference efficiency with in 
55 type of CC cells. A total of 1,304 CDM genes were 
differentially expressed in CC (Supplementary Figure 
1A), and the heatmap in Supplementary Figure 2 
depicted their differential expression in colon normal 
tissue and CC tissue. To explore the signalling 
pathways and functional analysis of the different CDM 
genes in CC in depth, we performed KEGG and GO 
analyses. As shown in Supplementary Figure 1B, five 
significant pathways cell cycle, nucleocytoplasmic 
transport, ribosome, ribosome biogenesis in eukaryotes 
and spliceosome were enriched. Biological process 
analysis revealed that different CDM genes were 
involved in ncRNA metabolic processes, ncRNA 
processing ribonucleoprotein complex biogenesis and 
ribosome biogenesis (Supplementary Figure 1C). 

Construction and validation of the CDM signature 
 
First, 446 TCGA-COAD samples, excluding eight 
samples with missing clinical data, were randomly 
assigned to the training and testing cohorts in a 1:1 
ratio, with 224 cases in the training cohort and 222 
cases in the testing cohort. Next, univariate Cox hazard 
analysis was used to regress the differentially expressed 
CDM genes in the TCGA-COAD data according to a 
p<0.05 criterion, and 29 genes were discovered to be 
substantially associated with the survival prognosis of 
the TCGA-COAD patients (Supplementary Table 1). 
Twenty-nine genes are not conducive to medical 
detection and promotion. As a result, Lasso Cox 
regression analysis was performed to filter for precise 
and valid prognosis-related genes, and the confidence 
interval under each lambda is shown in Supplementary 
Figure 3A. The prognosis-related genes were narrowed 
down to seven genes (Supplementary Figure 3B). 
Multivariate Cox analysis was employed to model the 
prognostic assessment of the five CDM genes. The five 
CDM-gene model formula was as follows: CDM risk 
score = 0.0538052 × expSNAPC5 + 0.925782 × expTIGD1 + 
-1.54469 × expNOP14 + 1.559607 × expMMS19 + 0.592523 
× expPOLRMT. 
 
We calculated the risk scores for the training cohort 
samples based on the expression level of the five CDM 
genes, and then determined the patient survival status 
distribution according to the risk scores. It was 
discovered that the high-risk CC population had shorter 

 

 
 

Figure 1. Cancer Dependency Map (CDM) with colon cancer (CC) analysis flow chart. 
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survival times in the training cohort than the low-risk 
group, and the AUC predictive values in the time-
dependent ROC curves for 1, 3, and five years were 
0.801, 0.789, and 0.853, respectively, indicating that the 
CDM risk signature has good survival predictive power 
for CC. Subsequently, the heatmap revealed that 
SNAPC5, TIGD1, MMS19 and POLRMT were highly 
expressed in the high-risk group, while NOP14  
was expressed at low levels in the low-risk group (Figure 
2A–2E). To determine the robustness of CDM signature, 
we used the same coefficients obtained from the training 
cohort in the internal testing cohort, all TCGA-COAD 
cohorts, and GSE17536 external validation cohort. The 
risk score evaluation, patient survival status distribution, 
heatmap of the five CDM genes, K-M survival curve  
and time-dependent ROC curves with GSE17536 
external validation cohort are shown in Figure 2F–2J. 
Supplementary Figure 4A–4J correspond to the all 
TCGA-COAD cohort and partial testing TCGA-COAD 
cohort, respectively. The above findings showed that the 
CDM signature is robust, and play a consistent 
prognostic predictive role in various CC datasets. 

Good predictive ability of the CDM signature 
compared with other models 
 
Based on a literature review, four prognostic signatures 
were chosen for comparison with the CDM signature, 
namely, the Li [27], Nie [28], Ren [29], and Xu [30] 
signature, were chosen for comparison with the CDM 
signature to TCGA-COAD cohort. To make the results 
more informative, we calculated risk scores for each 
TCGA-COAD sample based on the risk genes modelled 
for each individual, divided the samples into high and 
low risk groups, and performed survival analysis and 
ROC curve validation. 
 
When comparing Figure 3A–3D, 3I, the AUC of the  
1-year, 3-year, and 5-year time-dependent ROC curves 
for the CDM risk models was clearly higher than that  
of the other four signature. Similarly, the survival 
curves of the CDM signature outperformed those of  
the others as shown in Figure 3E–3H, 3J. The 
consistency index (c-index) and RMS values were 
introduced to further compare the prognostic prediction 

 

 
 

Figure 2. Cancer Dependency Maps (CDMs) signature construction and validation in TCGA training cohort and GSE17536 
cohort. (A) Survival scatter plot in TCGA training cohort. A dot represents a CC patient (blue represents Dead, Green represents alive). 
Dotted lines show the median of risk score that dichotomize patients into high and low groups. (B) Risk score plot in TCGA training cohort. 
The patients of CC are ordered by the risk score of the CDM signature. Dotted lines show the median of risk score that dichotomize patients 
into high (blue) and low (green) groups. (C) Heatmap of five CDM signature genes (SNAPC5, TIGD1, NOP14, MMS19 and POLRMT) in TCGA 
training cohort. Blue represents high-CDM risk group and green represents low-CDM risk group. (D) Kaplan-Meier plot in TCGA training 
cohort (p<0.001). Survival curves for high (blue) and low (green) risk-CDM groups dichotomized at the median of risk-CDM score are 
plotted. 95% confidence intervals for each group are also indicated by shadow area. (E) The ROC curve of CDM signature in TCGA training 
cohort. Green show one year AUC value (AUC value=0.801), blue show three years AUC value (AUC value=0.789) and red show five years 
AUC value (AUC value=0.853). (F) Survival scatter plot in GSE17536 cohort. (G) Risk score plot in GSE17536 cohort. (H) Heatmap of five CDM 
signature genes (SNAPC5, TIGD1, NOP14, MMS19 and POLRMT) in GSE17536 cohort. (I) Kaplan-Meier plot in GSE17536 cohort (p=0.002). (J) 
The ROC curve of CDM signature in GSE17536 cohort. One year AUC value (AUC value=0.662), three years AUC value (AUC value=0.657) 
and five years AUC value (AUC value=0.635). 
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performance of these models for TCGA-COAD cohort. 
As shown in Figure 3K, 3L, the CDM signature seemed 
to have the highest c-index of all of the models, and the 
RMS values were on par with them. A series of 
verifications and comparisons have proven that the 
performance of the CDM signature overall was better 
than that of the other four. Furthermore, and perhaps 
most importantly, the CDM signature employs fewer 
genes to produce more accurate prediction results with 
good tractability for clinical replication. 

Clinical correlation analysis and the nomogram 
improves CDM signature predictive ability in CC 
 
To illustrate the clinical utility of the CDM signature 
more fully and effectively, we explored the association 
between the signature and clinical features, and further 
constructed and evaluated nomogram by integrating the 
signature with clinical features. In terms of age and 
gender, based on an analysis of the CDM genes in the 
TCGA-COAD and GSE17536 datasets, there was no 

 

 
 

Figure 3. Comparison of five CDM genes model with other models. (A, B) The ROC curve of signatures in TCGA-COAD cohort. (A) Li 
signature (ten genes). Green show one year AUC value (AUC value=0.572), blue show three years AUC value (AUC value=0.578) and red show 
five years AUC value (AUC value=0.579). (B) Nie signature (five genes). Green show one year AUC value (AUC value=0.648), blue show three 
years AUC value (AUC value=0.664) and red show five years AUC value (AUC value=0.684). (C) Ren signature (eight genes). Green show one 
year AUC value (AUC value=0.598), blue show three years AUC value (AUC value=0.668) and red show five years AUC value (AUC 
value=0.604). (D) Xu signature (eight gene). Green show one year AUC value (AUC value=0.631), blue show three years AUC value (AUC 
value=0.642) and red show five years AUC value (AUC value=0.727). (E–H) Kaplan-Meier plot in all TCGA –COAD cohort (p<0.001). Survival 
curves for high (blue) and low (green) risk groups dichotomized at the median of risk score are plotted. (E) shows Li signature (p=0.344), (F) 
shows Nie signature (p<0.001), (G) shows Ren signature (p=0.007) and (H) shows Xu signature (p=0.007). (I) The ROC curve of CDM signature 
in all TCGA-COAD cohort. Green show one year AUC value (AUC value=0.700), blue show three years AUC value (AUC value=0.740) and red 
show five years AUC value (AUC value=0.764). (J) Kaplan-Meier plot in all TCGA –COAD cohort (p<0.001). Survival curves for high (blue) and 
low (green) risk-CDM groups dichotomized at the median of risk-CDM score are plotted. (K) C-index of the five prognostic risk models. The 
higher the C-index, and the more reliable the signature. Red shows CDM risk signature (C-index=0.697). Yellow shows Li signature (C-
index=0.566). Cyan shows Nie signature (C-index=0.634). Blue shows Ren signature (C-index=0.605), Dull red shows Xu signature (C-
index=0.621). (L) The RMS analysis of the five prognostic risk signatures. Red shows CDM risk signature. Yellow shows Li signature. Cyan 
shows Nie signature. Blue shows Ren signature, Dull red shows Xu signature. 
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significant difference between the high- and low- risk 
groups (Supplementary Figure 3E–3H). However, we 
discovered that the worse the tumour stage was, the 
higher the patient CDM risk scores (Figure 4A, 4D). 
According to the TCGA-COAD dataset, the depth of 
tumour infiltration (T) and the number of lymph node 
metastases (N) were related to the CMD risk scores 
(Figure 4B, 4C). However, there was no significant 
difference between the CDM risk scores and tumour 
grades based on the GES17536 dataset (Figure 4E). 
Microsatellite instability (MSI) is a clinically significant 
marker that results from a functional defect in DNA 
mismatch repair in tumour tissue for CC. There is 
substantial evidence that microsatellite instability  
high (MSI-H) is a prognostic marker in patients with 
stage II colorectal cancer [31, 32], but there is also 
evidence that MSI-H patients do not benefit from 
adjuvant chemotherapy with 5-fluorouracil (5-Fu), and 
MSI-H can be used as a predictive marker of the 

ineffectiveness of adjuvant 5-FU treatment for CC [33]. 
Microsatellite stability (MSS) patients accounted for  
67 percent of the low-risk CDM group, microsatellite 
instability low (MSI-L) for 13 percent, and MSI-H  
for 20 percent; the composition ratios of the three in  
the high-risk CDM group were significantly different 
from those in the low-risk group, with MSS patients 
accounting for 59 percent, MSI-L for 23 percent, and 
MSI-H for 18 percent (Figure 4F). Figure 4G also 
shows that MSI-L patients had the highest CDM  
risk score, followed by MSI-H patients, and  
finally MSS patients, with a statistically significant 
difference. 
 
To improve the accuracy of CDM signature prediction, 
the nomogram was constructed by combining clinical 
features from two datasets, TCGA-COAD and 
GSE17536. The nomogram in Figure 5A is more 
intuitive and convenient for predicting patients’ clinical 

 

 
 

Figure 4. Correlation among clinicopathological classifications and CDM signature risk scores. (A) Boxplot. Correlation between 
tumour stage and risk-CDM score in TCGA-COAD cohort. Pink represents I stage, green represents II stage, Cyan represents III stage and 
violet represents IV stage. (B) Boxplot. Correlation between depth of tumor invasion (T) and risk-CDM score in TCGA-COAD cohort. Pink 
represents T1, green represents T2, cyan represents T3 and violet represents T4. (C) Boxplot. Correlation between lymph node metastasis 
(N) and risk-CDM score in TCGA-COAD cohort. Pink represents N0 (not metastasis), green represents N1 (1-3 regional lymph node 
metastases) and blue represents N2 (4 or more regional lymph node metastases). (D) Boxplot. Correlation between tumour stage and risk-
CDM score in GSE17536 cohort. Pink represents I stage, green represents II stage, Cyan represents III stage and violet represents IV stage. 
(E) Boxplot. Correlation between grade and risk-CDM score in GSE17536 cohort. Pink represents G1 (good), green represents G2 
(moderate) and blue represents G3 (poor). (F) Microsatellite stability histogram. MSS (blue), MSI-L (red) and MSI-H (orange) of High/Low 
risk group samples in TCGA-COAD cohort. (G) Boxplot. Correlation between microsatellite stability and risk-CDM score in TCGA-COAD 
samples. MSS (blue), MSI-L (red) and MSI-H (orange). 
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prognoses, with a high operability. In addition, because 
the calibration plot is close to the 45° line, the column 
line plot in Supplementary Figure 3C, 3D performed 
well. Similarly, the results of the DCA considered the 
CDM signature and nomogram to be highly credible 
(Figure 5B). When compared to the AUC value of the 
CDM signature, the AUC of the nomogram was 
significantly improved (Figure 5C). Supplementary 
Figure 5A–5C exhibited the result of nomogram, DCA 
and ROC in GSE17536 cohort. 
 
CDM risk score improves the prediction of targeted 
therapy resistance 
 
To make the CDM signature more useful for guiding 
the treatment of CC patients, we comprehensively 
explored drug resistance relationships based on the 
model and found that many drugs, such as molecular 
targeting inhibitors, immunosuppressive drugs and even 
some Chinese herbal medicines, had significantly 
different IC50 values in both the high- and low- risk 
groups. The drugs shown in Figure 6A–6O had higher 
IC50 values in the low-risk group than in the high-risk 
group, implying that these drugs may benefit low-risk 
patients to some extent. 

Expression of CDM risk genes in CC tissues and 
cells 
 
To determine the protein expression characteristics of 
these CDM signature genes, we investigated IHC of 
CC tissues, IF with U2-OC cell images from the HPA 
database and WB of CC cells. The WB results shown 
in Figure 7A, demonstrated that the protein expression 
of MMS19, NOP14, POLRMT, SNAPC5 and TIGD1 
in NCM460 cells was far lower than that in CC  
cells. Additionally, the IHC results demonstrated  
that MMS19, NOP14, POLRMT, SNAPC5 and  
TIGD1 were moderately to strongly expressed in CC 
tissues (Figure 7B–7F). Cellular immunofluorescence 
localization revealed that NOP14 and TIGD1 were 
mainly localized in the nucleus, POLRMT was mostly 
found on microtubules in the cytoplasm, and MMS19 
and SNAPC5 were expressed in both the nucleus and 
cytoplasm (Figure 7G–7K). 
 
Gene effect scores based on CRISPR‒Cas9 and 
silencing TIGD1 genes inhibited CC cell proliferation 
 
To further screen for oncogenes, the survival 
performance of five risk genes was analyzed in both 

 

 
 

Figure 5. CDM-associated nomogram construction in TCGA-COAD cohort. (A) CDM-associated Nomogram for predicting 1-, 3-, and 
5-year OS of patients with TCGA-COAD cohort. (B) The decision curve (DCA) analysis for CDM-associated nomogram in TCGA-COAD cohort. 
(C) The ROC curve of CDM-associated Nomogram in all TCGA-COAD cohort. Green show one year AUC value (AUC value=0.794), blue show 
three years AUC value (AUC value=0.813) and red show five years AUC value (AUC value=0.824). 
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Figure 6. Drug IC50 analysis in CDM risk signature (blue represents low CDM risk group, red represents high group).  
(A) AMG.706 (p=0.025); (B) AP.24534 (p=0.0014); (C) Axitinib (p=6.9e^-6); (D) AZD.0530 (p=0.012); (E) AZD7762 (p=0.0032); (F) Epothilone 
(p=0.04); (G) Etoposide (p=0.033); (H) Imatinib (p=0.02); (I) IPA.3 (p=0.0026); (J) Lenalidomide (p=0.00067); (K) Nilotinib (p=0.0051);  
(L) PD.173074 (p=0.0027); (M) Shikonin (p=0.0016); (N) Vinblastine (p=0.0085); (O) Vinorelbine (p=0.028). 
 

 
 

Figure 7. The expression of the identified five CDM genes from the human protein atlas database (HPA). (A) Western blotting. 
The protein expression of five CDM genes in the normal derived colon mucosal (NCM460) and colon cancer cells (HT29, HCT116, SW620 and 
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DLD1). (B–F) Protein expressions of five CDM genes in colon cancer tissue specimens by immunohistochemical; (B) for MMS19; (C) for 
NOP14; (D) for POLRMT; (E) for SNAPC5; (F) for TIGD1. (G–K) Protein expressions and localization of five CDM genes in U2-OC cell by 
immunofluorescence (green represents five CDM-associated protein, blue represents nucleus and red represents microtubule); (G) for 
MMS19; (H) for NOP14; (I) for POLRMT; (J) for SNAPC5; (K) for TIGD1. 
 

TCGA-COAD and GSE17536 datasets (Supplementary 
Figure 6A–6J). Taking into account the expression 
differences, only TIGD1 has excellent predictive power 
in both datasets (Figure 8A–8C). The clinicopathological 
characteristics and the expression of TIGD1 are closely 
correlated. For instance, the higher the expression of 

TIGD1, the more advanced the tumour stage and  
the more likely to lymph node metastasis and distant 
metastasis; while, tumour infiltration depth not 
significant (Figure 8D–8G). Subsequently, the prognostic 
value of TIGD1 gene was further verified by the 
ProgScan in the GSE17536 dataset (Figure 9). 

 

 
 

Figure 8. The expression and clinicopathological classifications of TIGD1 in TCGA-COAD cohort. (A) Venn plot. Kaplan-Meier 
survival analysis for five CDM-associated genes in in TCGA–COAD and GSE17536 cohort. Blue represents TCGA-COAD and yellow represents 
GSE17536 cohort. (B, C) Violin plot. The mRNA expression of TIGD1. Red represents tumour and blue represents normal. (B) for TCGA-COAD 
dataset (p<0.0001). (C) for TCGA-COAD and GTEx dataset (p<0.001). (D) Violin plot. Correlation between tumour stage and TIGD1 expression 
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in TCGA-COAD cohort. Pink represents I stage, green represents II stage, Cyan represents III stage and violet represents IV stage (p<0.01).  
(E) Violin plot. Correlation between lymph node metastasis (N) and TIGD1 expression in TCGA-COAD cohort. Pink represents N0 (not 
metastasis), blue represents N1 (1-3 regional lymph node metastases) and cyan represents N2 (4 or more regional lymph node metastases) 
(p<0.01). (F) Violin plot. Correlation between metastasis (M) and TIGD1 expression in TCGA-COAD cohort. Pink represents M0 (not 
metastasis), blue represents M1 (metastases) (p<0.05). (G) Violin plot. Correlation between depth of tumor invasion (T) and TIGD1 expression 
in TCGA-COAD cohort. Pink represents T1, blue represents T2, Cyan represents T3 and violet represents T4 (p>0.05). 
 

 
 

Figure 9. The survival and clinicopathological classifications of TIGD1 in GSE17536 cohort. (A) Expression plot. CC patients are 
ordered by the TIGD1 expression. Cyan lines show the optimal cutpoints that dichotomize patients into high (red) and low (blue) expression 
groups. (B) TIGD1 expression histogram. The line of the optimal cutpoint is also shown (cyan). (C) P-value plot of TIGD1. For each potential 
cutpoint of expression measurement, patients are dichotomized and survival difference between high and low expression groups is 
calculated by log-rank test. The cutpoint to minimize the P-value is determined and indicated by the cyan line. (D) Kaplan-Meier plot of 
TIGD1. Survival curves for high (red) and low (blue) expression groups dichotomized at the optimal cutpoint are plotted. 95% confidence 
intervals for each group are also indicated by dotted lines. (E) Survival scatter plot of TIGD1. A dot represents a CC patient (pink represents 
uncensored, black represents censored). (F) Heatmap of TIGD1 expression among stage, sex and grader. Black represents low expression and 
red represents high expression. 
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CRISPR‒Cas9 is a relatively mature gene editing 
technology that is widely used in basic and clinical 
settings. In this study, the interference effects of genes 
associated with the CDM signature were deeply mined 
on the CDM platform by using CRISPR‒Cas9 
technology. As Figure 10A shows, the interference 
values of all five risk genes were less than -0.5, with the 
best interference value associated with the knockout 
SNAPC5 gene and the worst being with POLRMT, both 

of which are important factors affecting CC cell growth. 
After further statistical analysis, it was found that the 
growth of two types of CC cells, DLD1 and HCT116, 
was most affected by this model, followed by SW620, 
and finally HT29 (Figure 10B). 
 
To determine whether the TIGD1 genes is hub genes in 
CC, we designed siRNAs for the interference sites of 
TIGD1. As shown in Figure 10C, siRNAs interfering 

 

 
 

Figure 10. Gene effect scores based on CRISPR-Cas9 and Silencing TIGD1 gene inhibited CC cells proliferation and cycle.  
(A) The interference values of five CDM risk genes. (B) The interference values of colon cancer cell lines (DLD1, HCT116, HT29, SW620).  
(C) siRNAs interfered TIGD1 expression in HCT116 and SW620 (three group: nc, si988 and si1170). (D, E) HCT116 and SW620 cells were 
significantly inhibited in growth with knocking down the TIGD1 gene expression by cck8 assays. (D) for HCT116, (E) for SW620. (F) The cloning 
ability of HCT116 and SW620 cell lines were significantly inhibited with knocking down the TIGD1 gene expression by clone formation assays. 
(G) Silencing the expression of TIGD1 gene retarded the proliferation cycle of HCT116 and SW620 in the G1 phase. 
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with TIGD1 had a good inhibitory effect in SW620 
and HCT116 cells. Cell proliferation was detected by 
clone formation and CCK8 assays. The growth of both 
HCT116 and SW620 cells was significantly inhibited 
by knocking down the TIGD1 (Figure 10D, 10E). In 
addition, the cloning ability of the cells was also 
clearly affected by silencing the gene as shown in 
Figure 10F. The results of cell cycle experiments 
revealed that silencing the gene retarded the 
proliferation cycle of HCT116 and SW620 cells more 
or less in the G1 phase, thus retarding the cell growth 
rate (Figure 10G). This result is also consistent with 
our previous KEGG findings regarding the impact of 
CDM-related genes on the cell cycle (Supplementary 
Figure 1B). 

WGCNA and CDM immune subtype construction 
 
WGCNA was used to analyse coexpressed gene clusters 
associated with CDM signature scores based on the 
expression profiles in the TCGA-COAD data. The power 
value was chosen to be three to ensure a scale-free 
network (R2=0.9, Supplementary Figure 7A, 7B). Five 
coexpression models were clustered in the hierarchical 
clustering tree (Supplementary Figure 7C), with the black 
module having the strongest positive correlation with the 
CDM risk scores (Cor=0.2, P = 4e-05, Figure 11A). The 
black module contained 5,662 coexpressed genes, there 
were 8,179 TCGA-COAD differentially upregulated 
genes, and the two together included 1,220 differentially 
coexpressed upregulated genes (Figure 11B). 

 

 
 

Figure 11. WGCNA analysis, consensus clustering and immune subtype construction. (A) Module–Clinical Trait Relationships of 
consensus module eigengene and different clinical features of COAD. Each row in the table corresponds to a module eigengene (ME), and 
each column to a clinical parameter (five module: blue, red, black and grey; eight clinical features: Age, Gender, Stage, T, N, futime, fustat and 
CDM riskScore). Each cell contained the correlation coefficients and p value (red, positively correlated; green, negative correlated). (B) Venn 
plot of CDM-associated co-expressed genes (5,662 genes) and upregulated genes (8,179 genes). Red represents coexpressed genes and cyan 
represents TCGA-COAD upregulated genes. (C) The consensus score matrix of TCGA-COAD samples when k = 2. Subtype A contains 306 
samples and subtype B contains 143 samples. (D) The consensus score matrix of GSE39582 samples when k = 2. Subtype A contains 382 
samples and subtype B contains 203 samples. 
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To define new immune subtypes of CC based on the 
coexpressed upregulated genes in the CDM signature, 
the TCGA-COAD and GSE39582 samples were 
clustered using the consensus clustering method [34]. 
The optimal k value was determined using cophenetic 
correlation coefficients, and the CDF curve had the 
flattest middle segment when k = 2 (Supplementary 
Figure 7D, 7E). In addition, the consensus matrix 
heatmap also maintained clear boundaries at k = 2. 
Therefore, the optimal number of subtypes was 
determined to be k = 2, and two new immune subtypes 
named “subtype A” (n = 306) and “subtype B” (n = 143) 
in TCGA-COAD samples, and “subtype A” (n = 382) 
and “subtype B” (n = 203) in GSE39582samples were 

identified (Figure 11C, 11D). Subsequently, the heatmap 
of Supplementary Figure 7F shows the expression of 
1,220 coexpressed upregulated genes in immune subtype 
A and B TCGA-COAD samples. It is clear that the 
CDM-associated gene expression in subtype A is 
significantly higher than that in subtype B samples. 
 
New immune subtypes A and B distinguish immune 
benefit patients 
 
Tumour immune microenvironment analysis revealed 
that the sample of subtype B exhibited stronger immune 
cell infiltration than subtype A, in particular GSE39582 
cohort (Figure 12A). Furthermore, Figure 12B–12G were 

 

 
 

Figure 12. CDM subtypes associated with immunotherapeutic response predictors in GSE39582 datasets. (A) Tumor immune 
microenvironment analysis between CDM immune subtype A and subtype B by Microenvironment Cell Populations counter algorithm. (B–G) 
The association between CDM subtypes and immune cell infiltration; (B) for T cells; (C) for cytotoxic lymphocytes; (D) for neutrophils; (E) for B 
lineages; (F) for endothelial cells; (G) for fibroblasts. 
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analyzed the abundance of immune cells from subtypes 
A and B in GSE39582 samples. In TCGA-COAD 
samples, tumour immune microenvironment analysis 
revealed a higher ImmuneScore in subtype B than in 
subtype A samples, while there was no difference in 
ImmuneStroma and ESTIMATEScore, indicating that 
there is a definite link between the two new CDM 
molecular subtypes and immune cell infiltration  
(Figure 13A). Based on this, we found that cells with 
tumour-killing properties, T cells, cytotoxic lymphocytes, 
neutrophils, and B cells were significantly more abundant 
in subtype B than in subtype A samples by the MCP-
counter immune algorithm; however, the opposite result 
was found for immunosuppressive cells, endothelial cells 
and fibroblasts (Figure 13B–13G). According to the 
article “The Immune Landscape of Cancer” published in 
the journal Immunity in 2018, an immunogenicity 
analysis of 33 cancers in TCGA was performed, and all 
tumours were classified into six immune subtypes, 
namely, wound healing (Immune C1), IFN-dominant 
(Immune C2), inflammatory (Immune C3), lymphocyte 
depleted (Immune C4), immunologically quiet (Immune 
C5) and TGF-dominant (Immune C6) [35]. As shown in 
Figure 13H, a Sankey diagram illustrated the relationship 
between the CDM immune subtypes and the six immune 
subtypes. Further statistics showed that the proportion of 
the C2 population with immune benefit in the subtype B 
samples was significantly higher than that in the subtype 
A samples, which was consistent with the previous 
results (Supplementary Figure 7G–7H). With the above 
analysis of the immune correlation between the two 
subtypes, patients with subtype B may have a better 
prognostic benefit from an immunotherapy perspective. 
Using TCGA-COAD immunotherapy data from TCIA, 
we analysed the relationship between the two subtypes 
and the immunotherapy data of PD1 and CTLA4 in the 
TCGA-COAD samples. The subtype B patients had 
better treatment outcomes (Figure 13I–13L). 
 
DISCUSSION 
 
The morbidity of CC ranks among the top three in the 
world representing a very high proportion of all 
malignant tumours, and posing a serious threat to 
human life, health, and property security. Although the 
treatment concept and technical means of CC have been 
greatly improved, poor patient prognosis management, 
the occurrence of multidrug resistance and the high 
recurrence rate of the tumour remain major issues. 
Personalized patient management and optional 
multilocus targeted therapy can minimize tumour 
recurrence and prolong survival time, creating a 
promising prognosis for patient survival. CRISPR‒Cas9 
technology, a cornerstone of research for screening 
functional genes, is an effective method for discovering 
tumour-dependent genes. CDMs have been developed 

to detect tens of thousands of tumour-dependent  
genes in thousands of tumour cell lines via using 
CRISPR‒Cas9 and are being updated continuously, thus 
offering an abundant resource and a solid foundation for 
this study. Based on the basic framework of CDM, 
Kenichi et al. developed a ShinyDepMap web server 
(https://labsyspharm.shinyapps.io/depmap) [36] that 
predicts and evaluates the efficacy of gene-specific 
drugs, while also retrieving the most sensitive cancer 
cell lines for the specified drugs. Moreover, Chiu and 
his colleagues [37] introduced the use of deep learning 
in CDM, which more quickly and more effectively 
predicts cancer dependencies. Apart from that, Neekesh 
V [38] established a first-generation paediatric CDM, 
that included 13 different forms of paediatric solid and 
brain tumours. 
 
First, CC dependent gene screening results from the 
CDM combined with TCGA-COAD differentially 
expressed genes identified 1,304 overexpressed and CC-
dependent oncogenes. Then, the CDM signature with five 
cancer-dependent genes and prognostic nomogram were 
constructed by Lasso Cox regression and multivariate 
Cox analyses, and they demonstrated robust predictive 
performance and close relationship with clinical 
characteristics in different datasets. Furthermore, 
WGCNA and consensus clustering were used to define 
coexpressed genes with the CDM risk scores and identify 
two new immune subtypes. Finally, we conducted a 
comprehensive investigation of the relationship between 
the two subtypes and immune regulation and the immune 
microenvironment and the impact of immunotherapy 
based on the different subtypes. 
 
The CDM signature comprised the MMS19, NOP14, 
POLRMT, SNAPC5 and TIGD1 genes. Statistical 
analysis revealed that these genes were highly 
expressed in CC tissues and were tumour-dependent 
genes from CDMs. Experiments revealed that the 
TIGD1 genes were oncogenes that impacted the CC cell 
cycle. Li et al. also [16] discovered that TIGD1, an 
unidentified gene, is substantially expressed in 
colorectal, gastric, liver, lung, and pancreatic cancers; 
may be involved in tumour cell cycle regulation; and is 
negatively correlated with prognosis. Zhu [14] 
discovered that NOP14 regulates the NRIP1/GSK-3β/β-
catenin signalling pathway to promote colorectal cancer 
proliferation and migration. In pancreatic cancer [39], 
NOP14 is highly expressed and promotes tumour 
invasion and metastasis by targeting p53 mutation. In 
contrast, some studies have reported that NOP14 
inhibits melanoma by regulating the Wnt/β-catenin 
pathway [40] and cancer stemness [41] and inhibits 
breast cancer by inhibiting the NRIP1/Wnt/β-catenin 
pathway [42]. In combination with Zhu’s study, we 
found that NOP14 mRNA is abundantly expressed in 

https://labsyspharm.shinyapps.io/depmap
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Figure 13. CDM subtypes associated with immunotherapeutic response predictors in TCGA-COAD datasets. (A) Tumor immune 
microenvironment analysis between CDM immune subtype A and subtype B by Microenvironment Cell Populations counter algorithm.  
(B–G) The association between CDM subtypes and immune cell infiltration; (B) for T cells; (C) for cytotoxic lymphocytes; (D) for neutrophils; 
(E) for B lineages; (F) for endothelial cells; (G) for fibroblasts. (H) Sankey diagram between the CDM subtypes and immune subtypes (C1-C6). 
(I–L) Relationship between the CDM subtypes and the immunotherapy data of PD1 and CTLA4 (I) for PD1 and CTLA4 negative expression;  
(J) for PD1 positive expression and CTLA4 negative expression; (K) for CTLA4 positive expression and PD1 negative expression; (L) for PD1 and 
CTLA4 negative expression. 
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CC tissues; however, it is a protective prognostic factor 
for CC patients, which seems to be a contradiction.  
Of course, it is unfortunate that the relationship  
between the expression of NOP14 and CC patient 
prognosis was not explored in Zhu’s study. The 
existing research on NOP14 in CC is just the tip of the 
iceberg, and the specific mechanism deserves to be 
further explored. 
 
We further explored the relationship between the CDM 
signature and the IC50 value of targeted drugs when 
elucidating the association between this signature and 
the prognostic role and clinical characteristics of CC. 
These targeted drugs are mainly composed of tyrosine 
kinase inhibitors (AMG.706: motesanib, AP.24534: 
ponatinib, axitinib, AZD0530, AZD7762, imatinib and 
nilotinib), a p21-activated kinase inhibitor (IPA3), and a 
traditional Chinese medicine (shikonin). Drug 
sensitivity analysis found that patients with low CDM 
risk scores were sensitive to tyrosine kinase inhibitors. 
In addition, the previous KEGG and GO analyses 
revealed that the highly expressed CDM-related genes 
were mainly involved in the cell proliferation cycle and 
regulated the proliferation of CC cells. Ho et al. [43] 
found that AMG.706 exerts an anticancer effect by 
regulating cell cycle progression and apoptotic cell 
death. IPA3, a small-molecule p21-activated kinase 
inhibitor, has excellent antitumour effects by enforcing 
cell cycle arrest and inducing apoptosis [44, 45]. 
Shikonin, a naphthoquinone compound extracted from 
Lithospermum, has been extensively studied for its 
antitumour activity. In CC, shikonin can arrest the cell 
cycle by inhibiting the hypoxia-inducible factor 
signalling pathway [46], promote cell apoptosis by 
downregulating the PI3K/Akt signalling pathway [47], 
and inhibit growth by regulating the STAT3 signalling 
pathway [48]. Therefore, we hypothesized that the 
tumour cells of patients with high CDM risk have self-
regulated cell cycle activity to resist the tumour-killing 
effects of these drugs, especially tyrosine kinase 
inhibitors. 
 
As Volker reported, vioprolide A, a natural product, has 
an outstanding therapeutic effect for acute lymphoblastic 
leukaemia by targeting NOP14 expression to affect 
ribosome biogenesis [49]. The results of the KEGG 
pathway and GO functional analyses are consistent with 
the conclusions drawn from Volker’s study. POLRMT, a 
core mitochondrial gene, is responsible for 
mitochondrial metabolism, and inhibition of POLRMT 
expression can be utilized to induce an energy crisis 
from multidrug resistant cells and thus resensitize them 
to chemotherapeutic agents [50]. In a tumour cell 
reconstituted recombinant system, the inhibitor of 
mitochondrial transcription (IMTs), which specifically 
targets POLRMT, significantly hampers mitochondrial 

DNA (mtDNA) transcription and triggers the dose-
dependent inhibition of mtDNA expression and the 
oxidative phosphorylation system [17]. According to 
Eliseo’s report [51] based on supervised support vector 
machine learning, the high expression of TIGD1, to a 
certain extent, affects the sensitivity of tumour cells to 
cisplatin and improves patient outcomes after 
chemotherapy. The drugs shown in Figure 6 have good 
clinical potential for patients at high risk according to the 
CDM signature, especially patients with advanced 
multidrug resistant disease, according to the CDM 
signature for drug resistance analysis. A recent study 
found that knockdown of TIGD1 was effective in 
accelerating copper death in colorectal cancer cells 
induced by the copper death inducer elesclomol, and 
thus TIGD1 could serve as a key protein in regulating 
copper-dependent cell death [52]. Qiao et al. [53] found 
that TIGD1, which was significantly highly expressed in 
oral squamous cell carcinoma, effectively promoted the 
proliferation and invasive metastasis of cancer cells and 
was also involved in immune cell infiltration in tumor 
tissues, thus promoting the progression of oral squamous 
cell carcinoma. 
 
Based on the CDM-related coexpression of differential 
genes, the consensus clustering divided the TCGA-
COAD and GSE39582 samples into two new subtypes 
A and B. In the overall analysis, immune cell scores 
were significantly higher in the B molecular subtype 
than the A subtype, and tumour-killing immune cells, 
such as T cells, B cells, cytotoxic lymphocytes, and 
neutrophils, were also highly infiltrated in the B 
molecular subtype samples. From another perspective, 
all samples with Immune C6 were subtype A. In 
addition, in terms of PD1 and CTLA4 immune therapy 
benefit, subtype A did not perform as well as subtype B. 
These results also reflect the fact that subtype A is 
associated with a poorer immune benefit than the 
subtype B. 
 
Although this study is founded on a significant amount 
of TCGA-COAD, GSE17536 and GSE39582 data, there 
are still some limitations. The present study is based on 
a retrospective analysis of a public database of CC 
samples, which lacks prospective clinical application 
and validation. Thus, more research is necessary to 
comprehensively guide CC clinical diagnosis and 
treatment. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Venn and circle graph of KEGG and GO in differentially expressed CDM genes. (A) Venn plot. 1,304 
differentially expressed CDM genes between differentially expressed genes of TCGA-COAD and CDM genes. Cyan shows 8,179 differentially 
expressed genes in TCGA-COAD, dull red shows 1,613 cancer-dependent CDM-associated genes and overlapping area shows the 1,304 
differentially expressed CDM genes. (B) Circle plot. KEGG pathway enrichment of 1304 differential expression of CDM genes. (C) Circle plot. 
GO Biological process analysis of 1304 differential expression of CDM genes. 
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Supplementary Figure 2. Heatmap 1,304 differentially expressed CDM genes between differentially expressed genes of 
TCGA-COAD. 
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Supplementary Figure 3. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis and nomogram 
calibration. (A, B) LASSO Cox regression analysis in TCGA-COAD cohort. (A) LASSO coefficient profiles of the 29 prognosis-correlated CDM 
genes. (B) Genes from univariate Cox regression analysis were narrowed down by the lasso algorithm, The left vertical line represents the 5 
CDM genes finally identified. (C, D) The calibration plot of the CDM nomogram for predicting 1-year(green), 3-year(blue) and 5-year(red) 
survival rates; (C) for TCGA-COAD cohort, (D) for GSE17536. (E) Boxplot. Correlation between age and risk-CDM score in TCGA-COAD cohort. 
Pink represents age less than or equal to 65 years old and cyan represents age greater than 65 years old (p=0.66). (F) Boxplot. Correlation 
between gender and risk-CDM score in TCGA-COAD cohort. Pink represents female and cyan represents male (p=0.35). (G) Boxplot. 
Correlation between age and risk-CDM score in GSE17536 cohort. Pink represents age less than or equal to 65 years old and cyan represents 
age greater than 65 years old (p=0.73). (H) Boxplot. Correlation between gender and risk-CDM score in GSE17536 cohort. Pink represents 
female and cyan represents male (p=0.2). 
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Supplementary Figure 4. Cancer Dependency Maps (CDMs) signature construction and validation in all TCGA-COAD cohort 
and TCGA testing cohort. (A) Survival scatter plot in all TCGA-COAD cohort. A dot represents a CC patient (blue represents Dead, Green 
represents alive). Dotted lines show the median of risk score that dichotomize patients into high and low groups. (B) Risk score plot in all 
TCGA-COAD cohort. The CC patients are ordered by the risk score of the CDM signature. Dotted lines show the median of risk score that 
dichotomize patients into high (blue) and low (green) groups. (C) Heatmap of five CDM signature genes (SNAPC5, TIGD1, NOP14, MMS19 and 
POLRMT) in all TCGA-COAD cohort. Blue represents high-CDM risk group and green represents low-CDM risk group. (D) Kaplan-Meier plot in 
all TCGA –COAD cohort (p<0.001). Survival curves for high (blue) and low (green) risk-CDM groups dichotomized at the median of risk-CDM 
score are plotted. 95% confidence intervals for each group are also indicated by shadow area. (E) The ROC curve of CDM signature in all 
TCGA-COAD cohort. Green show one year AUC value (AUC value=0.700), blue show three years AUC value (AUC value=0.740) and red show 
five years AUC value (AUC value=0.764). (F) Survival scatter plot in TCGA testing cohort. (G) Risk score plot in TCGA testing cohort.  
(H) Heatmap of five CDM signature genes (SNAPC5, TIGD1, NOP14, MMS19 and POLRMT) in TCGA testing cohort. (I) Kaplan-Meier plot in 
TCGA testing cohort (p=0.003). (J) The ROC curve of CDM signature in TCGA testing cohort. Green show one year AUC value (AUC 
value=0.570), blue show three years AUC value (AUC value=0.670) and red show five years AUC value (AUC value=0.620). 
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Supplementary Figure 5. CDM-associated nomogram validation in GSE17536 cohort. (A) CDM-associated Nomogram for 
predicting 1-, 3-, and 5-year OS of patients in GSE17536 cohort. (B) DCA analysis for CDM-associated nomogram in GSE17536 cohort. (C) The 
ROC curve of CDM-associated Nomogram in GSE17536 cohort. Green show one year AUC value (AUC value=0.875), blue show three years 
AUC value (AUC value=0.799) and red show five years AUC value (AUC value=0.833). 
 

 
 

Supplementary Figure 6. Kaplan-Meier plot for five CDM signature genes (MMS19, NOP14, POLRMT, SNAPC5 and TIGD1) in 
all TCGA–COAD and GSE17536 cohort (p<0.001). Survival curves for high (blue) and low (green) expression groups dichotomized at the 
median expression are plotted. 95% confidence intervals for each group are also indicated by shadow area. (A) MMS19 in TCGA–COAD 
(p=4.1e3). (B) NOP14 in TCGA–COAD (p=0.41). (C) POLRMT in TCGA–COAD (p=0.95). (D) SNAPC5 in TCGA–COAD (p=0.02). (E) TIGD1 in  
TCGA–COAD (p=5.5e3). (F) MMS19 in GSE17536 cohort (p=0.886). (G) NOP14 in GSE17536 cohort (p=0.042). (H) POLRMT in GSE17536 cohort 
(p=0.338). (I) SNAPC5 in GSE17536 cohort (p=0.417). (J) TIGD1 in GSE17536 cohort (p=0.018). 
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Supplementary Figure 7. WGCNA analysis, consensus clustering and heatmap of two immune subtypes. (A, B) The scale-free fit 
index for soft-thresholding powers. (A) The relationship between the soft-threshold and scale-free R2. (B) The relationship between the soft-
threshold and mean connectivity. (C) Different modules are labeled in different colors and dendrogram of all genes clustered in TCGA-COAD. 
(D, E) Identification of CDM molecular subtypes; (D) The cumulative distribution function curves of consensus scores based on different 
subtype numbers (k = 2~9); (E) The comparison of the relative changes of the area under the CDF curve between k and k−1. (F) The heatmap 
of 1220 differential expression of CDM co-expressed genes in TCGA-COAD Subtype A and Subtype B. (G, H) The proportion of C1-C6 six 
immune subtypes in subtype A and subtype B; (G) for subtype A; (H) for subtype B. 
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Supplementary Table 
 
 

Supplementary Table 1. 29 prognostic related genes were discovered 
by univariate Cox hazard analysis in COAD. 

id HR HR.95L HR.95H pvalue 
PSMA5 0.589785 0.372309 0.934294 0.024479 
SF3A2 1.555346 1.004943 2.407203 0.047469 
USP5 1.724162 1.004683 2.958878 0.048051 
POLR2H 1.908472 1.137331 3.202469 0.014396 
SNAPC4 1.809706 1.171914 2.794604 0.007461 
ELL 1.855009 1.063099 3.236817 0.029601 
PSMD12 0.640136 0.41484 0.987789 0.043855 
SUPT5H 1.73605 1.033636 2.915795 0.037068 
EIF2B5 2.217337 1.131043 4.346947 0.020423 
BRF1 1.851907 1.008635 3.400201 0.046845 
SNAPC5 1.773781 1.111222 2.831388 0.016308 
CDK9 1.944925 1.150271 3.288557 0.013051 
SART1 1.661597 1.052816 2.622399 0.029181 
PNN 1.463655 1.000863 2.14044 0.049483 
TIGD1 1.679921 1.228964 2.296353 0.001143 
GTF2E2 0.671251 0.473699 0.95119 0.025004 
TAF1C 1.866283 1.237083 2.815504 0.002939 
INTS1 1.467568 1.019766 2.112012 0.03889 
ERCC3 1.992833 1.071324 3.706989 0.029441 
CIAO1 2.052983 1.029583 4.093638 0.041076 
PELP1 1.499056 1.030459 2.180745 0.034272 
SNAPC3 1.629411 1.053366 2.520475 0.028267 
DDX11 1.637622 1.121073 2.392178 0.01074 
RAD9A 1.596121 1.015991 2.507504 0.042479 
NOP14 0.619611 0.401996 0.955029 0.030127 
DHX38 1.60973 1.003591 2.581959 0.048287 
SFSWAP 1.931741 1.078866 3.458841 0.026734 
MMS19 2.041935 1.171788 3.558236 0.011754 
POLRMT 1.546128 1.034675 2.3104 0.033479 

 


