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INTRODUCTION 
 

Primary liver cancer is the sixth most common cancer and 

the third leading cause of cancer-related death worldwide 

[1]. Pathologically, there are three categories: hepato-

cellular carcinoma (HCC) (75-85%), intrahepatic 

cholangiocarcinoma (10-15%), and some other rare types 

[2]. At present, multiple therapeutic strategies are used in 

HCC treatment, such as surgery, tumor ablation, trans-

arterial treatment, and systemic therapy [3]. It is notable 

that systemic therapy is indispensable in approximately 

50-60% patients [3]. In recent years, immune checkpoint 

inhibitors (ICIs)-based immuno-therapy has shown 

significant efficacy in systemic therapy for HCC. HCC 

patients can gain more benefits from ICIs in terms of their 

long-term survival, tumor response rate, and the duration 

of response [4]. Unfortunately, only 15-20% HCC 

patients are responsive to ICIs [5]. Therefore, there is a 
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Immune subtype analysis revealed that C1 was mainly characterized by inflammation, while C2 was characterized 
by lymphocyte depletion. Immune scoring and immunomodulatory function analysis confirmed the different 
immune microenvironment of C1 and C2. Notably, significant differences in “Hot Tumor” Immunophenotype were 
observed between the two subtypes. Moreover, the prognostic model based on DNA sensors is capable of 
effectively predicting the OS of HCC patients. Besides, the chemotherapeutic drug analysis showed the different 
sensitivity of two subtypes. Taken together, our study shows that the proposed DNA sensors were a reliable 
signature to predict the prognosis and immunotherapy response with potential application in the clinical decision 
and treatment of HCC. 
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critical need to identify biomarkers capable of predicting 

ICIs response and improving the response of HCC 

patients to ICIs therapy. 

 

DNA defective mismatch repair (dMMR) and 

microsatellite instability (MSI) that are driven by gene 

mutations can induce DNA damage response (DDR) in 

tumor cells [6]. Pan-cancer analysis suggested that DDR 

improved the response of HCC patients to ICIs therapy. 

DDR, therefore, is considered a promising target for 

improving tumor response to immunotherapy [7, 8]. 

There are three steps that compose DDR: cytoplasmic 

transfer of host cellular DNA; cytoplasmic DNA 

(cytoDNA) sensing; a series of signal transductions that 

activate innate immune response and then induce 

cellular senescence and death [9]. Amongst the three 

steps, cytoDNA sensing is particularly important [10]. 

CytoDNA sensing is emerging as key mediators of 

inflammation in diverse physiological and pathological 

contexts which can drive inflammation-related cyto-

kines in the absence of infection [11, 12]. Besides, 

cytoDNA sensing by DNA sensors is intimately 

connected to the secretion of cytokines that support 

innate and adaptive antitumor immunity [11]. However, 

the specific role and molecular mechanism of DNA 

sensors in HCC remain to be open issues. 

 

In the present study, we selected 14 genes, including 

TLR9, ZBP1, AIM2, IFI16, PRKDC, DHX9, DHX36, 
DDX41, DDX60, cGAS, MRE11, HNRNPA2B1, 

LRRFIP1 and POLR3A, as DNA sensors [13–16], and 

downloaded corresponding gene expression files and 

clinical data of HCC patients from TCGA-LIHC, 

HCCDB18 and GSE76427 datasets. The relationship 

between the DNA sensors and the prognosis of HCC 

patients was explored. In addition, the DNA sensors 

were employed to classify HCC into multiple molecular 

subtypes, and the immunophenotypic characteristics 

across the subtypes were comparatively analyzed. 

Moreover, a prognostic model was established based on 

the DNA sensors and related genes, and the association 

between the DNA sensors and chemotherapeutic drug 

sensitivity was investigated. This study hopes to bring 

new insights into the immunotherapy for HCC. The 

workflow for this study is shown in Figure 1. 

 

RESULTS 
 

Molecular subtypes identification and prognostic 

analysis 

 

Expression of the selected DNA sensors in HCC and 

normal tissue samples derived from the TCGA-LIHC, 
HCCDB18 and GSE76427 datasets were comparatively 

analyzed with ssGSEA. Higher scores were found in 

HCC tissue samples, and those in the HCCDB18 and 

GSE76427 datasets were statistically different between 

the two types of samples (Figure 2A). Differential 

analysis of mRNA also found that DNA sensor genes 

were highly expressed in tumor tissues compared to 

adjacent tissues (Supplementary Figure 1). The analysis 

of DNA methylation results reveals a correlation between 

the DNA sensor genes’ methylation status and various 

factors such as race, age, and BMI in patients with liver 

cancer. Furthermore, these findings demonstrate that the 

methylation status of DNA sensor genes can impact the 

prognosis of patients (Supplementary Figures 2, 3). In 

addition, correlation analysis between the DNA sensors 

and protein-coding genes was performed, resulting in 319 

DNA sensors-related genes. Further analysis revealed 

that DNA sensors-related genes involved in biological 

functions included regulation of lymphocyte activation, 

leukocyte migration and T cell activation, etc. Their 

underlying molecular mechanisms are related to 

cytokines, including cytokine receptor activity, cytokine 

receptor binding and cytokine−cytokine receptor 

interaction (Supplementary Figure 4). Among the DNA 

sensors-related genes, 30 genes in relation to prognosis of 

HCC in at least two of the three datasets were screened 

out by univariate COX analysis (Figure 2B). Consensus 

clustering was conducted in HCC samples from the 

TCGA-LIHC dataset, and k = 2 was selected based on 

the CDF, resulting in 2 stable clusters: C1 and C2 (Figure 

2C, 2D). Survival analysis in the TCGA-LIHC, 

HCCDB18 and GSE76427 datasets demonstrated that the 

survival between the C1 and C2 subtypes of HCC was 

distinctly different (Figure 2E–2G). 

 

Clinical and immune characteristics of two molecular 

subtypes 

 

The clinical features of the two subtypes (C1 and C2) 

were comparatively analyzed in the TCGA-LIHC dataset. 

Significant difference was found in Stage between the C1 

and C2 subtypes, whereas the T stage and Grade 

marginally varied (Figure 3A). There are 6 immune 

subtypes according to the literature [17], including C1: 

wound healing, C2: IFN-γ dominant, C3: inflammatory, 

C4: lymphocyte depleted, C5: immunologically quiet, 

and C6: TGF-β dominant, among which the C1, C2 and 

C6 immune subtypes are associated with poor prognosis. 

As stratified by the 6 immune subtypes, we found that the 

subtype C1 was dominantly by C3 immune subtype, 

while the subtype C2 was dominantly by C4 immune 

subtype (Figure 3B, 3C). Moreover, survival difference 

was observed between different immune subtypes 

(Figure 3D). 

 

GSEA and immune scoring 

 

The pathway analysis of the C1 and C2 subtypes was 

performed using GSEA in the TCGA-LIHC, HCCDB18 
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Figure 1. Flowchart of this study. 
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Figure 2. Construction of molecular subtypes and prognostic analysis. (A) The differences of DNA sensors expression between 

tumor and adjacent tissues. (B) Venn diagram revealing 30 genes in relation to prognosis of HCC by univariate COX analysis. (C) CDF curves 
and CDF delta area curves. The optimal number of clusters is the K value where the CDF curve is the smoothest and also the turning point 
of the Delta area. (D) Subtype classification of HCC samples. (E) Prognostic analysis in TCGA dataset. (F) Prognostic analysis in HCCDB18 
dataset. (G) Prognostic analysis in GSE76427 dataset. The line in the box represents the median value, and the asterisks represent the  
P-value (***p < 0.001; ****p < 0.0001). The statistical analyses were performed by the student t-test. HCC, hepatocellular carcinoma; CDF, 
cumulative distribution function; ns, not significant. 
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and GSE76427 datasets. Pathways, including chemokine 

signaling pathway, B cell receptor signaling pathway, T 

cell receptor signaling pathway, and natural killer cell 

mediated cytotoxicity, were significantly enriched in C1 

subtype (Figure 4A). In addition, all EPIC, ESTIMATE, 

ssGSEA, MCPcounter and TIMER results demonstrated 

higher immune scores of the C1 subtype than the C2 

subtype, and the differences were statistically significant 

(Figure 4B). 

 

Immunomodulatory function of C1 and C2 subtypes 

 

Five groups of genes with immunomodulatory 

functions, including chemokine, chemokine receptor, 

immunostimulator, immunoinhibitor and MHC, were 

confirmed from the literature [18]. Expression analysis 

in the TCGA-LIHC dataset found that most of the genes 

exhibited differential expression between the C1 and C2 

subtypes, and that these genes tended to express more 

abundantly in C1 subtype (Figure 5). Consistent results 

were found in the HCCDB18 and GSE76427 datasets 

(Supplementary Figure 5). 

 

“Hot” tumor microenvironmental characteristics of 

C1 and C2 subtypes 

 

The “Hot” tumor feature of C1 and C2 subtypes was 

analyzed with IFN-γ, Merck 18, CD8, PD-L1, T-cell 

 

 
 

Figure 3. Analysis of clinical and immunological characteristics of C1 and C2 subtypes. (A) The distribution of clinical characteristics 

of C1 and C2 subtypes. (B) Sankey Diagram showing the distribution of immune subtypes in C1 and C2. (C) The differences of immune 
subtypes distribution between C1 and C2. (D) Survival curve analysis of immune subtypes. The asterisks represent the P-value (*p < 0.05). The 
statistical analyses were performed by the one-way ANOVA. 
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dysfunction score, T-cell exclusion score, MDSC score, 

CAF score, and TAM.M2 score using the TIDE tool in 

the TCGA-LIHC datasets. In comparison to the C2 

subtype, the C1 subtype had significantly higher levels 

of IFN-γ, Merck 18, CD8, PD-L1, T-cell dysfunction 

score, and CAF score (Figure 6A–6F). In contrast, 

distinctly higher levels of T-cell exclusion score, MDSC 

score and TAM.M2 score were found in the C2 subtype 

(Figure 6G–6I). 

 

Establishment of DNA sensors-related prognostic 

model 

 

TCGA samples were assigned into the training or test set 

with the method of random sampling (7:3). Univariate 

analysis in the training set resulted in 69 prognosis-related 

genes (p < 0.05), while LASSO model was used to obtain 

14 genes with the lambda that yields the minimum mean 

squared error of 0.0423 (Figure 7A). Univariate Cox 

regression analysis showed that 7 DNA sensors-related 

genes were associated with the survival of HCC patients 

(Figure 7B). A corresponding risk score was generated 

and divided samples into the high- and low-risk groups. 

Kaplan-Meier survival and ROC curves in the TCGA 

training set (Figure 7C), TCGA test set (Figure 7D), 

TCGA-LIHC total set (Figure 7E), HCCDB18 dataset 

(Figure 7F), and GSE76427 (Figure 7G) dataset were 

generated. It was noted that the overall survival (OS) in 

the high-risk group was remarkably lower than that in the 

low-risk group. Additionally, the 7-gene signature was 

capable of effectively predicting the OS of HCC patients 

at 1-, 3-, and 5-years. 

 

Chemotherapeutic drug sensitivity analysis and 

small molecular compounds prediction 

 

Linkage between the molecular subtypes of HCC and 

the sensitivity to chemotherapeutic agents was analyzed 

 

 
 

Figure 4. GSEA and immune scoring. (A) The pathway analysis of the C1 and C2 subtypes was performed using GSEA. (B) Comparison of 
immune scores between C1 and C2 subtypes. Heatmap illustrated immune scores among two classifications. Orange represents high scores, 
and green represents low scores. GESA, gene set enrichment analysis. 
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in the TCGA-LIHC, HCCDB18 and GSE76427 datasets. 

Consistent in the three datasets, the C1 subtype was more 

sensitive to Sunitinib, Paclitaxel, TAE684, Crizotinib, S-

Trityl-L-cysteine, CGP-60474, BMS-509744 and 

CP466722, whereas the C2 subtype was more sensitive to 

Rapamycin, Pyrimethamine, Vinorelbine and AKT 

inhibitor VIII (Figure 8A–8C). Using the TCGA dataset, 

differentially expressed analysis was first performed 

between the HCC subtypes C1 and C2. A total of 890 

DEGs were identified, consisting of 57 upregulated genes 

and 833 downregulated genes (Supplementary Table 1). 

Subsequently, these genes were uploaded to the CMap 

database, and compounds with an absolute enrichment 

value greater than 0.5 were retained. Ultimately, 78 small 

molecular compounds with potential therapeutic value 

were identified (Figure 8D). 

 

The expression of DNA sensors was verified by RT-

qPCR 

 

A model of DNA damage in HCC cells was established 

using Olaparib or YU238259, an inhibitor for homology-

direct repair (HDR), and the degree of DNA damage was 

determined via the comet assay. The mRNA expression of 

8 DNA sensors, including IFI16, PRKDC, DHX9, 

DDX41, cGAS, HNRNPA2B1, DHX36 and DDX60, was 

examined by RT-qPCR. The result of comet assay 

indicated that both Olaparib and YU238259 induced 

DNA damage in HCC cells after 24 hours of treatment 

(Figure 9A). In cells treated by Olaparib, the DNA 

sensors, except for cGAS, exhibited significantly 

increased expression levels. While in cells treated with 

YU238259, except for DDX60, the DNA sensors had 

distinctly up-regulated expression (Figure 9B–9I). 

 

DISCUSSION 
 

HCC is a global threat to human health, and its 

incidence has continued to increase [19]. Unfortunately, 

biomarkers that can help for clinical decision-making 

and guide HCC treatment are limited [20]. By now, 

serum alpha-fetoprotein (AFP) is the only one 

recognized biomarker available to predict the poor 

outcomes of HCC in all stages, and its level is linked 

with the VEGF pathway activation in HCC [21]. To 

improve the treatment and prognosis of HCC, it is 

 

 
 

Figure 5. Analysis of the immunomodulatory functions of C1 and C2 subtypes. (A) Differences in immunomodulator between 
subtypes C1 and C2 shown in a heatmap and orange represents high scores, and green represents low scores. (B) Differential expression of 
chemokines between C1 and C2 in TCGA cohort. (C) Differential expression of chemokine receptor between C1 and C2 in TCGA cohort.  
(D) Differential expression of immunostimulatory between C1 and C2 in TCGA cohort. (E) Differential expression of immunoinhibitor between 
C1 and C2 in TCGA cohort. (F) Differential expression of MHC between C1 and C2 in TCGA cohort. The line in the box represents the median 
value, and the asterisks represent the P-value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). The statistical analyses were performed 
by the student t-test. TCGA, the cancer genome atlas; MHC, major histocompatibility complex. 
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Figure 6. Comparison of ‘hot’ tumor characteristics between C1 and C2 subtypes. (A) IFNG. (B) Merck 18. (C) CD8. (D) PD-L1.  
(E) Dysfunction. (F) CAF. (G) Exclusion. (H) MDSC. (I) TAM.M2. The asterisks represent the P-value (****p < 0.0001). The statistical analyses 
were performed by the student t-test. IFNG, interferon-γ; CD8, cluster of differentiation 8; PD-L1, programmed cell death 1 ligand 1; CAF, 
cancer associated fibroblast; MDSC, myeloid-derived suppressor cells; TAM, tumor associated macrophage. 
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significant to clarify the molecular pathogenesis of 

HCC and identify different molecular subtypes that 

result from its heterogeneity. DNA damage is critical in 

progression from chronic liver disease to HCC, which 

indicates the potential value of the genes and pathways 

related to DNA damage response/repair in HCC 

treatment and prognosis [22]. Research revealed that 

DNA damage repair-related genes were capable of 

 

 
 

Figure 7. The prognostic model was constructed based on DNA sensors related genes. (A) LASSO coefficient profiles of 14 
prognostic mRNAs in TCGA training cohort and the coefficient profile plot was developed against the log (Lambda) sequence. When lambda is 
0.0423, the smallest value, fourteen genes are obtained. (B) Multi-variate analyses. (C) Analyses of KM and ROC on TCGA training data.  
(D) The KM and ROC analysis of the model on the TCGA validation dataset. (E) The KM and ROC analysis of the model on the TCGA dataset. 
(F) The KM and ROC analysis of the model on the HCCDB18 dataset. (G) The KM and ROC analysis of the model on the GSE76427 dataset. The 
asterisks represent the P-value (*p < 0.05, **p < 0.01). The statistical analyses were performed by the Kaplan-Meier analysis. LASSO, Least 
absolute shrinkage and selection operator; TCGA, the cancer genome atlas; KM, Kaplan–Meier; ROC, receiver operating characteristic. 
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Figure 8. Difference analysis of chemotherapeutic drug sensitivity. (A) Analysis of chemosensitivity in TCGA dataset. (B) Analysis of 
chemosensitivity in HCCDB18 dataset. (C) Analysis of chemosensitivity in GSE76427 dataset. (D) CMap database analysis identified candidate 
drugs targeting the two molecular subtypes based on the DEGs. The line in the box represents the median value, and the asterisks represent 
the P-value (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). The statistical analyses were performed by the student t-test. 
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Figure 9. Validation of DNA sensors in cellular DNA damage models was performed by RT-qPCR. (A) DNA damage was verified by 
comet assay. (B) Relative mRNA expression of IFI16. (C) PRKDC. (D) DHX9. (E) DDX41. (F) cGAS. (G) HNRNPA2B1. (H) DHX36. (I) DDX60. The 
experimental data were represented by mean ± SD from at least three independent experiments, and the asterisks represent the P-value  
(**p < 0.01, ***p < 0.001, **** p < 0.0001). The statistical analyses were performed by the student t-test. RT-qPCR, real-time quantitative 
polymerase chain reaction; IFI16, interferon gamma inducible protein 16; PRKDC, protein kinase, DNA-activated, catalytic subunit; DHX9, 
DExH-box helicase 9; DDX41, dead-box helicase 41; cGAS, cyclic GMP-AMP synthase; HNRNPA2B1, heterogeneous nuclear ribonucleoprotein 
A2/B1; DHX36, deah-box helicase 36; DDX60, DExD/H-Box helicase 60. 
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dividing HCC into two subtypes with varying genomic 

features and prognoses [23]. Another study reported a 

risk scoring system for HCC based on homologous 

recombination deficiency (HRD)-related genes, which 

could be employed to predict the prognosis of HCC 

patients [24]. The activation of the cGAS/STING 

pathway by cytoDNA recognition has been reported to 

benefit prognosis and immunotherapy response in 

patients with HCC [25, 26]. This benefit results from 

the release of inflammatory factors, such as type I 

interferon, following activation of the cGAS-STING 

pathway [27]. However, it remains unclear whether 

other DNA sensors can regulate inflammatory cytokine 

release and serve as prognostic markers in HCC. In the 

present study, we focused on DNA sensors for analysis. 

Based on the expression of DNA sensors-related genes, 

two molecular subtypes of HCC were identified: C1 and 

C2, and the OS of patients with type C1 HCC was better 

than that of patients with type C2 HCC. We believe that 

DNA sensors are potentially valuable biomarkers that 

can be employed to predict the survival outcomes of 

HCC patients and its underlying mechanisms are related 

to the regulation of cytokine receptor activity, cytokine 

receptor binding and cytokine−cytokine receptor inter-

action. 

 

For the past few years, techniques of conjoint analysis 

based on genomics [28], proteomics [29] and multi-

omics [30] have made progress in research on HCC 

molecular typing. However, clinical translation remains 

currently missing. ICIs targeting immune checkpoints 

PD-1/CTLA-4 have been proved for treatment of HCC 

[31]. In this context, immunotyping in different 

molecular subtypes of HCC may be a novel approach 

instructive to clinical treatment [32]. Here, the C1 and 

C2 molecular subtypes of HCC were further immuno-

typed, revealing a predominance of C3 immune subtype 

(inflammatory) in the C1 molecular subtype while there 

is a predominance of C4 immune subtype (lymphocyte 

depleted) in the C2 molecular subtype. According to 

research, HCC can be divided in two major immune 

classes, Inflamed and non-inflamed. An Inflamed class 

is characterized by high levels of chemokine and of 

CD8+ T cell [33]. Recently, the Inflamed class was 

demonstrated to be enriched in patients with HCC who 

responded to anti-PD-1/PD-L1 antibodies [34]. 

Enrichment analysis of this study also demonstrated that 

immune pathways, such as Chemokine Signaling 

Pathway, B Cell Receptor Signaling Pathway, T Cell 

Receptor Signaling Pathway and Natural Killer Cell 

Mediated Cytotoxicity were significantly enriched in 

the C1 subtype. Additionally, five immune scoring 

methods consistently revealed higher scores in the C1 
subtype than the C2 subtype. Presently, the response 

rate of HCC to immunotherapy remains low in spite of 

certain clinical benefits [35], while the immune 

microenvironment in HCC represents as one of the most 

important factors influencing the response rate [36]. 

According to the present study, the C1 subtype is 

characterized by inflammation with high levels of 

chemokine signaling and might benefit from 

immunotherapy. 

 

The combination of ICIs and other therapies has been 

applied in clinical tumor treatment with satisfactory 

results, whereas the response rate is still limited [37]. 

Consistently, limited response rate is also seen in  

the combination therapy with Atezolizumab and 

Bevacizumab, a systemic treatment for HCC currently 

[38]. In this context, it is imperative to look for new 

molecules that can be used in combination immuno-

therapies for HCC. Referring to the previous literature, 

chemokine/chemokine receptor [39], immuno-

stimulator/immunoinhibitory [40] and MHC molecules 

[41, 42] are important participants in the interplay 

between tumor cells and the immune system. Such 

interplay usually leads to dynamic immunoediting 

process, enhancing immune response or inducing 

immune escape [43]. Therefore, we analyzed the 

expression of these molecules in the C1 and C2 

subtypes. It was found that most of the chemokines/ 

receptors were expressed higher in the C1 subtype  

than the C2. Further evidence for C1 subtype’s 

proinflammatory properties was provided by this result. 

Moreover, immunostimulator, immunoinhibitor and 

MHC molecules also had higher levels of C1 than C2. 

The results indicated that HCC patients with C1  

subtype might have different immune response in 

immunotherapy with C2 subtype.  

 

According to the response to immunotherapy, solid 

tumors can be classified into two categories: “Hot 

(immune-inflamed)” and “Cold (immune-desert/immune- 

excluded)” [44]. For “Hot” tumors, the major feature falls 

into T-lymphocyte infiltration [45]. A growing number  

of studies have suggested that tumor patients with  

T-lymphocyte infiltration may also poorly respond to ICIs 

therapy [46]. Therefore, T-lymphocyte infiltration is not 

sufficient for identifying the group of patients who may be 

highly responsive to ICIs. This warrants us to know more 

about the microenvironment features of “Hot” tumors, as 

this can help us clarify the mechanism underlying the 

response to ICIs immunotherapy [47]. Thus, the present 

study also explored the “Hot” tumor microenvironment 

features in different molecular subtypes with IFN-γ, 

Merck 18, CD8, PD-L1, T-cell dysfunction score, T-cell 

exclusion score, MDSC score, CAF score, and TAM.M2 

score. In comparison to the C2 subtype, the C1 subtype 

had significantly higher levels of IFN-γ, Merck 18, CD8, 
PD-L1, T-cell dysfunction score, and CAF score. As  

IFN-γ, Merck 18, CD8 and PD-L1 are linked with tumor 

immune escape, the C1 subtype might be at a higher risk 
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of developing immune escape [48]. This is also evidenced 

by the higher T-cell dysfunction score and CAF score in 

the C1 subtype [49, 50]. More crucially, the finding 

suggested that the C1 subtype may benefit more from 

anti-PD-L1 therapy than the C2 subtype, because of the 

effect of anti-PD-L1 antibodies that blocks the inhibitory 

effect of PD-L1 on T cells and thereby recovers the 

cellular biological functions [51]. While in the C2 

subtype, T-cell exclusion score, MDSC score and 

TAM.M2 score were much higher, which implied a low 

T-cell density in C2 tumors while there are more 

immunosuppressive cells (including MDSC and 

TAM.M2). This also indicated that patients with C2 HCC 

were less likely to gain benefit from ICIs immunotherapy. 

Combining the results, the C1 subtype of HCC presented 

with microenvironment features of “Hot” tumors. DNA 

sensors might be a new class of biomarkers that can be 

employed to predict the response to ICIs immunotherapy.  

 

Besides, our study constructed a prognostic model 

based on 7 DNA sensors-related genes, including 

PRKACB, RUVBL1, HLA-DPB1, BCL11B, SCL1A5, 
ADA, ITM2A, to analyze the clinical value of DNA 

sensors. The model performed well in predicting the 1-, 

3- and 5-year OS in HCC patients. 

 

The current study still has the following limitations that 

need to be addressed. First, this study only examined 

the expression of DNA sensors upon DNA damage 

using RT-qPCR, whereas the underlying molecular 

mechanism requires further experimental validation. 

Second, the expression of DNA sensors and their 

prognostic significance in HCC patients have not been 

validated in clinical settings.  

 

Taken together, this study identified two molecular 

subtypes of HCC (C1 and C2) based on the DNA 

sensors, which varied significantly in terms of the 

immune features, including the inflamed characteristics, 

immune microenvironment scores, and “Hot” tumor 

microenvironment property. The findings of the study 

provide evidence for the potential of the combination of 

DNA sensors targeting therapy with ICIs immuno-

therapy as a therapeutic strategy for HCC. In addition, 

the DNA sensors were also proven with favorable 

performance in predicting the survival outcomes of 

HCC patients. In all, this study provides new insights 

into the markers available for predicting prognosis and 

immunotherapy response for HCC. 

 

MATERIALS AND METHODS 
 

Data source and preprocessing 

 

RNA-seq data (FPKM format) were downloaded from 

the TCGA-LIHC dataset with the UCSC Xena browser 

(https://xenabrowser.net/) and then converted to TPM 

format. GSE76427 dataset was derived from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). HCCDB18 

dataset was obtained from the HCCDB website 

(http://lifeome.net/database/hccdb/download.html). All 

the three datasets contained clinical data of HCC 

patients. 

 

Single-sample gene set enrichment analysis (ssGSEA) 

and functional analysis 

 

ssGSEA calculates an enrichment score as the 

weighted sum of the difference between the empirical 

Cumulative Distribution Function (CDF) of the genes 

within a gene set and the remaining genes in a single 

sample, and then provides a normalized value based 

on the difference between the minimal and maximal 

expression values. Here, the enrichment scores of the 

DNA sensors in the TCGA-LIHC, GSE76427 and 

HCCDB18 datasets were calculated. Pearson 

correlation was conducted to obtain protein-coding 

genes associated with the DNA sensors in the TCGA-

LIHC, GSE76427 and HCCDB18 datasets, with the 

threshold set as |Pearson’s R| > 0.5 and p < 0.05. Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analyses were conducted to 

explore potential molecular processes and biological 

pathways related to DNA sensors in HCC. These 

analyses were performed using the R package 

“WebGestaltR”. The p < 0.05 were considered 

statistically significant. 

 

Analysis of DNA sensor genes methylation and 

prognosis 

 

MethSurv online tool was used (version MethSurv©2017, 

https://biit.cs.ut.ee/methsurv/). It is a web tool to 

provide survival analysis based on DNA methylation 

biomarkers using TCGA data. The methylation and 

prognostic value of DNA sensor genes in LIHC were 

analyzed by MethSurv online tool. 

 

Identification of DNA sensors-related molecular 

subtypes of HCC 

 

The DNA sensors-related genes were subjected to 

univariate COX analysis in the TCGA-LIHC, 

GSE76427 and HCCDB18 datasets. Candidate genes 

were selected as the genes associated with prognosis of 

HCC in at least two datasets (p < 0.05). Consensus 

clustering analysis was then performed based on the 

candidates using the package “ConsensusClusterPlus”, 

and the optimal number of clusters was determined via 
CDF. The Kaplan–Meier (K–M) survival curves of 

overall survival (OS) were used to evaluate the clinical 

prognostic value of DNA sensors-related genes.  

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
http://lifeome.net/database/hccdb/download.html
https://biit.cs.ut.ee/methsurv/


www.aging-us.com 6811 AGING 

Clinical features of different molecular subtypes were 

comparatively analyzed from T stage, Stage and Grade. 

There are 6 immune subtypes according to the 

literature, including C1: wound healing, C2: IFN-γ 

dominant, C3: inflammatory, C4: lymphocyte depleted, 

C5: immunologically quiet, and C6: TGF-β dominant 

[17]. The difference in the distribution of the 6 immune 

subtypes in different molecular subtypes was observed. 

 

GSEA and immune scoring 

 

The KEGG gene set c2.cp.kegg.v7.0.symbols.gmt 

containing 186 signaling pathways was selected, and the 

significant enriched pathways in different molecular 

subtypes were revealed by GSEA with the threshold set 

as p < 0.05 and FDR < 0.25. Immune scores in different 

molecular subtypes were calculated by EPIC, 

MCPcounter, TIMER, ESTIMATE and ssGSEA, and 

the results were shown as a Heatmap. Five groups of 

genes with immunomodulatory functions, including 

chemokine, chemokine receptor, immunostimulator, 

immunoinhibitor, and MHC, were obtained from the 

literature [18]. Expression of these genes in different 

molecular subtypes was analyzed. 

 

“Hot tumor” feature in different molecular subtypes 

of HCC 

 

The “Hot tumor” features in different molecular subtypes 

were comparatively analyzed according to the levels of 

T-cell dysfunction score, T-cell exclusion score, IFN-γ, 

Merck18, CD8, MDSC, CAF and TAM.M2 using the 

TIDE tool (http://tide.dfci.harvard.edu/). 

 

Construction and validation of prognostic risk 

signature 

 

TCGA samples were assigned into the training and test 

sets at 7:3 using the random sampling method. The 

DNA sensors-related genes were subjected to univariate 

COX analysis in the training set, yielding prognosis-

related genes (p < 0.05). Candidate signature genes 

were obtained via LASSO regression and multivariate 

COX analysis in succession, and the corresponding risk 

coefficients were acquired. Each sample in the TCGA-

LIHC training and test sets, GSE76427 dataset and 

HCCDB18 dataset were assigned a risk score and 

divided into the high- or low-risk group. Kaplan-Meier 

and ROC curves were generated to analyze the survival 

difference between the two groups. 

 

Analysis of sensitivity to chemotherapeutic agents 

 
R package “pRRophetic” was used to predict the  

half maximal inhibitory concentration (IC50) of 

chemotherapeutic agents in different molecular 

subtypes in the TCGA-LIHC, HCCDB18 and 

GSE76427 datasets. 

 

Small molecular compounds prediction for the 

treatment of hepatocellular carcinoma 

 

To predict the small molecule compounds of HCC, the 

differentially expressed genes (DEGs) between 

subtypes C1 and C2 were initially identified using the 

limma R package with | logFC| > 1.5 and adjusted p < 

0.05. Subsequently, these DEGs were uploaded to the 

Connective Map (CMap) database (https://clue.io/). The 

small molecule compounds were predicted based on the 

enrichment value and p-value. 

 

Cell culture and quantitative real-time PCR  

(RT-qPCR) 

 

Human HCC cell line HUH7 was provided by the Stem 

Cell Bank of Chinese Academy of Sciences. Cell 

culture was performed in DMEM (Gibco, USA) 

medium containing 10% fetal bovine serum at 37° C 

with 5% CO2. The cells were intervened by Olaparib or 

YU238259 (inhibitor for HDR) for 24 h and were then 

harvested for DNA extraction. DNA damage analysis 

was conducted according to the procedure described by 

Comet Assay Kit (iPhase Pharma Services, China). All 

samples were stained with SYBR Green I for scoring. 

The percentage of DNA in tail was scored using CASP 

software in 90 random nuclei per sample. All 

experiments were carried out in three replicates. 

 

Total RNA extraction was completed using the RNeasy 

Mini Kit (Magen, China), and cDNA synthesis was 

fulfilled with the PrimeScript™ RT Master Mix 

(Takara, China). Primers were designed and synthesized 

by Takara. RT-qPCR was ran using the TB Green® 

Premix Ex Taq™ II (Takara, China) with the 

LightCycler 480 System (Roche, Switzerland). The 

results were shown as 2-ΔΔCt. The mRNA expression 

of 8 DNA sensors, including IFI16, PRKDC, DHX9, 

DDX41, cGAS, HNRNPA2B1, DHX36 and DDX60, 

were examined, and β-actin was selected as the internal 

reference gene. All experiments were carried out in 

three replicates. Sequences of primers were detailed in 

Supplementary Table 2. 

 

Statistical analysis 

 

All statistical analysis was conducted using R software 

(version 4.03) and SPSS20.0 (IBM Corp, USA). The 

experimental data were represented by mean ± standard 

deviation (SD) from at least three independent 
experiments. Comparison between two groups was 

performed using Student t-test, whereas comparison 

among over two groups was conducted with one-way 

http://tide.dfci.harvard.edu/
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ANOVA. Kaplan-Meier together with log-rank test was 

used to generate survival curves. Two-sided  

p < 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Analysis of mRNA differences in DNA sensor genes. (A) TCGA dataset. (B) HCCDB18 dataset. (C) GSE76427 

dataset. 
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Supplementary Figure 2. Analysis of DNA sensor gene methylation status. (A) AIM2. (B) DDX41. (C) DDX60. (D) DHX9. (E) DHX36. 
(F) HNRNPA2B1. (G) IFI16. (H) LRRFIP1. (I) MRE11. (J) POLR3. (K) PRKDC. (L) TLR9. 
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Supplementary Figure 3. Survival analysis of cg sites. (A) AIM2. (B) DDX41. (C) DDX60. (D) DHX9. (E) DHX36. (F) HNRNPA2B1. (G) IFI16. 
(H) LRRFIP1. (I) MRE11. (J) POLR3. (K) PRKDC. (L) TLR9. 
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Supplementary Figure 4. DNA sensors-related genes functional enrichment analysis. (A) Top 10 geneontology biological process. 

(B) Top 10 geneontology cellular component. (C) Top 10 geneontology molecular function. (D) Top 10 pathway_KEGG. 
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Supplementary Figure 5. Analysis of the immunomodulatory functions of C1 and C2 subtypes. (A) Analysis in HCCDB18 dataset. 

(B) Analysis in GSE76427 dataset. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differential genes between C1 and C2 subtypes. 

 

Supplementary Table 2. Primer sequences. 

Gene Forward (5’-3’) Reverse (5’-3’) 

β-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA 

IFI16 TTTCTCTGGGGCAATAGCAGA CAGAAACGGAACCGCAGGAT 

PRKDC GTTTGATGAGCGGGTGACAG CTCCTCTTGGGACATGGTGTT 

DHX9 GTACGGCCTGGATTCTGCTT ATCACAGCATCCAAAGGGGG 

DDX41 CCGCCTGTACTCATCTTTGC CAGCACTGACTCATCACACG 

cGAS GGGCGGTTTTGGAGAAGTTG CGTGCTCATAGTAGCTCCCG 

HNRNPA2B1 TGCTCCTCGCAGAGTTGTTT TTTCTCTCTCCATCGCGGAC 

DHX36 AAGGGAACTGCGAAGAAGGT AGGCATCAGTGAATGTAAAGGT 

DDX60 GCGCTAGGTCTCTGTTTCACT TCCATTCTTGCTGCTGCCTG 

 


