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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is the most prevalent 

lung cancer histologic subtype and accounts for almost 

half of all lung cancers [1, 2]. Lymph node metastasis 

(LNM) is generally considered to be one of the most 

common metastatic pathways of LUAD and is 

associated with a poorer prognosis and higher 

possibility of locoregional or distant recurrence [3]. 

Patients with LNM usually require more extensive 

systemic treatment. Therefore, the identification of 

drivers of LNM may be important for early 

identification of patients with unfavorable prognosis 

and guiding individualized treatment, thus further 

reducing overall mortality. 

 

Relevant studies on the prediction of LNM in lung 

cancer are limited, and most are focused on clinical 

factors, serum biomarkers and radiomics signature, 

while effective predictors remain lack of 

investigations [3–5]. Several genes were also 
identified as the LNM indicators based on transcrip-

tome profile [6, 7]. However, since metastasis is a 

multi-gene process and involves the interaction 
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N stage and a good predictive ability of LUAD survival. At last, we identified that erastin and gefitinib could 
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between tumor and the surrounding micro-

environment, these single-gene predictors may not 

provide a complete picture of the mechanism 

underlying lymph node metastasis. 

 

With the advancement of single-cell RNA-sequencing 

(scRNA-seq) technology, cellular and molecular 

features associated with tumor progression and 

microenvironment have been increasingly investigated 

[8, 9]. Previous scRNA-seq studies related to LUAD 

have focused on molecular features of tumorigenesis 

and progression [10–12]. In the present study, the clonal 

origin and transcriptional trajectory of LUAD were 

analyzed to reveal the genetic drivers for LNM in 

LUAD. Besides, a pro-LNM signature and several drug 

candidates were identified, which may facilitate early 

prediction of LNM and provide new insights into cancer 

therapy. 

 

RESULTS 
 

scRNA landscape of the tumor microenvironment in 

LUAD primary tumor (PT) and lymph node (LN) 

samples 

 

To investigate the heterogeneity of cell phenotype 

between primary tumors and metastasis lymph nodes in 

LUAD, we included the data of 11 primary tumor 

(esPT, 45,149 cells) and 10 normal lymph node (esLN, 

37,446 cells) samples from early stage LUAD patients, 

as well as four primary tumor (asPT, 12,073 cells) and 

seven metastatic lymph node (asLN, 21,479) tissues 

from advanced stage LUAD patients (Figure 1A). After 

data processing and quality control, cells from PT and 

LN samples were automatically clustered into 24 

subgroups using principle component analysis (PCA) 

and t-distributed stochastic neighbor embedding (t-

SNE) (Figure 1B, 1C). Then cell clusters were 

annotated based on the DEGs according to canonical 

cell lineage markers (Figure 1D). Since LUAD 

originates from the bronchial mucosal epithelium, we 

found that the proportion of epithelial cells (ECs) 

increased significantly in asPT and asLN tissues, with 

38.6% and 10.0%, respectively. ECs only accounted for 

6.9% in esPT and were absence in esLN. Immune cells 

were the predominant proportion in esPT (86.9%) and 

esLN (99.8%), especially T cells, which accounted for 

43.1% of total cells in esPT and 65.9% in esLN (Figure 

1E). However, the proportions of T cells declined 

significantly in asPT and asLN, with a declination of 

18.9% and 41.1%, respectively. B lymphocytes also 

decreased in asPT compared with esPT but increased in 

asLN (30.0%) compared with esLN (28.4%), although 

with no significance. Besides, macrophages largely 

increased in asLN (18.5%) when compared to asPT 

(4.8%) and esLN (1.3%). 

Clonal evolution and hallmark signature of 

malignant ECs (maECs) 

 

To probe the clonal structure and origins of malignant 

cells, inferCNV algorithm was applied to analyze the 

CNV and clonality of the ECs from esPT, asPT and 

asLN (Figure 2A). Compared with the reference cells, 

2,303 ECs from esPT, 3,093 cells from asPT and 1,731 

cells from asLN were classified as malignant cells due 

to high CNV scores, the last 88 ECs with low CNV 

scores and the reference cells were considered non-

malignant cells (Figure 2B). The 1p gain, 1q gain, 6p 

loss, 10q loss, 12q gain and 16p gain appeared in more 

than 80% maECs from esPT, asPT and asLN (Figure 

2C). And the gain of 7p, 19p, 20q and loss of 1q, 17q, 

19q, 22q were observed in asPT maECs compared with 

esPT. And the gain of 2p, 2q, 5p, 5q, 8q and loss of 6q, 

10p were observed in asLN compared with asPT. 

Interestingly, the 6q loss and 20q gain existed in most 

maECs from asPT and asLN rather than esPT, which 

might be the driver of lymph node metastasis of LUAD. 

A clonal evolutionary tree was then plotted based on the 

subclone CNV results (Figure 2D–2F). Multiple CNVs 

in subclones were observed in each sample, which 

revealed the previously unappreciated heterogeneity and 

complexity of CNV in epithelia cells from LUAD 

primary tumors and lymph nodes. 

 

The gene set variation analysis (GSVA) analysis of 

maECs revealed relatively high activation level of E2F 

target, MYC target, DNA repair and G2M checkpoint 

pathways in both asPT and asLN. The cell cycle and 

DNA damage pathway were upregulated in asPT, while 

asLN exhibited increased activation of PI3K-AKT-

mTOR, IL2-STAT5, IL6-JAK-STAT3, IFNα, TNFβ, 

KRAS, EMT, NOTCH, angiogenesis, metastasis, 

invasion signaling (Figure 2G). To illustrate the 

transcriptional state across ECs in LUAD, potential co-

expression modules and their cis-regulatory motifs were 

identified using single-cell regulatory network inference 

and clustering (SCENIC) analysis (Figure 2H). Histone 

demethylase KDM5B was found to be actively expressed 

in all subclusters of maECs, which could promote tumor 

invasion and induce immune evasion through cytosolic 

RNA or DNA sensing pathways and subsequent 

interferon-1 responses [13]. The most over-represented 

elements included NKX2, EGR1 and FOS were enriched 

in ECs from esPT. While NFIC, XBP1, MAFK were 

relatively high expressed in asPT maECs. And for asLN 

maECs, SPDEF and CREB5 were highly expressed. 

 

Pseudotime trajectory identified LNM-dependent 

gene patterns 

 

Under the guidance of phenotypic information from 

bulk RNA sequencing data, Scissor algorithm was 
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applied to identify the cells most related to LNM from 

single-cell data. All 7,127 malignant cells were included 

for dimensional reduction and clustering (Figure 3A). 

Then, 438 cells were determined as Scissor+ cells, which 

showed a positive correlation with LNM phenotype, and 

169 cells were Scissor− cells which were negatively 

 

 
 

Figure 1. Clustering of cells in tumor and lymph node samples from early and advanced stage LUAD patients. (A) Overview of 

the scRNA-seq and bulk RNA-seq cohorts. (B) T-SNE visualization of 24 cell clusters from scRNA-seq cohort samples, and (C) showing various 
origin of the cells. (D) Eight cell clusters were manually annotated based on DEGs according to canonical cell lineage markers. (E) 
Comparison of the cell constitution among different tissues shown by the bar plot. Abbreviations: LUAD: lung adenocarcinoma; esPT: 
primary tumor in early stage LUAD; esLN: lymph node in early stage LUAD; asPT: primary tumor in advanced stage LUAD; asLN: lymph node 
in advanced stage LUAD; LNM: lymph node metastasis. 
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Figure 2. Copy number variation analysis of epithelial cells from primary tumor and metastasis lymph node. (A) 

Representative hierarchical heatmap showing large-scale CNVs in maECs from various samples. Gains (red) or losses (blue) were inferred by 
averaging the expression over 100 gene stretches on the respective chromosomes. (B) The CNV score facilitated quantitatively determining 
malignant cells. (C) The summary plot of the CNV profile of malignant ECs from esPT, asPT and asLN. CNVs were converted to the 
chromosome arm level change and simplified as gain or loss. (D–F) The clonal evolutionary trees of maECs from esPT, asPT and asLN, 
respectively. The length of branch is determined by the percentage of cells containing the corresponding CNV in subclones. (G) The 
heatmap of GSVA demonstrated differences in enriched pathways among maECs from esPT, asPT and asLN. (H) The hierarchical clustering 
heatmap of enriched transcription regulon using SCENIC analysis. *, means presenting in >90% of tumor cells. Abbreviations: CNVs: copy 
number variations; maECs: malignant epithelial cells; esPT: primary tumor in early stage LUAD; esLN: lymph node in early stage LUAD; asPT: 
primary tumor in advanced stage LUAD; asLN: lymph node in advanced stage LUAD; GSVA: gene set variation analysis; SCEINC: single-cell 
regulatory network inference and clustering. 
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correlated with LNM phenotype, while the last 6,520 

cells were regarded as background cells (Figure 3B). 

Among Scissor+ cells, cells from esPT, asPT and asLN 

accounted for 9.2%, 21.7% and 41.2% of total cells, 

respectively. While Scissor− cells were all from esPT 

(Figure 3C). Based on pseudotime ordering, Scissor+ and 

Scissor− cells were projected onto different branches 

using trajectory analysis (Figure 3D–3F). All Scissor− 

cells presented at the initial stage of differentiation that 

all belonged to esPT, while Scissor+ cells enriched in 

the middle and terminal stage of differentiation and 

finally divided into two branches. The two branches 

were mostly enriched in asPT cells and asLN cells, 

respectively. Venn diagram indicated that Scissor+ cells 

existed 2991 newly gain of genes and 2801 loss of 

genes when compared to Scissor− cells (Figure 3G). 

 

 
 

Figure 3. Trajectory analysis of malignant ECs. (A, B) T-SNE plots of 7127 malignant ECs color-coded by origins and scissor clusters, 

respectively. (C) The pie chart showing the constitution of cells with various origins and the distribution of scissor subclusters. (D–F) The 
evolutionary phylogenetic trees of Scissor+ and Scissor− cells annotated by pseudotime, cell origins and cell types, respectively. (G) A Venn 
diagram for summarizing gene variation between Scissor+ and Scissor− cells. Blue represents Scissor− cells and red represents Scissor+ cells. 
(H) The summary plot of the CNV profile of Scissor+ and Scissor− cells. CNVs were converted to the chromosome arm level change and 
simplified as gain or loss. (I) Heatmap of 56 branch-dependent genes identified by BEAM. (J, K) The enriched hallmark pathways of two 
gene patterns by GSVA. *, means presenting in >90% of tumor cells. Abbreviations: ECs: epithelial cells; T-SNE: t-distributed stochastic 
neighbor embedding; CNV: copy number variation; BEAM: branch expression analysis modeling; GSVA: gene set variation analysis. 
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Previously identified potential drivers of LNM, namely 

the 6q loss and 20q gain, were also found in Scissor+ 

cells (Figure 3H). 

 

BEAM analysis was performed to identify branch-

dependent genes across branches. A total of 56 genes 

involved in the regulation of cell differentiation were 

identified, which were further divided into two gene 

patterns (Figure 3I). The 27 genes in gene pattern 1 

were named as pro-LNM signature, as their expression 

was thought to be associated with LNM. Among them, 

genes related to cell proliferation (HMGB3, GPX3, 

SAA1), ferroptosis (C15orf48, LCN2), immune 

microenvironment (CCL20, CXCL8) and epithelial-to-

mesenchymal transition (AREG) were gradually 

upregulated alongside the trajectory differentiation 

process. Afterwards, GSVA revealed that trans-

criptional misregulation in cancer, response to oxidative 

stress, interferon signaling and matrisome-associated 

pathways were significantly enriched in gene pattern 1 

(Figure 3J). While gene pattern 2 demonstrated quite 

different enriched pathways, including positive 

regulation of MAPK cascade, immune response-

regulating signaling pathways, lymphocyte-mediated 

immunity, etc., (Figure 3K). 

Intercellular communication of Scissor+ cells in 

tumor microenvironment 

 

Tumor microenvironment plays a vital role in tumor 

progression and metastasis. To further investigate the 

intercellular communication network in the 

microenvironment, CellChat algorithm was applied to 

infer the ligand-receptor interactions among malignant 

epithelial cells and other cell clusters. As shown in 

Figure 4A, Scissor+ maECs were relatively active in the 

cell–cell interaction network, composing the biggest 

part of both incoming and outcoming communication 

with other cells. And the strength of interaction between 

Scissor+ maECs and immune cells like monocytes and 

macrophage were relatively strong, indicating the 

crucial role of Scissor+ maECs in tumor micro-

environment (Figure 4B). Also, communication patterns 

indicated that Scissor+ maECs and macrophages play 

important role in tumor microenvironment (Figure 4C). 

According to the incoming communication patterns of 

the target cells, Scissor+ maECs dominantly responded 

to MK, EGF, TWEAK and SEMA3 signaling pathways 

(Figure 4D). And Scissor+ maECs drove MIF, MK, 

EGF, GDF, ANGPTL, VEGF, SEMA3, CSF, EDN 

signaling

 

 
 

Figure 4. Cell-cell communication network in tumor microenvironment. (A, B) Circle plots showing the number (left) and strength 

(right) of cell interactions in tumor microenvironment. The edge width is proportional to the numbers or strength of significant ligand-
receptor pairs. (C) Comparisons of the numbers of intercellular interactions with contribution degree more than 0.25 among all cell 
clusters. (D) Dot plots depict the incoming patterns of target cells, which shows the correspondence between the inferred latent patterns 
and cell clusters, as well as signaling pathways. (E) Outgoing communication patterns of secreting cells. 
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pathways as inferred by the outgoing communication 

patterns of the secreting cells (Figure 4E). 

 

The pro-LNM signature correlated with the LNM 

and prognosis of LUAD 

 

To further investigate the relationship between pro-

LNM signature and clinicopathological parameters, 

single sample gene set enrichment analysis (ssGSEA) 

was performed to calculate the pro-LNM signature 

ssGSEA score of each patient in the TCGA LUAD 

cohort. More advanced N stage was associated with 

higher ssGSEA scores (p = 0.0018). Gender, TNM 

stage, KRAS mutation status were also found to 

correlate with pro-LNM signature (Figure 5A). The 

Kruskal-Wallis test was performed to further analyze

 

 
 

Figure 5. Validation of pro-LNM signature associated with LNM and prognosis in the TCGA LUAD cohort. (A) An overview of 

the association between the pro-LNM signature and clinicopathological parameters of LUAD patients. Columns showed patients ranked by 
pro-LNM signature from low to high (top row), and other rows represented the clinicopathological features. (B) Associations between pro-
LNM signature and N staging in the TCGA LUAD cohort. (C) K-M survival analysis revealed significantly poorer OS in patients with high levels 
of pro-LNM signature. Abbreviations: LNM: lymph node metastasis; TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; OS: 
overall survival. 
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the association between N stage and pro-LNM 

signature. The ssGSEA scores were significantly higher 

in stages N1 and N2 than stage N0, with p values of 

0.0009 and 0.014, respectively. While there were no 

significant differences among stage N1 to N3 (Figure 

5B). Also, K-M survival analysis revealed that patients 

with a higher level of pro-LNM signature showed 

significantly poorer overall survival (p = 0.0013) 

(Figure 5C). 

 

Identification of the potential drugs targeting LNM 

 

The pRRophetic algorithm was applied to identify the 

candidate drugs that inhibit LUAD LNM based on the 

drug sensitivity data of 46 LUAD cell lines in the 

CTRP database. We identified 74 compounds that 

performed higher sensitivity targeting Scissor+ cells 

and 15 compounds for patients with LNM in the 

LUAD cohort. By taking the intersections, seven drugs 

(erastin, gefitinib, IC-87114, PD318088, cytochalasin 

B, UNC06638 and afatinib) were finally identified to 

be the candidate drugs for the treatment of LUAD 

LNM. Besides, these seven drugs performed 

significant lower AUC values in Scissor+ cells and 

LNM patients and showed negative correlations with 

the pro-LNM signature (Figure 6A–6C). And the 

overall workflow was shown as Figure 6D. Further 

studies are required to validate the therapeutic value of 

these drugs in inhibiting LUAD lymph node 

metastasis. 
 

DISCUSSION 
 

Lymph nodes are generally the first involved sites in the 

metastatic process of lung cancer, which is largely 

associated with a suboptimal prognosis. LUAD showed 

a higher propensity for LNM than squamous carcinoma 

and occurred LNM even in early stage [14, 15]. 

Besides, LUAD with LNM usually requires more 

extensive systemic treatment. Therefore, identification 

of LNM drivers is of great importance for prognosis 

prediction and treatment decision. 

 

 
 

Figure 6. Identification of potential drug targets for patients with LNM. (A, B) The boxplots of differential drug response analysis in 

Scissor+ cells and LNM patients. (C) The Spearman’s correlation analysis between pro-LNM signature and AUC. (D) The overall workflow for 
identifying potential drug targets for patients with LNM. ****, means p < 0.001. Abbreviations: LNM: lymph node metastasis; AUC: area 
under the curve. 
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Tumor microenvironment plays a crucial role in 

tumorigenesis, metastasis and angiogenesis of LUAD 

[16]. And the infiltration of various immune cells was 

related to prognosis [17]. Consistent with previous 

studies [18, 19] we found that T and B lymphocytes 

dominated the early LUAD immune microenvironment, 

while both cell types reduced in advanced stage, 

suggesting an immunosuppressive environment, which 

may explain the immune escape in advanced stage 

LUAD. Besides, macrophages and monocytes 

increased in asLN compared to esLN, and cell-cell 

communication network analysis suggested their strong 

interactions with Scissor+ maECs, indicating that 

monocytes and macrophages may participate in the 

metastatic tumor cell growth in lymph nodes. 

Larionova et al. also confirmed that tumor associated 

macrophages and monocytes could upregulate CRYAB 

expression on tumor cells and activate the ERK1/2/Fra-

1/ SLUG signaling pathway, which is associated with 

LNM [20]. 

 

Previous LNM predictors such as plasma CEA level, 

tumor size, pleural involvement and pathologic features 

had limited values in clinical work due to lack of 

accuracy or efficiency or invasive biopsies [21–23]. 

Therefore, effective biomarkers for predicting LNM are 

yet to be discovered. As metastasis is a multi-gene 

process and involves the interaction between tumor and 

the surrounding microenvironment, single-gene or 

single-pathway predictors such as LINE-1 [12] may not 

provide a complete picture of LNM. This study first 

identified a 27-gene pro-LNM signature based on 

hallmark genes that determine the trajectory 

differentiation. The signature included genes related to 

cell proliferation and migration (ERO1A, HMGB3, 

GPX3, SAA1), ferroptosis (C15orf48, LCN2), immune 

microenvironment (CCL20, CXCL8), epithelial-to-

mesenchymal transition (AREG) and others. Besides, 

TCGA LUAD cohort were further included for 

validation, and the pro-LNM signature showed a 

significant correlation with N stage and a good 

predictive ability of LUAD survival, suggesting that it 

could be a promising biomarker for predicting LUAD 

LNM. 

 

In addition, this study identified seven candidate drugs 

for LUAD patients with LNM. Among them, erastin 

and gefitinib showed superior properties in AUC and 

correlation analysis. Erastin is a classic ferroptosis 

inducer, which has shown promising pharmacological 

efficacy in cancer treatment. It has been confirmed that 

erastin could increase the sensitivity of non-small-cell 

lung cancer (NSCLC) cells to cisplatin and other 
chemotherapy and enhance the anti-tumor effect of 

radiotherapy in human-derived LUAD model [24–26]. 

Also, studies revealed that LCN2, a ferroptosis related 

protein, could promote tumor proliferation and 

adhesion through ferroptosis [27, 28]. In this study, 

LNM-associated malignant ECs were enriched with 

LCN2 and showed higher sensitivity to erastin, 

suggesting erastin could be a promising therapeutic 

option for LUAD patients with LNM. Gefitinib is an 

EGFR tyrosine kinase inhibitor which is generally 

used as an alternative treatment for chemo-resistant 

NSCLC patients. NSCLC patients with sensitizing 

EGFR mutation and KRAS mutation were more 

sensitive to gefitinib [29]. Besides, in the present 

study, intercellular communication network analysis 

showed that LNM associated Scissor+ cells 

dominantly associated with EGF signaling pathway, 

which possibly provide theoretical basis for the 

clinical application of gefitinib. Also, the pro-LNM 

signature based on Scissor+ cells showed a favorable 

predictive ability for LUAD patients with high 

sensitivity to gefitinib, which may facilitate the 

individualized therapy. 

 

There are several limitations in this study. First, the pro-

LNM gene signature was inferred on the basis of 

scRNA-seq profiles, further validation of protein 

expression level in clinical cohorts should be conducted. 

Besides, the relationship between LNM and the 

pathophysiological functions of genes in the model 

needs further investigations, which would facilitate the 

discovery of new therapeutic targets. Second, although 

we showed differences in immune microenvironment 

between LUAD primary tumor and metastatic lymph 

node, problems such as why B lymphocytes are 

reducing in the advanced stage of primary tumor but 

increasing in the metastatic lymph nodes, and whether 

B cells in lymph nodes particularly affect the prognosis 

of LUAD patients with lymph node metastasis requires 

further investigation. 

 

CONCLUSIONS 
 

This study first revealed the potential genetic drivers 

for LNM in LUAD based on scRNA-seq data using 

clonal evolution and transcriptional trajectory 

analysis. The immune landscape of the tumor 

microenvironment of LUAD was characterized, and  

a subset of malignant ECs associated with LNM, 

named Scissor+ cells, was identified. Based on the 

differentially expressed genes in Scissor+ cells, the 

pro-LNM signature was constructed to predict LNM 

and was further validated with the use of TCGA 

LUAD cohort, which exhibited a promising predictive 

ability to recognize patients with high risk of LNM at 

an early stage. At last, the potential therapeutic drugs 

for patients with a high risk of LNM were also 

predicted, shedding new light on further therapy 

development for LUAD patients. 
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MATERIALS AND METHODS 
 

Data acquisition 

 

The scRNA-seq profile of the LUAD cohort was 

obtained from Gene Expression Omnibus (GEO) 

database (GSE131907) [30]. Data of eleven tumor 

tissue and ten normal lymph node samples from early 

stage LUAD patients without prior treatment as well as 

four tumor tissue and seven metastatic lymph node 

samples from advanced stage LUAD patients were 

selected for subsequent analysis. Besides, bulk RNA 

sequencing data and clinicopathological information of 

499 LUAD (167 of them with lymph node metastasis) 

patients were downloaded from The Cancer Genome 

Atlas (TCGA, https://portal.gdc.cancer.gov/) database. 

The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013). 

 

scRNA-seq data processing 

 

The data from all 32 samples with 116,147 cells were 

processed and visualized using the Seurat package 

(4.0.3) in R (4.0.5) [31]. The canonical correlation 

analysis and mutual nearest neighbors-anchors were 

used to remove batch effect and integrate scRNA-seq 

data. Quality control was conducted by excluding cells 

detecting fewer than 50 genes and cells expressing 

more than 5% mitochondria-expressing genes. Also, 

genes detected in less than three cells were filtered. 

Then, 33,848 cells from primary tumor samples, 

37,446 cells from normal lymph node samples, 8,063 

cells from advanced stage LUAD samples and 21,479 

cells from metastasis lymph node samples were 

retained for subsequent analysis. To reduce dimen-

sionality, PCA was performed based on variably 

expressed genes, and the top 20 principle components 

were further included for cell clustering using t-SNE 

algorithms. Differential expressed gene (DEG) 

analysis was performed using the FindAllMarkers 

function and DEGs were further filtered with an 

adjusted P value < 0.05 and |log2(fold change (FC)) |> 

0.5. According to various DEG composition patterns, 

cell clusters were automatically determined and 

annotated using the SingleR (1.0.1) package, and 

further manual revisions were performed with 

reference to the CellMarker database [32]. Canonical 

cell lineage markers used for cell cluster identification 

were as follows. B cell: CD19, CD20, CD21, CD23; 

Endothelial cell: CD31, CD34, CD146, VWF; 

Epithelial cell: ABCA3, LPCAT1, NAPSA, SFTPB, 

SFTPC, SLC34A2; Fibroblast: CD36, CD90, CD97, 

FAP-1, PDGFR-α, PDGFR-β, Vimentin; Macrophage: 

CD68, CD163, CCL18, CXCL10; Monocyte: CD14, 

CD36, CD68; NK cell: NKp46, CD56; T cell: CD2, 

CD3, CD4, CD5, CD8, CXCL13. 

CNV analysis 

 

The large-scale chromosome level CNVs could be 

predicted based on the gene expression among different 

samples, which further assisted in inferring malignant 

cells in tumor. The inferCNV (1.6.0) package was used 

to calculate the copy number of ECs to distinguish 

malignant ECs with a cutoff of 0.1. To determine 

subclonal CNV events and reduce the false positive 

CNV calls with a threshold of 0.5, hidden arkov models 

(HMMs) and Bayesian latent mixture models were used 

[33]. Then, k-means algorithm was applied to 

hierarchically cluster the CNV scores of all genes for 

ECs and reference cells (macrophage and monocyte). 

The ECs with low CNV scores were defined as non-

malignant cells, while the ECs with high CNV scores 

were malignant cells. To illustrate the clonal CNV 

change, “subcluster” method was further utilized to 

infer subcluster cells based on CNV value calculated 

using HMM. Referring to the GRCh38 cytoband 

information, we converted each CNV to a chromosome 

arm (p- or q-arm) level change, which was then 

annotated as a gain or loss [34]. To construct the 

evolutionary phylogenetic tree, subclones with identical 

arm level CNVs were collapsed, which was visualized 

using the UPhyloplot2 algorithm [35]. 

 

Gene enrichment analysis  

 

GSVA was performed to assess the enriched pathways 

in malignant ECs from primary tumor and lymph node 

samples [36]. The gene sets were obtained from the 

Molecular Signatures Database (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) and CancerSEA 

Database [37], and the limma package was then applied 

to performing differential analysis of the enrichment 

scores of pathways among various cell groups. 

Pathways with a false discovery rate less than 0.05 and 

a |t value| greater than four were considered 

significantly differentially enriched. 

 

SCENIC analysis 

 

The R package SCENIC 

(https://github.com/aertslab/SCENIC) was further used 

to analyze the transcriptome factors in various samples 

[38]. The Gradient Boosting was utilized to infer  

the co-expression module between transcription 

factors. The cisTarget Human motif database 

(https://resources.aertslab.org/cistarget/motif2tf/motifs-

v9-nr.hgnc-m0.001-o0.0.tbl) were used for the cis-

regulatory motif analysis of each co-expression module. 

The “aucell” positional argument was applied to score 
the activity of regulon across single cells. The final 

result was visualized as a hierarchical clustering 

heatmap of z-scored enrichment values. 

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://github.com/aertslab/SCENIC
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.hgnc-m0.001-o0.0.tbl
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Scissor algorithm and pseudotime trajectory analysis 

of maECs 

 

Based on integrated bulk RNA sequencing and scRNA-

seq data, Scissor algorithm was applied to identify cell 

subsets highly related to lymph node metastasis in 

LUAD [39]. Three input data sources included single-

cell expression matrix of maECs, preprocessed LUAD 

bulk expression matrix from TCGA and LNM-

associated phenotype. Then, the data was fitted by a 

COX regression model with an alpha of 0.05 to select 

LNM-associated subpopulations. Cells were divided 

into Scissor+ and Scissor− subpopulations according to 

the symbol of the estimated regression coefficient, 

which indicated a positive or negative correlation with 

the target phenotype, respectively. 

 

Monocle (2.18.0) was further applied to analyze 

pseudotime trajectory based on the transcriptome 

profiles of Scissor+ and Scissor− cells [40]. Genes with a 

mean expression higher than 0.1 were selected for 

trajectory analysis, and differentially expressed genes 

with q-value less than 0.01 were further filtered for 

dimensional reduction using the DDRTree reduction 

method. According to the gene expression pattern, 

genes were clustered into subgroups and cells were 

sorted, trajectory with various branches was constructed 

according to the expression trend of genes. Branch 

expression analysis modeling (BEAM) analysis was 

then performed to identify genes with branch-dependent 

expression patterns, which might determine the cell 

fate. 

 

Cell-cell communication network  

 

CellChat v1.0.0 was applied to quantitatively infer the 

intercellular communication networks among newly 

identified Scissor+ cells and other cells [41]. Based  

on the cross-referencing ligand-receptor interaction 

database (Cell-ChatDB), CellChat incorporated and 

manually categorized 2,021 molecular interactions into 

229 functional-related signaling pathway families.  

After quantifying the communication probabilities, 

statistically and biologically significant intercellular 

communications were identified by contribution degree 

> 0.25 and P < 0.05. 

 

ssGSEA scores of the bulk RNA sequencing data 

 

SsGSEA was further used to generate a ssGSEA score 

to estimate the degree of absolute enrichment of certain 

gene set (pro-LNM signature) in each sample of the 

TCGA LUAD cohort [42]. The ssGSEA was performed 
using R package GSVA with default parameters. Then, 

the relationship between the pro-LNM signature 

ssGSEA scores and clinicopathological parameters were 

estimated. Besides, TCGA LUAD cohort was stratified 

into two groups based on the expression level of pro-

LNM signature using the survminer package in R. 

Kaplan–Meier (K-M) survival analysis was performed 

to assess the overall survival (OS) of LUAD patients 

with high and low level of ssGESA scores and 

compared by the two-sided log-rank test. 

 

Identification of the drug candidates for LNM 

patients by targeting Scissor+ cells 
 

Expression profile and somatic mutation data of  

human cancer cell lines (CCLs) were achieved from the 

Cancer Cell Line Encyclopedia (https://portals. 

broadinstitute.org/ccle/) [43] and the dependency map 

(DepMap) portal. Drug sensitivity data of CCLs were 

downloaded from the Cancer Therapeutics Response 

Portal (CTRP), which provides values of the area under 

the dose-response curve to indicate drug sensitivity, and 

low values of area under the curve (AUC) suggest high 

sensitivity to treatment. The pRRophetic algorithm was 

then applied to estimate the chemotherapeutic 

sensitivity of drugs in the LUAD cohort [44]. 

Differential drug response analysis was performed by 

limma package between Scissor+ cells and Scissor− 

cells, and drugs with significant lower AUC (log2FC > 

0.01 and P < 0.05) were regarded as the candidate drugs 

for Scissor+ cells. Likewise, the drug candidates for 

patients with LNM in the TCGA cohort were selected 

by significant lower AUC and a negative correlation 

between pro-LNM signature and AUC with r < −0.3 and 

P < 0.05. 

 

Statistical analysis 
 

The statistical analyses were performed using R 4.0.5 

software. The independent Student’s t test and the χ2 

test was applied to compare continuous variables and 

categorical variables between two groups respectively. 

We also applied the Mann-Whitney U test for 

categorical variables and nonnormally distributed 

variables comparison between two groups, and the 

Kruskal-Wallis test was applied to compare multiple 

groups. A two-tailed P value < 0.05 was considered 

statistically significant. 
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