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INTRODUCTION 
 

By the year 2025, pancreatic cancer (PC) is estimated to 

become the third most significant contributor to cancer-

related deaths in Europe, responsible for 4.7% of all 

cancer-related fatalities in humans [1]. Pancreatic ductal 

adenocarcinoma (PDAC) stands as the prevailing form 

of pancreatic cancer, carrying a heightened risk for 

www.aging-us.com AGING 2023, Vol. 15, No. 18 

Research Paper 

Integrated single-cell and bulk RNA sequencing revealed the 
molecular characteristics and prognostic roles of neutrophils  
in pancreatic cancer 
 

Biao Zhang1,*, Jiaao Sun2,*, Hewen Guan3,*, Hui Guo1, Bingqian Huang4,5, Xu Chen1, Feng Chen2, 
Qihang Yuan1 
 
1Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China 
2Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China 
3Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China 
4Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China 
5Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China 
*Equal contribution 
 
Correspondence to: Qihang Yuan, Feng Chen, Xu Chen; email: qihangdy@163.com, https://orcid.org/0000-0001-7516-7620; 
dmuchenfeng@163.com, https://orcid.org/0000-0002-1800-7775; 1169777928@qq.com, https://orcid.org/0000-0001-9681-1630 
Keywords: pancreatic cancer, neutrophils, tumor microenvironment, single-cell RNA sequencing, prognostic model 
Received: March 1, 2023   Accepted: August 21, 2023 Published: September 19, 2023 
 
Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

Pancreatic cancer, one of the most prevalent tumors of the digestive system, has a dismal prognosis. Cancer of 
the pancreas is distinguished by an inflammatory tumor microenvironment rich in fibroblasts and different 
immune cells. Neutrophils are important immune cells that infiltrate the microenvironment of pancreatic 
cancer tumors. The purpose of this work was to examine the complex mechanism by which neutrophils 
influence the carcinogenesis and development of pancreatic cancer and to construct a survival prediction model 
based on neutrophil marker genes. We incorporated the GSE111672 dataset, comprising RNA expression data 
from 27,000 cells obtained from 3 patients with PC, and conducted single-cell data analysis. Thorough 
investigation of pancreatic cancer single-cell RNA sequencing data found 350 neutrophil marker genes. Using 
The Cancer Genome Atlas (TCGA), GSE28735, GSE62452, GSE57495, and GSE85916 datasets to gather pancreatic 
cancer tissue transcriptome data, and consistent clustering was used to identify two categories for analyzing 
the influence of neutrophils on pancreatic cancer. Using the Random Forest algorithm and Cox regression 
analysis, a survival prediction model for pancreatic cancer was developed, the model showed independent 
performance for survival prognosis, clinic pathological features, immune infiltration, and drug sensitivity. 
Multivariate Cox analysis findings revealed that the risk scores derived from predictive models is independent 
prognostic markers for pancreatic patients. In conclusion, based on neutrophil marker genes, this research 
created a molecular typing and prognostic grading system for pancreatic cancer, this system was very accurate 
in predicting the prognosis, tumor immune microenvironment status, and pharmacological treatment 
responsiveness of pancreatic cancer patients. 
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individuals afflicted with diabetes or chronic 

pancreatitis [2, 3]. PDAC is a formidable malignancy 

with a significant mortality rate, with a mere 18% of 

patients surviving at the 1-year mark across all stages of 

the disease. It is difficult to detect the early subclinical 

symptoms of PDAC, such as lack of appetite, stomach 

discomfort, and back pain. Hence, the majority of 

patients with PDAC are identified in the intermediate 

and advanced stages with distant metastases [4–6]. In 

addition, PDAC is one of the cancer forms with the 

highest immunotherapy resistance [7]. The majority  

of individuals with PDAC do not react well to 

immunotherapy alone, immune checkpoint suppression 

treatment is unsuccessful for these individuals [8]. 

Although surgery is currently the only curative therapy 

for PC, even patients who undergo surgery have a high 

risk of cancer recurrence and may require additional 

treatment [9]. 

 

To improve the prognosis of PC patients, it is necessary 

to find new biomarkers for clinical diagnosis and 

prediction of therapeutic success [10]. PC recurrence 

and metastasis are significantly influenced by the 

immunological microenvironment. Recent investiga-

tions on the tumor microenvironment (TME) have 

underlined the significance of immune cell infiltration 

in PC development, metastasis, and immune evasion 

[11–14]. Mlecnik B. et al. earlier constructed an 

immunoscore-based cancer classification system for 

colon cancer and demonstrated that immune cell 

invasion has a greater predictive value than traditional 

tumor invasion (TNM stage) [15]. The implementation 

of immunological scoring systems will thus bring 

unique insights into the clinical diagnosis of PC and the 

prediction of therapeutic success. 

 

Neutrophils, which are produced from hematopoietic 

stem cells in bone marrow, are plentiful in the 

bloodstream and a vital component of the innate 

immune system. In addition, neutrophils react 

efficiently to infection and inflammatory damage. 

Neutrophils represent a significant fraction of immune 

cells that invade various forms of cancer, including 

colorectal cancer, breast cancer, melanoma, and renal 

cell carcinoma [16–18]. Several tumor-secreting agents 

may reportedly attract neutrophils into the TME. 

CXCL1, CXCL2, CXCL5, and CXCL8 interact to the 

neutrophil surface receptors CXCR1 and CXCR2 to 

induce chemotaxis [19–21]. In addition, CD4+ T cells 

in the TME and the cytokine IL17 released by T cells 

contribute to the recruitment of neutrophils [22]. 

Neutrophils recruited into the TME interact with other 

TME components, which may restrict or promote tumor 
development. Consequently, neutrophils may be 

separated into two polarization states: N1 neutrophils, 

which limit tumor growth, and N2 neutrophils, which 

promote tumor development. The IFN- signaling pathway 

stimulates the production of IL12, ICAM1, and tumor 

necrosis factor (TNF), all of which are deadly to tumor 

cells and suppress tumor development. Transforming 

growth factor (TGF) promotes carcinogenesis by 

secreting arginase, MMP9, VEGF, and other chemokines 

to stimulate tumor angiogenesis [23–27]. 

 

PC’s aggressive traits are linked to its high fibroblast 

content and inflammatory TME including numerous 

immune cells, including neutrophils [28]. Experiments 

with animal models revealed that neutrophils interact 

with pancreatic stellate cells, tumor-associated 

macrophages, and extracellular matrix in the TME to 

significantly accelerate tumor growth [29–31]. Yet, 

neither the underlying processes nor the therapeutic 

uses of neutrophils have been explained. In order to 

offer a scientific foundation for clinical decision-

making and risk management in patients, the purpose of 

this work was to examine the molecular mechanism of 

neutrophils in PC development and to identify 

neutrophil-related genes (NRGs) to design survival 

predictive models. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

Single-cell sequencing data of PC were acquired from 

the Gene Expression Omnibus (GEO) database 

(https://portal.gdc.cancer.gov/) (registration number: 

GSE111672) [32]. The transcriptome data of PC tissues 

(data from 178 pancreatic tumor tissues and 4 

paracancerous tissues) as well as associated clinical data 

(data from 185 PC samples) were obtained from The 

Cancer Genome Atlas (TCGA) database (https://portal. 

gdc.cancer.gov/) [33]. The GSE28735 [34, 35] (data 

from 45 PC tissues), GSE62452 [36] (data from 69 PC 

tissues), GSE57495 [37] (data from 63 PC tissues), and 

GSE85916 datasets (data from 80 PC tissues) were 

obtained from the GEO database. The “SVA” R 

package was used to remove batch effects between 

different datasets [38, 39]. Data in which the survival 

time of patients was less than 30 days were excluded 

and not included in the survival analysis. 

 

Single-cell data analysis and identification of NRGs 

 

For quality control, analysis, and exploration of single-

cell RNA expression data, the R software packages 

“Seurat” and “SingleR” were employed [40, 41]. To 

obtain high-quality data on single-cell RNA expression, 

the following filtering criteria were established: (1) 

exclusion of genes smaller than those detected in 3 

cells, (2) exclusion of cells with fewer than 50 detected 

genes, and (3) exclusion of cells in which mitochondrial 

https://portal.gdc.cancer.gov/
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gene expression accounts for more than 5% of total 

gene expression. Single-cell RNA expression data were 

normalized using the “Normalize Data” program. The 

“Find Variable Feature” tool was used to determine the 

top 1500 genes whose expression changed significantly. 

The “Run PCA” tool was used to conduct principal 

component analysis (PCA) on the top 1500 genes, and 

the P-value of each principal component was obtained. 

The top 15 main components were chosen and subjected 

to t-distributed stochastic neighbor embedding (t-SNE) 

cell clustering analysis. To identify marker genes, 

differentially expressed genes across distinct cell 

clusters were examined using the following criteria: 

adjusted P-value < 0.05 and |log2 (fold-change)| > 1. 

Annotation of cell clusters was conducted using 

reference data from Human Primary Cell Atlas for 

reference-based annotation [42]. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analysis 

 

The R packages “org.Hs.eg.db”, “clusterProfiler”, 

“enrichplot”, and “ggplot2” were used to conduct GO 

and KEGG function and pathway enrichment studies of 

differentially expressed NRGs with adjusted P-value 

< 0.05 as the filter criterion [43]. Biological processes, 

cellular components, and molecular functions were the 

GO words. 

 

Consensus cluster analysis of NRGs 

 

Using the “ConsensusClusterPlus” R software, data 

from the TCGA, GSE28735, GSE62452, GSE57495, 

and GSE85916 datasets were pooled to cluster all 

patients based on the expression of NRGs [44]. Based 

on the consensus matrix and cumulative distribution 

function (CDF) curves, the optimal number of clusters 

was determined [45]. Using the Kaplan-Meier technique 

and the log-rank test, the survival time between various 

groups was compared. Typing consistency was shown 

using a PCA with a strong capacity for dimension 

reduction [46]. 

 

Differential expression analysis and typing analysis 

 

Using the criterion |log2 (FC)| > 1 and adjusted P-value 

< 0.05, the “limma” R program was used to find 

differentially expressed genes across NRGcluster [47]. 

Differentially expressed genes were analyzed for GO 

and KEGG enrichment using the “org.Hs.eg.db”, 

“clusterProfiler”, “enrichplot”, and “ggplot2” R 

packages [43]. To assess further the influence of 

differently expressed genes on PC prognosis, the 
“ConsensusClusterPlus” R program was used to cluster 

all patients according to differentially expressed genes 

[44]. Using the Kaplan-Meier technique and the log-

rank test, the survival time between various kinds was 

compared [48]. 

 

Construction and validation of the prognostic risk 

score model 

 

To further investigate the predictive usefulness of 

NRGs in PC and quantify the NRG score in each 

patient, univariate Cox regression analysis was used to 

screen NRGs linked with patient outcomes. Random 

survival forests-variable hunting (RSFVH) was used to 

screen and filter genes [49, 50]. A prognostic risk score 

model for PC was developed using a multivariable Cox 

regression analysis. The P-value of the findings of the 

survival analysis was utilized to test for the optimal 

gene combination or final prognostic risk score model. 

Data from TCGA datasets used as training sets, whilst 

GEO datasets GSE28735, GSE62454, GSE57495 and 

GSE85916 served as validation sets. Based on gene 

expression profiles and coefficients of Cox analysis, the 

risk score for each sample may be computed. Each 

sample was classified as either high-risk or low-risk 

based on a comparison to the training set’s median risk 

score. 

 

Correlation and independent prognostic analysis of 

clinical pathological features 

 

Clinical data from the TCGA datasets and risk scores 

were combined and classified according to their clinical 

pathological characteristics. The Wilcoxon signed-rank 

test was used to assess risk score differences across 

groups. In addition, univariate and multivariate Cox 

regression model studies were conducted to determine if 

risk scores were independent of the clinic pathological 

characteristics of PC as predictive risk factors. 

 

Gene set variation analysis (GSVA) and gene set 

expression analysis (GSEA) 

 

GSVA is a non-parametric, unsupervised technique that 

calculates the enrichment percentage of a certain gene 

set in each sample without requiring previous 

categorization of data [51]. In expression datasets, 

GSVA is often used to quantify changes in metabolic 

pathway and bioprocess activity. GSEA is a computer 

tool that determines if a certain gene set differs 

substantially between two biological states. In 

expression datasets, GSEA is often used to evaluate 

changes in pathway and bioprocess activity [52]. GSVA 

was done using the “GSVA” R package to compare the 

biological processes and metabolic pathways across 

patients with various subtypes and different risk 
categories [51, 53]. The “limma”, “org.Hs.eg.db”, 

“clusterProfiler”, and “enrichplot” R packages were 

used to run GSEA [43, 47, 52]. 
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Immunoassays 

 

To investigate the variations in immune cell infiltration 

across patients belonging to distinct subtypes or risk 

groups, the “GSVA” and “GSEABase” R packages 

were used to determine the immune cell invasion score 

for each sample using ssGSEA [53, 54]. Based on the 

results of ssGSEA analysis, the level of immune cell 

invasion was compared between patients with PC 

belonging to different subtypes or risk groups. 

Additionally, the proportions of 22 immune cell 

subtypes, including seven T cell subtypes, naïve and 

memory B cells, plasma cells, natural killer (NK) cells, 

and bone marrow subsets, were calculated for each 

sample using the CIBERSORT algorithm [55]. P-value 

< 0.05 suggested that CIBERSORT accurately 

estimated the fraction of 22 immune cell isotypes. 

These samples were utilized to analyze the link between 

risk ratings and immune cell infiltration in further 

detail. 

 

Drug sensitivity analysis 

 

“OncoPredict” is an R package for predicting drug 

response in vivo or in patients with cancer from cell line 

screening data [56]. To examine the responsiveness  

of PC patients to pharmacological treatment, the 

“OncoPredict” R program was used to evaluate 

variations in drug sensitivity across patients with 

distinct subtypes or risk groups [56]. 

 

Gene expression analysis 

 

The Gene Expression Profiling Interactive Analysis 

(GEPIA) database is an online resource for analyzing 

genetic differences, relationships, and survival using 

TCGA and Genotype-Tissue Expression (GTEx) data 

[57]. At the RNA level, the differential expression of 

the model genes LDHA, IL1R2, and TM4SF1 between 

tumor and no tumor tissues was assessed. The Human 

Protein Atlas (HPA) database (https://www.proteinatlas. 

org/), a public database designed to create maps of 

protein expression patterns in healthy cells, tissues, and 

cancer [58–60], was used to analyze the differential 

expression of LDHA, IL1R2, and TM4SF1 between 

tumor and non-tumor tissues at the protein levels. 

 

Data analysis 

 

Using R software, data analysis and visualization were 

conducted (Ver 4.1.2). For regularly distributed 

parameters, the t-test was used to compare the means of 

two groups. We compared the means of two groups for 
non-normally distributed parameters using Wilcoxon 

rank sum tests. Using either the Spearman correlation 

analysis or the Pearson test, correlation was assessed. 

Using the Kaplan-Meier technique, the survival curve 

of several groups was produced. Using the log-rank 

test, the survival rates of several groups were 

compared. At P-value < 0.05, differences were deemed 

significant. 

 

Availability of data and materials 

 

The datasets analyzed in this work may be found in the 

Supplementary Materials or contact with the first author. 

 

RESULTS 
 

Identification of neutrophil marker gene expression 

profiles 

 

The GSE111672 dataset was obtained, which contains 

the RNA expression data of 27,000 cells from three 

individuals with PC. The range of genes discovered in 

each sample, the sequencing depth, and the proportion 

of mitochondrial content are shown in Figure 1A–1C, 

respectively. Single cells with a total number of 

identified genes more than 50, mitochondrial gene 

expression of less than 5%, and genes found in less 

than three cells were chosen (Figure 1A–1C). As seen 

in Figure 1D, 1E, sequencing depth was favorably 

connected with gene number and mitochondrial 

content, with correlation values of 0.92 and 0.2, 

respectively. After this, ten of the original 1500 highly 

variable genes between cells were labeled (Figure 1F). 

PCA was used to illustrate the top 15 principal 

components with P-value < 0.05 for the leading 1500 

genes (Figure 1G, 1H). On the basis of the PCA 

findings, t-SNE analysis was done to further categorize 

all cells into 15 groups (Figure 1I). Each cell cluster 

was annotated using Human Primary Cell Atlas 

reference data. In clusters 2 and 5, neutrophils were 

found (Figure 1J). 350 NRGs were identified in total 

(Supplementary Table 1). GO functional enrichment 

and KEGG pathway enrichment studies were then used 

to study the biological function of these marker genes. 

Neutrophil marker genes were mostly engaged in 

biological processes such as leukocyte mobility, 

leukocyte chemotaxis, ribosomes, and plaque 

formation, as shown by GO functional enrichment 

analysis (Figure 2A). KEGG pathway enrichment 

analysis showed that these genes were largely 

associated with COVID-19, ribosomes, leukocyte trans 

endothelial migration, IL17 signaling pathway, TNF 

signaling route, and apoptosis (Figure 2B). 

 

Classification and characteristics based on the 

expression characteristics of neutrophil marker genes 

 

Using PCA, the TCGA, GSE28735, GSE62452, 

GSE57495 and GSE85916 datasets were combined to 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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correct the data. After adjustment, the batch effect was 

effectively eliminated (Figure 3A, 3B). According to 

the expression of NRGs, the samples from GSE28735, 

GSE57495, GSE62452, GSE8516 and TCGA data sets 

were identified as two immune subtypes, NRGcluster A 

and NRGcluster B, which respectively represent high 

and low expression of NRGs. The k value should be 

adjusted to 2 for best performance, as evidenced by the 

area under the CDF curve and its relative change 

(Figure 3C–3E). In Figure 3C, when the slope of the 

 

 
 

Figure 1. Single-cell analysis and screening of neutrophils-related genes (NRGs). (A) A visualization showing the number of genes 

in each cell as a violin. (B) A violin plot showing the total of each cell’s gene expression levels. (C) Violin plot showing each cell’s proportion 
of mitochondrial genes. (D) Scatterplot of the total gene expression levels and the number of genes present in each cell. (E) Scatterplot 
comparing the total gene expression levels in each cell to the proportion of mitochondrial genes. (F) Genes that vary significantly between 
cells. Red dots denote 1500 genes whose expression levels have changed significantly. The top ten most variable genes are labeled in the 
graph. (G) The cell distribution in the PC1 and PC2 dimensions. (H) Principal component analysis identified the top 15 principal components 
with a P-value < 0.05. (I) The study of t-Distributed stochastic neighbor embedding (t-SNE) identified 15 cell clusters. (J) Using maker genes, 
cell subtypes were further annotated and labelled. 
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curve in the CDF diagram is the most gentle, the 

clustering analysis results are the most reliable, and 

the corresponding k value is the best k value; Figure 

3D shows the relative change of area under the CDF 

curve compared to k and k-1, and since there is no k = 

1, the first point represents the total area under the 

CDF curve for k = 2; Figure 3E shows the matrix heat 

map when k = 2, and the white part rarely has blue 

infection, indicated that there is less interference 

between subgroups. To sum up, k = 2 is the optimal k 

value, and when k is 3 or other values, the interference 

between subgroups cannot be minimized. The Kaplan-

Meir survival analysis indicated that patients with the 

NRGcluster A subtype had a poorer survival rate than 

those with the NRGcluster B subtype (p < 0.001) 

(Figure 3F). The PCA findings indicated a batch effect 

between NRGcluster A and B, suggesting that both 

clusters had strong internal consistency (Figure 3G). 

The survival and mortality status of the two patient 

groups were shown as heat maps in Figure 3H, along 

with the expression of neutrophil marker genes such as 

SRGN, BCL2A1, ALOX5AP, FPR1, BASP1, and 

CSFR. Individuals with the NRGcluster A subtype 

demonstrated elevated expression levels of neutrophil 

marker genes, suggesting that these patients may have 

aggressive neutrophil infiltration (Figure 3H). 

 

Subsequently, the unique biological processes and 

metabolic pathways of patients with distinct subtypes 

were investigated. The heat map generated by GSVA 

indicated substantial variations between the two groups 

in the activation and inhibition of 30 metabolic 

pathways. P53 signaling pathway, cell cycle, base 

excision repair, amino sugar and nucleotide sugar 

metabolism, glycolysis and gluconeogenesis, 

sphingolipid metabolism, endocytosis, glycerol-

phospholipid metabolism, and linoleic acid metabolism 

were highly abundant in NRGcluster A. In contrast, 

NRGcluster B was markedly enriched in glycine, 

serine, and threonine metabolism, neuroactive ligand-

receptor interaction, and calcium signaling pathway 

(Figure 4A). GSEA demonstrated that the neuroactive 

ligand-receptor interaction, the calcium signaling 

system, and the adipocytokine signaling pathway were 

significantly enriched in NRGcluster B patients.  

The cell cycle and O-glycan production were 

dramatically enhanced in NRGcluster A patients 

(Figure 4B). 

 

We also assessed the TME status of the two subtypes 

using ssGSEA. Immune cell infiltration differed 

dramatically across subtypes. Neutrophils, central 

memory CD8+ T cells, Th1 cells, Th17 cells, and 

eosinophils were the most abundant infiltrating cells in 

NRGcluster A, while activated CD8+ T cells were the 

least abundant (Figure 4C). 

 

The Genetics of Drug Sensitivity in Cancer database 

was used to evaluate the relationship between the two 

categories and the sensitivity to numerous first-line 

chemotherapy treatments. The NRGcluster B subtype 

was more sensitive to 5-fluorouracil, cisplatin, KRAS 

(G12C) inhibitor-12, gemcitabine, irinotecan, 

oxaliplatin, and paclitaxel, but less sensitive to 

selumetinib and trametinib (Figure 5A–5I). 

 

Genotyping based on differentially expressed genes 

 

Subsequently, the genetic alterations and underlying 

processes of NRG expression patterns were 

investigated. Using the “limma” R package, the 

differentially expressed genes of NRGcluster A and B 

were selected based on the following criteria: |log2 FC| 

> 1 and adjusted P-value < 0.05. A total of 285 genes 

with differential expression were found (Supplementary 

Table 2). The functions of these differentially expressed 

genes were then identified. The differentially expressed 

genes were mostly connected with epidermal    

 

 
 

Figure 2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. (A) GO enrichment analysis. 

(B) KEGG enrichment analysis. 
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development, the apical region of the cell, 

endopeptidase activity, extracellular matrix structural 

component, etc., as determined by GO functional 

enrichment analysis (Figure 6A). The majority of 

differentially expressed genes were involved in 

pancreatic secretion, protein digesting, and absorption-

related processes, as shown by KEGG pathway 

enrichment analysis (Figure 6B). To examine further  

the influence of differently expressed genes on PC 

prognosis and tumor immune microenvironment, all 

patients were grouped using the “Consensus Cluster 

Plus” R program based on differentially expressed 

genes. Two immunological isotypes (geneClusters A 

and B) were distinguished (Figure 6C–6E). Patients 

 

 
 

Figure 3. Establishment of neutrophils-related genes (NRGs) cluster subtypes. (A) Principal component analysis (PCA) plot of the 

overall expression of all samples before batching. (B) PCA plot of the overall expression of all samples after batching. (C–E) Process and 
results of consistency cluster analysis, which classified the data into NRGclusters A and B. (F) Survival curves of patients with NRGclusters A 
and B. The prognosis of patients with NRGcluster B was significantly better than that of patients with NRGcluster A. (G) PCA plot of 
NRGclusters A and B. (H) The expression of neutrophil-associated genes in NRGclusters A and B, most neutrophil-associated genes are 
upregulated in NRGcluster A. 
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with geneCluster A had a considerably shorter survival 

rate than those with geneCluster B (Figure 6F). The 

ssGSEA found distinct immune cell infiltration between 

the two categories. Neutrophils, activated CD4+ T cells, 

and central memory CD8+ T cells were the most 

abundant infiltrating cells in geneCluster A, whereas 

monocytes and activated CD8+ T cells were less 

abundant (Figure 6G). 

 

Establishment of the PC prognostic risk model based 

on NRGs 

 

To further study the predictive usefulness of NRGs in PC, 

a univariate Cox regression analysis was conducted to 

identify NRGs linked with patient prognosis. Each 

potential gene is represented by a red dot in the volcano 

map (Figure 7A). Using the RSFVH method, the 10 most 

significant genes were analyzed further (Figure 7B). 

Using an algorithm, survival analysis p-values were 

analyzed. The optimal gene combination (LDHA, IL1R2, 

and TM4SF1) was determined (Figure 7C), and a 

predictive model was created using multivariate Cox 

regression. The correlation coefficients of the three model 

genes were shown in Figure 7D, and risk scores of each 

sample were computed with the help of Cox coefficients 

and gene expression profiles. The GEO database datasets 

GSE28735, GSE62452, GSE57495, and GSE85916 were 

utilized as the validation set. To evaluate the accuracy of 

the prognostic model, the training and validation sets were 

split into high-risk and low-risk groups based on the 

median risk score. Survival study of the TCGA and GEO 

datasets found that the survival time of high-risk 

patients was shorter than that of low-risk patients 

(Figure 7E, 7F). For all three model genes (LDHA, 

 

 
 

Figure 4. Analysis of metabolic pathways and immunological infiltration for subtypes of the neutrophil-related genes 
(NRGs) cluster. (A) Gene set variation analysis (GSVA) results. (B) Gene set expression analysis (GSEA) results. (C) Single-sample GSEA 

(ssGSEA) results. 
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IL1R2, and TM4SF1), the high-expression group had a 

lower life period than the low-expression group (Figure 

7G–7I). The alluvial plot indicated the link between 

NRGcluster typing, gene Cluster type, risk 

categorization, and sample survival status (survival or 

death) and supported the reliability and consistency of 

the analytical findings (Figure 7J). The majority of 

genes were elevated in the high-risk group, indicating 

that high-risk individuals may have aggressive 

neutrophil infiltration (Figure 7K). 

Correlation between risk model and clinical 

pathological features 

 

After merging clinical data and risk scores from TCGA 

datasets, the risk scores were compared across clinical 

groups using the Wilcoxon signed-rank test to 

investigate the association between the model and the 

clinical features of the patients. The risk ratings did not 

vary substantially across ages, genders, or M stages 

(Figure 8A, 8B and 8E). Due to the limited number of 

 

 
 

Figure 5. Correlation between neutrophil-related genes (NRGs) cluster subtypes and drug sensitivity. Increased sensitivity of 

NRGcluster B to 5-fluorouracil (A), cisplatin (B), KRAS (G12C) inhibitor-12 (C), gemcitabine (D), irinotecan (E), oxaliplatin (F), and paclitaxel 
(G), increased sensitivity of NRGcluster A to selumetinib (H) and trametinib (I). 
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patients with M-stage tumors, the Wilcoxon signed-rank 

test findings might be distorted. The risk scores of 

patients with advanced T-stage, pathological grade, and 

clinical stage were considerably elevated (Figure 8C, 8F 

and 8G). The difference between N1 and N0 patients 

was close to statistical significance (p = 0.083), and 

stage N1 patients had a higher risk score (Figure 8D). 

Age, pathological grade, and risk score were 

substantially linked with the prognosis of patients with 

PC, as evidenced by the forest plot of univariate Cox 

analysis findings (Figure 8H). Furthermore, the forest 

plot of multivariate Cox analysis findings revealed that 

age and risk score are independent prognostic markers 

for PC patients (Figure 8I). 

 

 

 
Figure 6. Formation of subtypes of gene clusters. (A) Analysis of Gene Ontology (GO) enrichment. (B) Enrichment analysis of the 

Kyoto Encyclopedia of Genes and Genomes (KEGG). (C–E) The methodology and outcomes of consistency cluster analysis, which 
categorized the data into geneClusters A and B. (F) The survival curves for patients with the A and B geneClusters. Patients with geneCluster 
B had a much better prognosis than those with geneCluster A. (G) Single-sample gene set enrichment analysis (ssGSEA) findings. 
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Figure 7. Construction of the prognostic risk score model. (A) Volcano plot of univariate Cox regression analysis results. Red dots 

represent neutrophil-related genes associated with pancreatic cancer prognosis. (B) Random survival forest analysis identified the top 10 
important genes. (C) After survival analysis of 210−1 = 1023 combinations, the top 20 models were sorted according to P-values. The best 
model comprised three genes. (D) Coefficients of genes in the model. (E) The Cancer Genome Atlas (TCGA) dataset (Kaplan-Meir curve of 
the training set). (F) GSE28735, GSE62452, GSE57495, and GSE85916 datasets from the Gene Expression Omnibus (GEO) platform (Kaplan-
Meir curves of the validation set). Survival curves of patients according to the expression of LDHA (G), IL1R2 (H), and TM4SF1 (I). (J) Sankey 
plots of different subtypes, risk groups, and survival states. (K) The expression of neutrophil-associated genes in high-risk and low-risk 
groups, most neutrophil-associated genes are upregulated in the high-risk groups. 
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Molecular pathway and immune infiltration analysis 

based on the prognostic risk model 

 

To assess the metabolic pathway activity in high-risk 

and low-risk samples, GSVA and GSEA were 

conducted. The high-risk group had considerably 

greater glycan biosynthesis, P53 signaling pathway, and 

cell cycle activity than the low-risk group. In contrast, 

the activities of neuroactive ligand-receptor interaction 

and calcium were increased in the group at low risk 

(Figure 9A). Cell cycle and olfactory transduction were 

typically active in the high-risk group, while maturity-

onset diabetes of the young and neuroactive ligand-

receptor interaction were passive (Figure 9B). To 

further study the link between risk score and TME in 

PC, ssGSEA was used to analyze immune cell 

 

 

 
Figure 8. Correlation and independent prognostic analysis of clinical pathological features. Differential risk scores between age 

groups (A), gender groups (B), different T stages (C), different N stages (D), different M stages (E), different pathological grades (F), and 
different clinical stages (G). Forest plots of univariate Cox analysis (H) and multivariate Cox analysis results (I). 
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infiltration across groups with high and low risk. The 

high-risk group had higher infiltration of activated 

CD4+ T cells, NK cells, and neutrophils, whereas the 

low-risk group demonstrated increased infiltration of 

activated CD8+ T cells and activated B cells (Figure 

9C). In addition, the CIBERSORT method was used to 

 

 
 

Figure 9. Analysis of metabolic pathways and immune infiltration using the prognostic models. (A) Gene set variation analysis 
(GSVA) results. (B) Gene set enrichment (GSEA) results. (C) Single-sample GSEA (ssGSEA) results. Risk scores were significantly and positively 
correlated with neutrophil infiltration levels (D), significantly and negatively correlated with CD8+ T cell infiltration levels (E), significantly 
and negatively correlated with naïve B cell infiltration levels (F), significantly and positively correlated with M0 macrophage infiltration 
levels (G), significantly and negatively correlated with monocyte infiltration levels (H), significantly and positively correlated with activated 
dendritic cell infiltration levels (I), and significantly and positively correlated with resting dendritic cell infiltration levels (J). 
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calculate the infiltration scores of 22 immune cell 

subtypes in each sample (Supplementary Figure 1) (7 T 

cell subtypes, naïve and memory B cells, plasma cells, 

NK cells, bone marrow subsets, etc.). Neutrophils, M0 

macrophages, active dendritic cells, and resting 

dendritic cells associated considerably and positively 

with the risk score, while CD8+ T cells, naïve B cells, 

and monocytes linked significantly and negatively with 

the risk score (Figure 9D–9J). 

 

Drug sensitivity analysis 

 

The R program “oncoPredict” was used to examine the 

differential medication sensitivity between high-risk 

and low-risk groups. Low-risk patients were sensitive to 

5-fluorouracil, cisplatin, gemcitabine, irinotecan, 

oxaliplatin, and paclitaxel, whereas high-risk patients 

were susceptible to selumetinib and trametinib (Figure 

10A–10H). These results help influence clinical 

medication for PC patients. 

Gene expression analysis 

 

To evaluate the differential expression levels of model 

genes LDHA, IL1R2, and TM4SF1 across tumor and 

non-tumor tissues at the RNA level, scatter plots were 

generated using the GEPIA database. The expression of 

model genes was higher in tumor tissues compared to 

non-tumor tissues (Figure 11A–11C). The HPA 

database was queried for pictures of immuno-

histochemical investigation of LDHA, IL1R2, and 

TM4SF1. Figure 11D, 11E demonstrates that LDHA 

and IL1R2 were highly elevated in PC tissues, but 

TM4SF1 was moderately expressed in both PC and 

non-tumor tissues (Figure 11F). 

 

DISCUSSION 
 

The current outlook for PC, an aggressive malignant 

tumor, is dismal. PDAC, the most common form of 

pancreatic cancer, is a highly aggressive and moderately 

 

 

 
Figure 10. Correlation between drug sensitivity and prognostic risk scores. Low-risk patients were sensitive to 5-fluorouracil (A), 

cisplatin (B), gemcitabine (C), irinotecan (D), oxaliplatin (E), and paclitaxel (F). High-risk patients were sensitive to selumetinib (G) and 
trametinib (H). 
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resistant pancreatic exocrine tumor. Previous research 

has demonstrated that PDAC tumors exhibit intratumor 

heterogeneity, which contributes to the extensive 

metastasis observed at the time of diagnosis and poor 

prognosis and poses a significant challenge to medical 

professionals attempting to develop effective treatment 

strategies [61, 62]. In addition to imaging techniques 

(such as computed tomography and magnetic resonance 

imaging), clinics routinely utilize tumor markers (such 

as CEA and CA199) to diagnose PC. Nonetheless, the 

sensitivity and specificity of these indicators for 

diagnosing PC remain inadequate. In addition, these 

markers are not considerably elevated during the 

disease’s early stages [63]. This research focused on 

TME, which directly contributes to the aggressiveness 

of PC, in order to discover precise biomarkers and 

effective targeted treatments and to comprehend the 

prospective features of PC. Neutrophils, which serve as 

the first line of defense against pathogen invasion, are a 

crucial component of the TME. In addition, neutrophils 

are essential for antitumor immunity. Following 

carcinogenesis, neutrophils recruited to the TME may 

facilitate interactions between tumor cells and other 

stromal cells, therefore influencing the direct or indirect 

development of the tumor [19, 22, 64]. Neutrophils may 

also promote the development of primary pancreatic 

tumors by producing neutrophil extracellular traps, 

therefore promoting cancer-associated hyper-

coagulability and accelerating the formation of 

metastatic lesions [65–67]. 

 

Prior research has showed that single-cell transcriptome 

analysis may determine cell type abundance using a 

large number of transcriptome-specific genes. In cancer 

research, advances in the creation and availability of 

single-transcriptome analysis have improved cancer 

detection and therapy [68–70]. This work merged 

several single-cell datasets, identified main cell 

subtypes (including T cells, neutrophils, monocytes, 

tissue stem cells, epithelial cells, and endothelial cells), 

and obtained neutrophil-specific marker genes. The 

neutrophils were then extensively tested to determine 

tumor characteristics. On the basis of univariate Cox 

regression analysis, prognosis-related neutrophil marker 

genes were evaluated. A prognostic risk model 

consisting of three important genes (LDHA, IL1R2, and 

 

 
 

Figure 11. Validation of levels of gene expression. In pancreatic tumor tissues, the expression levels of LDHA (A), IL1R2 (B), and 

TM4SF1 (C) were considerably greater than in healthy tissues. Immunohistochemical examination indicated that the expression levels of 
LDHA (D) and IL1R2 (E) were considerably elevated in pancreatic tumor tissues compared to healthy tissues, TM4SF1 (F) was moderately 
expressed in both pancreatic tumor tissues compared to healthy tissues. 
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TM4SF1) was developed. The model’s independent 

prediction performance and connection with clinical 

pathological characteristics, degree of immune 

infiltration, and medication sensitivity were validated. 

Our results revealed that neutrophils play a crucial role 

in PC therapy responsiveness and prognosis. 

 

Clustering facilitated the classification of PC patients 

from the TCGA, GSE28735, GSE62452, GSE57495, 

and GSE85916 datasets into NRGcluster A and 

NRGcluster B. The patient prognosis, characteristics of 

TME immune cell infiltration, biological behavior, and 

medication sensitivity differed dramatically between the 

two neutrophil clusters. The outcomes of GSVA and 

ssGSEA suggested that NRGcluster A was enriched in 

the cell cycle and cancer metabolic pathway and that 

neutrophil infiltration was discernable. Prior research 

and Kaplan-Meir curves revealed that the prognosis for 

patients with NRGcluster A type was bad. 

Subsequently, 285 genes with differential expression 

between NRGclusters were discovered. Similar to the 

clustering findings of neutrophil phenotypes, two 

genomic subgroups were established on the basis of 

distinctive genes highly linked with cell behavior and 

immunological activation. Results suggested that 

neutrophil activation is critical for the growth and 

prognosis of PC tumors. 

 

Given the variety of NRGs, there is an urgent need to 

characterize NRG patterns in PC patients. This research 

thus devised a scoring system for measuring NRGs in 

PC patients. The survival prediction model included 

LDHA, IL1R2, and TM4SF1. Using the GSE28735, 

GSE62452, GSE57495, and GSE85916 datasets, the 

correctness of the model was validated. LDHA, which is 

increased in hematological malignancies and solid 

cancers, encodes the M-subunit of lactate dehydrogenase 

(LDH), which regulates aerobic glycolysis to fulfill the 

energy and biosynthetic demands of malignant tumors 

[71, 72]. According to reports, LDH overexpression is 

an independent poor prognostic marker in individuals 

with PC. Furthermore, in hypoxic circumstances, the 

upregulated LDH stimulates the production of LDHA in 

PDAC cells [73, 74]. LDH synthesis caused by LDHA 

boosts the aggressiveness and metastasis of PC and 

enhances resistance to radiation and chemotherapy [75, 

76]. In renal cell carcinoma, LDHA promotes metastasis 

by stimulating epithelial-mesenchymal transformation, 

which can be inhibited by LDHA inhibitors [77]. IL1R2 

is located on chromosome 2q12 and encodes IL1R2, 

which comprises 398 amino acids. In contrast to IL1R1, 

IL1R2 mainly acts as an endogenous inhibitor to prevent 

IL1 from binding to IL1R1 and inhibits IL1 signaling 
[78]. In renal cell carcinoma, IL1R2 promotes tumor 

progression through the JAK2/STAT3 pathway. The 

overexpression of IL1R2 reverses G1 phase inhibition 

and cell cycle arrest, promoting cancer cell proliferation, 

migration, and invasion [79]. Meanwhile, in colorectal 

cancer, IL1R2 is involved in activating IL6, VEGFA, 

and MEK/ERK, promoting cell proliferation and 

metastasis, promoting tumor angiogenesis, and 

enhancing tumor drug resistance [80]. IL1R2 is also 

reported to be involved in the progression of osteo-

sarcoma, non-small cell lung cancer, liver cancer, and 

lymphoma [81–84]. TM4SF1, which is located on 

human chromosome 3, encodes a specific quadruple 

transmembrane low molecular weight glycoprotein. 

Previous studies have demonstrated that TM4SF1 

promotes cell proliferation and survival through 

JAK2/STAT3 signaling and PI3K/AKT/mTOR-related 

signaling pathways. Additionally, TM4SF1 can promote 

cell migration, invasion, and stemness maintenance 

through the Wnt/β-catenin/c-Myc/SOX2 axis in various 

cancer, such as colorectal cancer [85–87]. One study 

reported that TM4SF1 was upregulated in glioma tumor 

tissues and cell lines and that TM4SF1 expression was 

inversely correlated with patient survival [88]. 

Additionally, the correlation between three key genes 

and the tumor immune microenvironment comprising 

neutrophils has also been explored in previous studies. 

For example, LDHA downregulation mediated by  

the PI3K/Akt-HIF-1α pathway results in glycolytic 

inhibition, which leads to neutrophil immunosuppression 

during sepsis [89]. In PDAC, the expression of IL1R2, 

encoding the bait receptor IL1R2, is associated with an 

increased abundance of Th2 cells and eosinophils [90]. 

Similar to CD63, TM4SF1 encodes transmembrane 

proteins that are also involved in signaling in immune 

cells, such as neutrophils [91]. 

 

According to these data, LDHA, IL1R2, and TM4SF1 

are risk genes for PC, which is consistent with the 

findings of prior research. The high-risk group had a 

higher infiltration of activated CD4+ T cells, NK cells, 

and neutrophils, in addition to poor clinical pathological 

features and prognosis. Lastly, the GEPIA and HPA 

databases were consulted to validate the RNA and 

protein concentrations, respectively, that the model 

predicted. 

 

In conclusion, based on the results of bioinformatics 

studies, we have revealed the molecular characteristics 

and prognostic role of neutrophils in pancreatic cancer, 

which will be helpful for the diagnosis and treatment of 

pancreatic cancer patients. However, the online 

database can only be used for the verification of early 

protein levels, the experimental results may not support 

the findings of computer analysis, and the role of 

neutrophils in the etiology of pancreatic cancer has not 
been determined, more experimental studies are needed 

to confirm the conclusions of this study. In addition, 

pancreatic cancer may present distant metastases 
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in vivo, and the samples evaluated in this study did not 

include lung, bone, brain, and other types of metastases, 

which will be the subject of our future research. 

Therefore, more large-sample and multicenter studies 

will be necessary to verify the validity of our diagnostic 

and prognostic models. 

 

CONCLUSIONS 
 

This research revealed an extensive variety of 

regulatory mechanisms used by NRGs in the TME in 

PC. Differences in NRG expression patterns contribute 

greatly to the variety and complexity of the TME in 

individuals with PC. The developed neutrophil-related 

molecular typing and prognostic models will facilitate 

the thorough assessment of individual patients with PC 

and enhance our comprehension of the cell infiltration 

features of the TME. This novel biomarker will lead the 

development of personalized and successful targeted 

therapies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Stacked bar plots of the distribution of 22 immune cell subspecies in each sample. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Single-cell analysis identified 350 neutrophil-related genes (NRGs). 

 

Supplementary Table 2. Detection of 285 differentially expressed genes across two clusters of neutrophil-related 
genes (NRGs) using the following criteria: |log2 fold-change (FC)| > 1; adjusted P-value < 0.05. 

 

 


