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INTRODUCTION 
 

Among various cancers, Lung cancer was the most 

incident and lethal malignant tumor worldwide [1]. 

Lung cancer could be split into two categories: small 

cell lung cancer (SCLC, 15%) and NSCLC (85%) [2]. 

Although the efficacy of treatment for advanced 

NSCLC remains poor, the prognosis of NSCLC 
increased gradually during recent years because of the 

ICIs [3–6]. ICIs have shown convincing clinical 

benefits, significantly prolonging the survival of 

advanced NSCLC patients. However, the response rate 

of NSCLC with ICIs is only about 20%, indicating that 

most NSCLC patients failed to respond to ICIs [7]. In 

clinical application, it is the greatest challenge to be 

found potential biomarkers to predict the efficacy of 

ICIs treatment and find the appropriate population. 

Therefore, it is extremely important to estimate 

biomarkers to identify advanced NSCLC patients who 

may respond to ICIs. 

 

At present, there are some biomarkers related to ICIs that 

have been approved by many clinical trials, including 

PD-L1 expression, TMB, and MSI-H [8, 9]. Most clinical 

www.aging-us.com AGING 2023, Vol. 15, No. 16 

Research Paper 

PTPRD mutation is a prognostic biomarker for sensitivity to ICIs 
treatment in advanced non-small cell lung cancer 
 

Zhixuan Ren1,*, Li Wang2,*, Chaohui Leng3 
 
1Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai 200433, P.R. China 
2Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University 
School of Medicine, Shanghai 200433, P.R. China 
3Department of Oncology, Jiujiang University Affiliated Hospital, Jiujiang 332000, P.R. China 
*Equal contribution 
 
Correspondence to: Chaohui Leng; email: huposetang@i.smu.edu.cn 
Keywords: NSCLC, PTPRD, immune checkpoint inhibitors, nomogram, TCGA 
Received: May 2, 2023 Accepted: July 6, 2023  Published: August 18, 2023 

 
Copyright: © 2023 Ren et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Background: Immune checkpoint inhibitors (ICIs) have become the standard treatment for advanced non-small 
cell lung cancer (NSCLC). ICIs can provide durable responses and prolong survival for some patients. With the 
increasing routine of next-generation sequencing (NGS) in clinical practice, it is essential to integrate prognostic 
factors to establish novel nomograms to improve clinical prediction ability in NSCLC with ICIs treatment. 
Methods: Clinical information, response data, and genome data of advanced NSCLC treated ICIs were obtained 
from cBioPortal. The top 20 gene alterations in durable clinical benefit (DCB) were compared with those genes 
in no durable benefit (NDB). Survival analyses were performed using the Kaplan-Meier plot method and 
selected clinical variables to develop a novel nomogram. 
Results: The mutation of PTPRD was significantly related to progression free survival (PFS) and overall survival 
(OS) in advanced NSCLC with ICIs treatment (PFS: p = 0.0441, OS: p = 0.0086). The PTPRD mutation was closely 
related to tumor mutational burden (TMB) and tumor-infiltrating immune cells (TIICs). Two novel nomograms 
were built to predict the PFS and OS of advanced NSCLC patients with ICIs treatment.  
Conclusions: Our study suggested that PTPRD mutations could serve as a predictive biomarker for the 
sensitivity to ICIs treatment and PFS and OS in advanced NSCLC with ICIs. Our systematic nomograms showed 
great potential value in clinical application to predict the PFS and OS for advanced NSCLC patients with ICIs. 
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trials have shown increased response rates and prognosis 

in NSCLC with higher PD-L1 expression, but enrichment 

of responses is incomplete [9, 10]. Only PD-L1 

expression is insufficient to meet the accuracy 

requirements of clinical application in NSCLC. 

Moreover, there is still a lack of standardization and 

consistency in PD-L1 detection methods. Nowadays, 

TMB has been regarded as an independent predictive 

biomarker of response to ICIs in many cancers, including 

NSCLC [11–13]. For most cancers, high TMB is related 

to improved survival in patients with ICIs treatment, but 

there has not been an internationally accepted definition 

of high TMB at present [14]. Moreover, several potential 

biomarkers have been reported in numerous studies, 

including tumor-infiltrating lymphocytes, gut microbiota, 

tumor driver gene mutation, and so on [15, 16]. Besides 

that, some clinical indicators of advanced NSCLC 

patients can also be used to predict the prognosis of 

immunotherapy. ICIs have been significantly less 

successful in never-smokers, including EGFR-mutated, 

ALK-rearranged, and other rarer oncogenic drivers of 

NSCLC [17, 18]. With the increasing routine of NGS in 

clinical practice, it is essential to integrate various clinical 

indicators and genome data to develop a prognostic 

nomogram for predicting the clinical outcomes (including 

PFS and OS) in patients receiving ICIs. 

 

In this study, genomic and clinical data of advanced 

NSCLC treated with ICIs were downloaded from 

cBioPortal [12, 13, 19, 20]. Subsequently, we compared 

the top 20 gene alterations between the DCB and NDB 

groups. The correlation between the gene mutation and 

TIICs and TMB was investigated by TCGA cohort. 

Finally, two novel nomograms based on the 

clinicopathological features and mutational data were 

built to predict the PFS and OS in advanced NSCLC 

with ICIs. 

 

MATERIALS AND METHODS 
 

Data download  

 

Three ICIs cohorts of advanced NSCLC with 

immunotherapy were obtained from cBioPortal. The first 

cohort (MSK, J Clin Oncol 2018) consisted of targeted 

NGS of 240 advanced NSCLC with anti-PD-(L)1 

monotherapy or in combination with anti–CTLA-4 [19]. 

The second cohort (MSK, Science 2015) collected 

genomic and survival data of 16 advanced NSCLC with 

anti-PD-1 monotherapy [12]. The third cohort (MSKCC, 

Nat Genet 2019) consisted of 350 advanced NSCLC 

patients with anti-PD-(L)1 as monotherapy or in 

combination [13]. The efficacy of immunotherapy was 

assessed by RECIST version 1.1. Moreover, DCB was 

defined as CR/PR/SD that lasted > 6 months, and NDB 

was defined as PD or SD that lasted ≤ 6 months [21]. 

PFS was defined as the time from the initiation of 

immunotherapy to disease progression or death. OS was 

defined as the time from the initiation of immunotherapy 

to date of death or last follow-up. PD-L1 negative, weak, 

and strong were defined as the PD-L1 expression < 0, 50 

> PD-L1 expression ≥ 1, and PD-L1 expression ≥ 50, 

respectively. The first and second ICIs cohorts contained 

PFS of advanced NSCLC, and the third cohort contained 

OS data. All clinical studies reported the assessment of 

TMB. Besides that, we conducted a comprehensive 

analysis of gene mutations and survival data of LUAD 

and LUSC cohorts from the TCGA database. cBioPortal 

data were shown in Supplementary Table 1. 

 

Construction of nomogram 

 

Survival analyses were conducted using the Kaplan-Meier 

plot method and selected clinical variables to develop a 

novel nomogram. Based on the patient’s clinical data and 

other information, nomograms can predict the likelihood 

of an event, including PFS, OS, and recurrence. In this 

work, the construction of the nomogram was based on 

clinicopathological information and mutational data. The 

“rms” package, which stands for Regression Modeling 

Strategies, is a collection of functions that facilitates and 

simplifies regression modeling, testing, estimation, 

validation, plotting, prediction, and presentation by 

incorporating enhanced model design attributes. The 

“rms” package serves as a valuable tool for assisting and 

streamlining the modeling process. And the R package 

rms was used to construct the nomogram. And the 

predictive accuracy and discriminative value of 

nomogram mainly included the concordance index  

(C-index), calibration curve, and ROC curve. 

 

Bioinformatic analysis 

 

GO is a common technique for studying the biological 

function of genetic data, which mainly includes 

biological process, cellular component, and molecular 

function [22]. KEGG database collects genomic, 

chemical, and systematic functional information [23]. In 

this study, GO and KEGG enrichment analyses were 

performed to top 20 mutation gene functional anno-

tations using the R package clusterProfiler. 

 

The gene mutation, gene expression, and clinical data of 

LUAD and LUSC were obtained from TCGA database. 

The TMB score was further calculated for each sample. 

According to the comparison between single gene 

mutation group and wild group, the different degree of 

whole genes was obtained, which was performed by the 

gene set enrichment analysis (GSEA). In addition, the 

relative abundance of TIICs in NSCLC was determined 

by converting the genes expression into the fraction of 

immune cells. 
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Verification of the prognostic significance of gene 

 

External validation of the prognostic significance of gene 

was performed by another ICIs cohort (MSK, Cancer 

Cell 2018). This cohort consisted of 75 NSCLC with 

anti-PD-1 combination with anti–CTLA-4 [20]. 

 

Statistical analyses 

 

In this work, GraphPad Prism 9.0 and R 4.2.2 were 

used for statistical analyses. One-way Student’s t tests 

were used to determine statistical significance. 

Survival analyses were performed using the Kaplan-

Meier plot method and compared using the log-rank 

test. And P-value< 0.05 indicating statistically 

significant. 

Availability of data and materials 

 

All data included in this study are available including 

cBioPortal of Cancer Genomics ([MSK, J Clin Oncol 

2018], [MSK, Science 2015], [MSKCC, Nat Genet 

2019], [MSK, Cancer Cell 2018]) and TCGA database. 

 

RESULTS 
 

Gene alterations associated with DCB 

 

The top 20 gene alterations in DCB group include 

TP53, KRAS, KEAP1, PTPRT, PTPRD, STK11, 

MLL3, FAT1, SMARCA4, EPHA5, EPHA3, TERT, 

NF1, MGA, ERBB4, ATRX, ARID1A, PIK3CG, 

PIK3C2G, PGR (Figure 1A). We also examined those  

 

 
 

Figure 1. Summary of genomic landscape and clinical features associated with response or non-response in NSCLC with 
immunotherapy. (A, B) OncoPrint that has top 20 gene alterations in DCB group and NDB group. (C) TMB level and PFS were higher in DCB 
group than NDB group. (D) The Kaplan-Meier plot for NSCLC PFS based on TMB. (E) The Kaplan-Meier plot for NSCLC PFS based on PD-L1 
expression. (F) The Kaplan-Meier plot for NSCLC PFS based on treatment line. (G) The Kaplan-Meier plot for NSCLC PFS based on smoking 
status. (H) The Kaplan-Meier plot for NSCLC PFS based on treatment type. (I) The Kaplan-Meier plot for NSCLC OS based on treatment type. 
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gene alterations in NDB group (Figure 1B). TMB  

(P = 0.0009) and PFS (P < 0.0001) were higher in 

DCB than NDB (Figure 1C). In addition, there are 

some clinicopathological variables were closely 

related to the PFS of ICIs including TMB (P = 0.0101, 

HR = 1.419 (1.081 – 1.862)), PD-L1 expression (P = 

0.0062, HR = 1.799 (1.139 – 2.842)), line of treatment  

(P = 0.0058, HR = 1.574 (1.171 – 2.116)), smoking 

status (P = 0.0102, HR = 1.529 (1.045 –2.239)), and 

treatment type (P = 0.0009, HR = 1.969 (1.407 – 

2.754)) (Figure 1D–1H). Moreover, treatment type  

(P value = 0.0093, HR = 1.913 (1.173 – 3.119)) was 

significantly related to the OS in advanced NSCLC 

patients with ICIs treatment (Figure 1I). And patient 

characteristics with NDB and DCB groups were shown 

in Table 1. 

 

Enrichment analysis 

 

The results of GO analysis suggested that the significant 

enrichment of the top 20 genes was mainly associated 

with cellular response to chemical stimulus, anatomical 

structure morphogenesis, cell development, and nervous 

system development (Figure 2A). In addition, three 

pathways were particularly enriched including PI3K-

Akt signaling pathway, MAPK signaling pathway, and 

Longevity regulating pathway (Figure 2B). These 

pathways are all associated with tumor development 

and progression. 

 

Identification of survival related gene 

 

Based on gene mutation and survival data, we selected 

the survival related gene from top 20 alterations in 

DCB group by the Kaplan-Meier plot method. ATRX, 

PTPRD, and PTPRT were closely related to PFS of 

NSCLC with immunotherapy in the first cohort 

(MSK, J Clin Oncol 2018) and the second cohort 

(MSK, Science 2015). Next, we analyzed the  

mutation status of ATRX, PTPRD, and PTPRT in  

the third cohort (MSKCC, Nat Genet 2019) (Figure 

3A). Mutation frequencies of ATRX, PTPRD, and 

PTPRT were 5.4%, 13.4%, and 11.4%, respectively. 

Only PTPRD mutation was significantly related to the 

PFS and OS in advanced NSCLC with immuno-

therapy (Figure 3B). There was no significant 

difference in OS between ATRX and PTPRT 

mutations (Figure 3C, 3D). In addition, there was no 

significant difference in survival between ATRX, 

PTPRD, and PTPRT mutations in TCGA cohort 

(Supplementary Figure 1A–1C). The mutation status 

of ATRX, PTPRD, and PTPRT were both closely 

associated with higher TMB values (Figure 3E–3G). 
Moreover, the ATRX, PTPRD, and PTPRT mutation 

was related to higher TMB value in TCGA 

(Supplementary Figure 1D–1F).  

Development of nomogram for the prognosis of 

immunotherapy 

 

Survival analyses were performed using the Kaplan-

Meier plot method and selected clinical variables to 

develop a novel nomogram. TMB (P value = 0.00101), 

PD-L1 expression (P value = 0.0062), line of treatment 

(P value = 0.0058), smoking status (P value = 

0.00108), treatment type (P value = 0.0009) and 

PTPRD (P value = 0.0441) were significantly related 

to the PFS in advanced NSCLC patients with ICIs 

treatment (Figures 1D–1H, 3B). Based on these 

variables, we established a systematic nomogram to 

predict 6-month, and 1-year PFS for advanced NSCLC 

with ICIs (Figure 4A). The C-index of this nomogram 

was 0.680 (95% CI 0.617 to 0.742). The same, 

treatment type (P value = 0.0093) and PTPRD (P value 

= 0.0086) were significantly related to the OS in 

advanced NSCLC patients with ICIs treatment 

(Figures 1I, 3B). The survival probabilities for NSCLC 

patients with ICIs treatment at 1-year, and 3-year OS 

were predicted using a nomogram that was constructed 

based on these variables (Figure 4B). The C-index of 

this nomogram was 0.658 (95% CI 0.555 to 0.762). 

The calibration plot demonstrated great predictive 

performance of our two nomograms (Figure 4C, 4D). 

In addition, the ROC curve also showed a good ability 

of our two nomograms to predict 6-month PFS (AUC 

= 0.76), 1-year PFS (AUC =0.88), 1-year OS (AUC = 

0.60), and 3-year OS (AUC = 0.76) of advanced 

NSCLC patients with immunotherapy (Figure 4E, 4F). 

Based on our nomograms, clinical physicians could 

obtain the total point based on all variable points, and 

then evaluate PFS and OS of each advanced NSCLC 

with immunotherapy. 

 

The role of PTPRD mutation in TIICs and GSEA 

 

The GSEA enrichment analysis performed with TCGA-

LUAD cohort showed that riboflavin metabolism, RNA 

degradation, cell cycle, mismatch repair, and homologous 

recombination were significantly enriched in PTPRD 

mutation samples (Figure 5A). In TCGA-LUSC cohort, 

autoimmune thyroid disease, glycosphingolipid 

biosynthesis ganglio series, other glycan degradation, bile 

acid biosynthesis, and regulation of autophagy were 

significantly abundant in PTPRD mutation samples 

(Figure 5B).  

 

We also evaluated the relationship between PTPRD 

mutation and TIICs in NSCLC. In TCGA-LUAD 

cohort, activated memory CD4 T cells, and M0 

macrophages were more enriched in PTPRD mutant 
sample (Figure 5C). As for LUSC group, eosinophils 

were more abundant in PTPRD mutation sample 

(Figure 5D). The mutation of PTPRD may change the 
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Table 1. NSCLC patient characteristics of cBioPortal with ICIs in 
DCB and NDB group. 

Clinical characteristics NDB group DCB group 

Total cases 167 76 

Gender 

Female 82 (49.1%) 42 (55.2%) 

Male 85 (50.9%) 34 (44.7%) 

Age 

<65 77 (46.1%) 44 (57.9%) 

>=65 90 (53.9%) 32 (42.1%) 

Smoking 

Ever 131 (78.4%) 67 (88.2%) 

Never 36 (21.6%) 9 (11.8%) 

Treatment type 

Monotherapy 151 (90.4%) 53 (69.7%) 

Combination 16 (9.6%) 16 (21.1%) 

Line of treatment 

First-line 25 (15.0%) 27 (35.5%) 

Non-first line 142 (85.0%) 49 (64.5%) 

PD-L1 expression 

Negative 35 (20.9%) 9 (11.8%) 

Weak 19 (11.4%) 9 (11.8%) 

Strong 8 (4.8%) 13 (17.1%) 

Unknown 105 (62.9%) 45 (59.3%) 

TMB 

High 74 (44.3%) 49 (64.5%) 

Low 93 (55.7%) 27 (35.5%) 

 

tumor microenvironment (TME), leading to the change 

of sensitivity to immunotherapy in NSCLC. 

 

Verification of the prognostic value of PTPRD 

mutation in immunotherapy 

 

We further explored the prognostic value of PTPRD 

mutation in another ICIs cohort (MSK, Cancer  

Cell 2018) as an independent external validation. 

Similarly, mutation frequency of PTPRD was 12% 

(Figure 6A). The same, PTPRD mutation was 

significantly related to the prognosis of LUAD with ICIs 

(P = 0.0196, HR = 2.675 (1.377 – 5.196)) (Figure 6B). 

PTPRD mutation was closely related to higher TMB 

value in NSCLC with ICIs (Figure 6C). Mutation 

frequency of PTPRD was 18.4% in DCB group (Figure 
1A). However, mutation frequency of PTPRD was only 

9.8% in NDB group (Figure 1B). According to the 

research above, we reasonably deduced that the mutation 

PTPRD can be used as a potential biomarker for the 

sensitivity to ICIs and prognosis of advanced NSCLC. 

 

DISCUSSION 
 

At present, PD-L1 expression or TMB alone did not 

demonstrate a satisfactory ability to select advanced 

NSCLC patients who are likely to respond to ICIs. Apart 

from the expression of PD-L1 and TMB, there are some 

specific gene mutations including KRAS/TP53, STK11, 

EGFR, EPHA, and NOTCH, that are related to efficacy 

of ICIs by regulating the tumor microenvironment and 

served as potential biomarkers to predict the clinical 

benefits of immunotherapy [24–27]. Sun et al. found that 

ARID1A mutation could serve as predictive biomarkers 

for the prognosis of ICIs [28]. Besides that, some studies 

show ERBB4 mutation and FGFR4 mutation could serve 

as a potential biomarker for the prognosis of NSCLC 

with ICIs treatment [29, 30]. With the increasing routine 
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of NGS in clinical practice, it is essential to explore 

predictors factors of response to immunotherapy. At the 

same time, it is important to integrate these prognostic 

factors to establish a novel systematic nomogram to 

improve clinical prediction ability in NSCLC with ICIs 

treatment. 

 

PTPRD is a member of protein tyrosine phosphatases, 

which negatively regulate tyrosine phosphorylation 

[31]. It has been reported that PTPRD has a tumor 

suppressor function, and mutation of PTPRD may 

promote tumor growth [32]. A high frequency of gene 

deletions of PTPRD occurs in a variety of cancers [33, 

34]. And other mechanisms that may contribute to 

PTPRD inactivation include point mutations and 

promoter region hypermethylation [35, 36]. A study 

found that PTPRD inactivation promotes tumor 

metastasis by induced CXCL8 in gastric cancer [37]. 

Recently, a study analyzed the data of 1745 NSCLC and 

elucidated the landscape of interaction effects among 

common co-mutations on the efficacy of ICIs [38]. 

Particularly, KRAS mutation remarkably interacted 

with its co-occurring mutations in TP53, STK11, 

PTPRD, RBM10, and ATM in non-squamous NSCLC. 

In addition, Shang et al. found that PTPRD and PTPRT 

mutations may be a biomarker for predicting 

immunotherapy in pan-cancer, but the role of PTPRD 

mutation in NSCLC has not been analyzed separately 

[39]. Li et al. suggested that PTPRD/PTPRT mutation 

was significantly associated with better progression-free 

survival (PFS) in three independent cohorts. The median 

PFS for PTPRD/PTPRT mutant-type vs. wild-type 

 

 
 

Figure 2. Enrichment analysis and PPI network construction. (A) GO analysis. (B) KEGG analysis. 
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NSCLC patients were not reached vs. 6.3 months 

(Rizvi2015, HR = 0.16; 95% CI, 0.02-1.17; P=0.03), 

24.0 vs. 5.4 months (Hellmann2018, HR, 0.49; 95% CI, 

0.26-0.94; P=0.03), 5.6 vs. 3.0 months (Rizvi2018, HR 

= 0.64; 95% CI, 0.44-0.92; P=0.01) and 6.8 vs. 3.5 

months (Pooled cohort, HR, 0.54; 95% CI, 0.39-0.73; 

P<0.0001) respectively [40]. Sun et al. demonstrated 

that tissue or circulating tumor DNA PTPRD mutation 

is a prognostic biomarker predicting prognosis of  

anti-PD-(L)1 monotherapy in non-squamous NSCLC 

 

 

 

Figure 3. Clinical and molecular features of ATRX, PTPRD, and PTPRT in advanced NSCLC with ICIs treatment. (A) The 

prevalence of ATRX, PTPRD, and PTPRT mutations in the third cohort (MSKCC, Nat Genet 2019). (B) PTPRD was related to the PFS and OS.  
(C) PTPRT was related to the PFS. (D) ATRX was related to the PFS. (E–G) ATRX, PTPRD, and PTPRT mutations were closely related to higher 
TMB value. 
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patients [41]. However, the above study failed to 

predict OS in validation cohort, and squamous NSCLC 

were not included in the study. There is still a lack of 

sufficient literature to support the clinical prognostic 

significance of ICIs treatment in NSCLC patients who 

harbor PTPRD mutations. The underlying mechanisms 

of PTPRD mutation that regulate immune-related 

pathways in NSCLC remain unknown. According to 

 

 

 

 

Figure 4. Development of nomograms for the PFS and OS of NSCLC with ICIs. (A) Systematic nomogram to predict the 6-month and 
1-year PFS. (B) Systematic nomogram to predict the 1-year and 3-year OS. (C) The calibration plot for the chance of surviving 6-month and 1-
year PFS. (D) The calibration plot for the chance of surviving 1-year and 3-year OS. (E) The ROC curve for the chance of 6-month and 1-year 
PFS. (F) The ROC curve for the chance of 6-month and 1-year PFS.  
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these studies, we further explored the significance of 

PTPRD mutations in predicting the clinical outcome 

(PFS and OS) of advanced NSCLC with immunotherapy. 

 

In this study, mutation frequencies of PTPRD in DCB 

group, NDB group, the third cohort (MSKCC, Nat 

Genet 2019), and the last cohort (MSK, Cancer Cell 

2018) were 18.4%, 9.8%, 13.4%, and 12%, 

respectively. The Kaplan–Meier survival curves showed 

the mutation of PTPRD was associated with the PFS (P 

= 0.0441, HR = 1.548 (1.071 – 2.238)) and OS (P = 

0.0086, HR = 1.889 (1.282 – 2.782)) in NSCLC with 

ICIs treatment. The prognostic value of PTPRD 

mutation was validated in the last ICIs cohort as an 

independent external validation (P = 0.0196, HR = 

2.675 (1.377 – 5.196)). Besides, the PTPRD mutation 

was closely associated with higher TMB values in all 

ICIs cohort and TCGA cohort (P < 0.0001). 

Therefore, we reasonably deduced that the mutation 

PTPRD can be used as a potential biomarker for the 

sensitivity to ICIs treatment and prognosis of 

advanced NSCLC. 

 

 
 

Figure 5. The role of PTPRD mutation in GSEA and TIICs. (A) GSEA analysis of PTPRD mutation in LUAD. (B) GSEA analysis of PTPRD 

mutation in LUSC. (C) The relationship between the mutation status of PTPRD and immune cells in LUAD. (D) The relationship between the 
mutation status of PTPRD and immune cells in LUSC. 
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To explain why PTPRD mutations were associated with 

favorable ICIs prognosis, we evaluated the role of 

PTPRD mutation in GSEA and immune infiltration.  

The GSEA enrichment analysis showed that PTPRD 

mutation samples were mainly associated with riboflavin 

metabolism, RNA degradation, cell cycle, and mismatch 

repair in LUAD, and glycosphingolipid biosynthesis 

ganglio series, other glycan degradation, bile acid 

biosynthesis, and regulation of autophagy in LUSC, 

respectively. Besides that, we found that activated 

memory CD4 T cells, M0 macrophages, and eosinophils 

were more enriched in PTPRD mutant sample. Some 

studies revealed that eosinophils were closely associated 

with clinical outcomes in patients with ICIs treatment 

[42–44]. The mutation of PTPRD may influence CD4+ T 

cell infiltration via its phosphatase activity, and promote 

the occurrence of “hot” TME with enhanced anti-tumor 

immunity in advanced NSCLC patients. 

Moreover, NSCLC patient’s clinical variables and 

genomic data that we included were screened by the 

Kaplan-Meier plot method. TMB, PD-L1 expression, line 

of treatment, smoking status, treatment type, and PTPRD 

mutant were significantly related to the PFS in advanced 

NSCLC patients with ICIs treatment. Besides that, 

treatment type and PTPRD mutant were significantly 

related to the OS in advanced NSCLC patients with ICIs 

treatment. According to the above results, we constructed 

two novel systematic nomograms that are based on the 

patient’s clinicopathological parameters and genome data 

to predict the prognosis for advanced NSCLC with ICIs. 

Based on our novel nomograms, clinicians can obtain 

the total point based on all variable points for each 

patient and can then predict the 6-month PFS, 1-year 

PFS, 1-year OS, and 3-year OS of advanced NSCLC 

patients with immunotherapy. Our novel nomograms 

can be used to assess the PFS and OS of NSCLC 

 

 
 

Figure 6. Verification of the prognostic value of PTPRD in immunotherapy. (A) Genomic landscape and clinical feature of PTPRD 

mutations in another ICIs cohort (MSK, Cancer Cell 2018). (B) The mutation of PTPRD was closely related to prognosis of LUAD with ICIs 
treatment. (C) PTPRD mutation was closely related to higher TMB in NSCLC. 
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patients ICIs and formulate the appropriate type of 

treatment and follow-up time before immunotherapy. 

 

The existing literature suggested that the mechanism of 

PTPRD mutation in NSCLC with ICIs still needs to be 

further explored. This study is the first to use the large 

database to establish two systematic nomograms for 

predicting the PFS and OS of advanced NSCLC patients 

with ICIs treatment, which undoubtedly provides a new 

clinical strategy for advanced NSCLC patients. This 

work is the first to illustrate the role of PTPRD mutations 

as a potential biomarker for the sensitivity to ICIs 

treatment and prognosis of advanced NSCLC. PTPRD 

can be used as a potential biomarker in regulating the 

TME and associating with the PFS and OS in advanced 

NSCLC with immunotherapy. Nevertheless, there 

remains some limitations in our work. First, this work 

employed four ICIs cohorts from the cBioPortal database. 

Due to the utilization of different platforms and detection 

depths, four cohorts may exhibit potential heterogeneity. 

Second, clinical information, response data, and genome 

data of NSCLC with ICIs were downloaded from four 

public datasets, some specific patients’ information and 

clinicopathological variables were unclear or not 

available. Third, four ICIs cohorts used different 

treatment types, such as immunotherapy monotherapy  

or combination with anti-CTLA-4, resulting in a  

certain degree of research heterogeneity. In addition,  

the mechanism of PTPRD affecting TME and 

immunotherapy in NSCLC needs further experiments to 

explore. 

 

CONCLUSIONS 
 

To conclude, our study demonstrated that PTPRD 

mutation could serve as a prognostic biomarker 

predicting the PFS and OS in advanced NSCLC treated 

ICIs. PTPRD mutation is strongly associated with high 

TMB levels and immune infiltration and enhanced anti-

tumor microenvironment. Our systematic nomograms 

showed great potential value in clinical application to 

predict the PFS and OS in advanced NSCLC with 

immunotherapy. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. Clinical feature of ATRX, PTPRD, and PTPRT mutations in TCGA cohort. (A–C) There was no significant 
difference of survival between ATRX, PTPRD, and PTPRT mutations. (D–F) ATRX, PTPRD, and PTPRT mutations were both closely associated 
with higher TMB value. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Patient characteristics of NSCLC with ICIs in DCB and NDB group. 

 


