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INTRODUCTION 
 

Osteosarcoma, a malignant bone tumor originating from 

mesenchymal cells, predominantly affects children and 

young adults [1, 2]. Although a variety of treatments 

such as surgery, chemotherapy, and radiation therapy 

have led to increased patient survival rates [3, 4], 10–

25% of osteosarcoma patients still develop metastases 

at the time of diagnosis, with approximately 90% of 

these metastases presenting in the lungs [5–7]. The 
prognosis for individuals with advanced, metastatic, 

recurrent, or drug-resistant osteosarcoma remains bleak, 

despite the range of available medications [8, 9]. To 

better assess the prognosis of patients with osteosarcoma 

and to develop new therapeutic measurements, a deeper 

understanding of the mechanisms of osteosarcoma is 

needed here. 

 
The development of tumors is influenced by many factors, 

including drug resistance and epigenetic alterations [10–

12]. Notably, the immune system plays an important 

role in cancer development and immunotherapy [13–

15]. Immune escape events allow cancer cells to  

evade the elimination mechanisms imposed by the host  
immune system. Cancer-intrinsic immune evasion (IE) 

denotes the process by which neoplastic cells evade 

detection and destruction by the host’s immune system 

through various strategies, thereby enabling their survival, 
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potential biomarker with high expression in osteosarcoma was identified. The findings of this study highlight 
the presence of two IE clusters, each associated with differing patient outcomes and immune infiltration 
properties. The IE score may serve to assess individual patient IE characteristics, enhance comprehension of 
immune features, and guide more efficacious treatment approaches. 
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proliferation, and resistance to immunotherapies [16, 

17]. These evasion tactics allow cancer cells to multiply 

and spread throughout tumorigenesis, fostering resistance 

to immunotherapies [18, 19]. Immunotherapeutic 

strategies have demonstrated benefits in various cancer 

patients, including those with osteosarcoma [9, 20, 21]. 

Therefore, an improved understanding of IE patterns, 

along with the underlying biological mechanisms of the 

osteosarcoma microenvironment, is important to improve 

treatment outcomes. 

 
Bioinformatics methods are widely used to find 

molecular changes in the occurrence and development 

of diseases and are an effective way to explore  

the pathogenesis of diseases [22–26]. The present 

investigation utilized transcriptional data and clinical 

information from 85 osteosarcoma patients to identify 

two unique IE clusters in osteosarcoma. A thorough 

evaluation was performed to understand the correlation 

between these clusters and immunological features. An 

IE score system was also established to quantify the IE 

patterns at an individual patient level, with validation 

carried out across multiple independent datasets. Finally, 

GBP1, a gene highly expressed in osteosarcoma, was 

identified as a potential prognostic biomarker with 

promising implications. 

 

MATERIALS AND METHODS 
 
Data source 

 
From the TARGET-OS database, 85 osteosarcoma 

patients were selected for cluster analysis and used as a 

training group for follow-up analysis. The GSE21257 

and the TCGA-SARC cohort were used as verification 

cohorts, which separately included 53 osteosarcoma 

patients and 262 sarcoma patients. GSE225588 (n = 12) 

and GSE99671 (n = 36) were used to validate the 

expression of GBP1. The IEGs were obtained from a 

previous study [18] and presented in Supplementary 

Table 1. 

 
Unsupervised consensus cluster analysis 

 
The “ConsensusClusterPlus” R package was employed 

to conduct consensus clustering. The similarity distance 

was calculated using Euclidean distance, and the data 

were clustered using the k-means clustering method 

with a fixed inclusion rate of 80% of patients in each 

iteration for 100 iterations. 

 

Tumour immune microenvironment 

 

The levels of immune infiltration were estimated 

through the application of single sample Gene Set 

Enrichment Analysis (ssGSEA) [27]. The Cell-type 

Identification by Estimating Relative Subsets of RNA 

Transcripts (CIBERSORT) was employed to determine 

the abundance of 22 discrete types of immune cells 

[28]. The ESTIMATE algorithm, implemented via the 

“estimation” R package, facilitated the computation  

of ESTIMATE scores, immunity scores, and stromal 

scores for osteosarcoma patients. 

 

GSVA and GSEA 

 

The biological characteristics of different IEGs were 

investigated by using the “GSVA” R package [29]. A 

gene set named “c2.cp.kegg.v7.4.symbols” was used to 

recognize biological processes (downloaded from the 

Molecular Signature Database). 

 

Gene Set Enrichment Analysis (GSEA) was used to 

reveal the risk signature related pathways. The dataset 

“c2.cp.kegg.v7.4.symbols.gmt” was employed in the 

analysis. Statistically significant pathways were deter-

mined by P < 0.05. Enrichment results were extracted to 

display immune-related pathways. 

 

Differentially expressed genes and enrichment 

analysis 

 

By utilizing the “limma” package, differentially expressed 

genes (DEGs) between two IE clusters were identified, 

whereby screening criteria were set at FDR < 0.05 and 

logFC > 0.585. Using the “clusterProfiler” package, we 

analyzed Gene Ontology (GO) enrichment and KEGG 

pathways to understand DEGs functions. 

 

Determination of IE score 

 

A univariate Cox regression analysis was performed 

utilizing the “survival” R package, with a significance 

threshold established at P < 0.05 to pinpoint potential 

prognostic determinants among DEGs. The identified 

genes were then evaluated through 1000 cycles of  

lasso regression analysis, facilitated by the “glmnet” R 

package. The establishment of a prognostic signature 

was achieved through the utilization of multivariate Cox 

regression analysis. The risk score for each patient was 

calculated using the following formula: 

 

 
1

( )
n
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i

IE score Coef x
=

=   

 

Here, Coefi indicates the regression coefficients of 

genes, while xi represents the gene’s expression level. 

 

Evaluation and verification of the IE score 

 

The osteosarcoma patients were classified into high- 

and low-risk groups by employing the optimal cut-off 
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value of the risk score. In order to evaluate the 

difference in predictability between the two groups, 

Kaplan-Meier curve was used. Univariate and multi-

variate Cox regressions were utilized to determine  

the independent prognostic factors associated with 

osteosarcoma. 

 
Cell source and culture 

 
Cell lines (MG63, HOS, Saos-2, hFOB 1.19) used in the 

study were purchased from the Chinese Academy of 

Sciences Cell Bank (Shanghai, China). The medium 

consisted of DMEM supplemented with 1% penicillin/ 

streptomycin and 10% fetal bovine serum. At 37°C and 

5% CO2, osteosarcoma cells (MG63, HOS, Saos-2,) 

were maintained, while 34°C and 5% CO2 were used to 

culture human osteoblasts (hFOB 1.19). 

 
Clinical specimens 

 
A collection of three osteosarcoma tissues, along  

with three corresponding adjacent normal tissues, was 

assembled from patients diagnosed with osteosarcoma. 

These patients had undergone surgical procedures at  

The Second Affiliated Hospital of Nanchang University. 

All participating osteosarcoma patients signed a written 

informed consent prior to entering the study and the 

hospital ethics committee agreed to the study. 

 
RNA isolation and real-time fluorescent qPCR 

 
RNA extraction from cells was performed using 

TRIzol™ Reagent (Thermo Fisher Scientific, USA). 

RNA was reverse-transcribed into cDNA with use of 

the PrimeScript™ RT kit (Takara, Shiga, Japan). As an 

internal control, a parallel real-time PCR was performed 

for GAPDH. Relative quantification was performed 

using the 2−ΔΔCt method. The gene primers are presented 

in Supplementary Table 2. 

 
Immunohistochemical staining and pan-cancer 

analysis of GBP1 

 
To confirm GBP1 expression, immunohistochemical 

staining (Proteintech, 15303-1-AP) was carried out  

on paraffin-embedded sections. These sections were 

subsequently examined and imaged through micro-

scopy. By using TIMER (https://cistrome.shinyapps.io/ 

timer/) and GEPIA2 (http://gepia2.cancer-pku.cn/), the 

expression of GBP1 in the pan-cancer is presented. 

 
Statistical analysis 

 
The statistical analysis was performed using R 4.2.0  

and SPSS Statistics 22.0. Student’s t-tests were used to 

compare the two clusters, with a P < 0.05 showing 

statistical significance. 

 
Data availability 

 
The datasets supporting the conclusions of this  

article are available in the TARGET-OS, the Gene 

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), 

the TCGA database (https://portal.gdc.cancer.gov/). 

 
RESULTS 

 
Identification of two IE clusters based on IEGs 

 
Consensus clustering analysis identified two clusters 

(Figure 1A, 1B). Evidence of a marked difference in  

the dispersion between these two clusters was provided 

by PCA plots (Figure 1C). The prognostic analysis 

conducted for the two clusters revealed that IEGcluster 

A exhibited a remarkable survival advantage, while 

IEGcluster B had the worst prognosis in TARGET cohort 

(Figure 1D). The heatmap revealed IEGs expression  

and clinical characteristics in osteosarcoma, cluster A 

showed significantly higher expression of most of the 

IEGs (Figure 1E). To further probe potential disparities 

in the signaling pathways between the two IE subtypes, 

GSVA was executed. The results demonstrated that 

cluster A was significantly related with immune function 

(Figure 1F), such as NOD-like receptor signaling 

pathway, natural killer cell mediated cytotoxicity, and T 

cell receptor signaling pathway. In order to elucidate the 

relationship between IEGcluster and immune infiltration, 

ssGSEA was applied to compare the enrichment scores 

of immune cells in the two subtypes. A substantial 

discrepancy in the infiltration of most immune cells 

between the two IE subtypes, such as Activated CD8 T 

cells, and immature B cells, was noted (Figure 1G). 

These observations advocate that unsupervised clustering 

based on IEGs distribution can effectively segregate 

osteosarcoma into two clusters, each possessing unique 

clinical prognostic and tumour immunophenotypic traits. 

 
Comprehensive analysis of DEGs associated with IE 

clusters 

 
A total of 502 DEGs were observed in IEGcluster B in 

comparison to IEGcluster A. These DEGs are visualized 

in the heatmap and volcano plot (Figure 2A, 2B). The 

box plot demonstrates the five most notably upregulated 

and downregulated DEGs (Figure 2C). Following the 

identification of DEGs, a functional enrichment analysis 

was performed, revealing a significant enrichment of 

immune and cancer-related pathways (Figure 2D–2G). 

It was suggested that IEGs greatly affects the carcino-

https://cistrome.shinyapps.io/%20timer/
https://cistrome.shinyapps.io/%20timer/
http://gepia2.cancer-pku.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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genesis and immune microenvironment regulation of 

osteosarcoma. 

 

To understand the prognostic impact of DEGs, a 

univariate Cox analysis was performed. The results 

showed that 79 DEGs affected the prognosis of 

osteosarcoma, with PDE4C, CFAP44, CARNS1, 

GREB1L, ROF207 identified as significant risk factors 

and GBP1, MSC, GBP3, F13A1, CCL2 as substantial 

protective factors (Figure 3A). Furthermore, to further 

explore the significance of 79 DEGs for patients, a 

consistent clustering algorithm was used to classify 

 

 
 

Figure 1. The immune infiltration and biofunctional landscape of cancer-intrinsic immune evasion genes (IEGs) clusters.  
(A) The consensus score matrix of 85 samples when k = 2. (B) The cumulative distribution functions (CDF) curve for k = 2–9. (C) Principal 
component analysis of the two clusters. (D) Kaplan-Meier survival analysis of the two clusters. (E) Heatmap of clinical characteristics of the 
two clusters according to the expression of IEGs. (F) Heatmap visualized the results of the GSVA enrichment analysis, and red represents 
activated pathways and blue represents inhibited pathways. (G) Box plot of the statistical analysis of the ssGSEA results. 
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osteosarcoma patients into two gene clusters (Figure 

3B, 3C). PCA plot revealed distinct distribution patterns 

for the two gene clusters (Figure 3D). The heatmap 

revealed IEGs expression and clinical characteristics in 

osteosarcoma, gene cluster A showed significantly 

higher expression of most of the IEGs (Figure 3E). 

Moreover, the K-M survival analysis findings revealed 

a statistically significant disparity in long-term survival 

between gene cluster A and gene cluster B (Figure  

3F). At the same time, there were disparities in some 

IEGs between the two gene clusters (Figure 3G). These 

findings reinforce the reliability of the IEG-related 

cluster and imply an essential role of IEGs in 

osteosarcoma. 

Establishment and validation of IE score 

 

To formulate the IE score, seven genes were selected 

from the 79 IEGs based on a Lasso-Cox regression 

analysis (Figure 4A, 4B). Subsequently, an IE score  

was determined using a multivariate Cox regression 

analysis, and five genes and their risk coefficients were 

identified: PDE4C, GBP1, MIPOL1, SLC38A5, and 

MSC (Figure 4C). Survival analysis indicated that  

a higher IE score significantly foretold unfavorable 

outcomes across the three cohorts (Figure 4D–4F, 

p < 0.001). The ROC curve showed that the IE score  

was a reliable indicator of overall survival, with an area 

under the curve (AUC) value in all three patient groups 

 

 
 

Figure 2. Functional enrichment analysis between the two clusters. (A) Heatmap of differentially expressed genes (DEGs) between 

the two clusters. (B) The volcano plot of DEGs. (C) Bubble plot of KEGG pathway analysis and (D–F) GO analysis. (G) Box plot showing the 
top 5 up-regulated and top 5 down-regulated genes. 
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predicting 1-year overall survival exceeding 0.7 (Figure 

4G–4I). Moreover, the number of deaths gradually 

increased with higher IE scores; in addition, the 

distribution of gene expression profiles showed 

consistency across the three cohorts (Figure 4J–4O). 

These findings suggest that the developed IE score 

serves as a valuable prognostic indicator. 

Clinical significance of IE score 

 

Univariate and multivariate Cox regression analyses 

were conducted using the TARGET dataset to assess the 

potential of the IE score as an independent prognostic 

factor. Risk score was significantly associated with OS 

in univariate Cox analysis (Figure 5A). The multivariate 

 

 
 

Figure 3. Identification of gene clusters based on prognostic DEGs. (A) Volcano plot displaying univariate Cox regression results of 

the 502 DEGs. (B) The consensus score matrix. (C) The CDF curve for k = 2–9. (D) PCA of the two gene clusters. (E) Heatmap of clinical 
characteristics of the two gene clusters according to the expression of prognostic DEGs. (F) Kaplan-Meier survival analysis of the two gene 
clusters. (G) The box plot shows genes that are significantly differentially expressed in two gene clusters. 
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analysis also indicated the score as an autonomous 

prognostic indicator for osteosarcoma (Figure 5B). 

Subsequently, a nomogram based on scores and  

other clinicopathological risk factors was developed, 

where our risk score surfaced as the most impactful 

factor among multiple clinical parameters (Figure  

5C). Importantly, there was an impressive agreement 

between predictions and actual survival rates at 1, 3 and 

5 years shown by the calibration curves (Figure 5D). 

Recognizing osteosarcoma’s heightened malignancy 

 

 
 

Figure 4. Development and validation of the IEGs score. (A, B) Lasso regression analysis of 79 prognostic DEGs. (C) Multivariate Cox 

regression analysis. (D–F) Kaplan-Meier curves in the TARGET, GSE21257 and TCGA-SARC cohorts. (G–I) The AUC for the prediction of 1, 3, 5 
years survival rate. (J–L) Distribution of survival status and risk scores. (M–O) Heatmap of the five model genes between the high- and low-
risk groups. 
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and metastatic potential and the fact that distant meta-

stasis is the primary cause of mortality in osteosarcoma 

patients [30], a correlation analysis was carried out 

between the IE score and the occurrence of metastasis. 

The analysis suggested that patients with metastasis in 

the TARGET and GSE21257 cohorts exhibited higher 

IE score (Figure 5E, 5F). Lastly, boxplots depicted 

variations in IEGs in patients with or without metastasis 

(Figure 5G). 

 

The analysis of GSEA and immune infiltration 

 

To assess the signaling pathways associated with  

IE score, GSEA analysis was performed. The analysis 

revealed an enrichment of “primary immunodeficiency” 

and “chemokine signaling pathway” in the low IE score 

group (Figure 6A) and an enrichment of “nitrogen 

metabolism” and “glycolysis gluconeogenesis” in the 

group with a higher IE score (Figure 6B). Subsequently, 

the infiltration of immune cells was examined, with 

heatmaps revealing a correlation between T cell CD8 

and B cell naive with GBP1 and MSC (Figure 6C). 

Moreover, a Pearson correlation analysis demonstrated 

a significant positive correlation between Macrophages 

M0, Dendritic cells resting, and the IE score, whereas T 

cells CD8 and Monocytes were notably negatively 

correlated with the IE score (Figure 6D). Furthermore, 

the relationship between immune infiltration and scores 

 

 
 

Figure 5. The relationships between clinical characteristics and the IEGs signature in osteosarcoma. (A, B) Univariate and 
multivariate Cox regression analysis for independent prognostic analysis of risk model. (C) Nomogram based on gender, age, metastasis and 
risk in the TARGET cohort. (D) The nomogram calibration curves for predicting 1-, 3-, and 5-year survival. (E, F) The relationship between 
the risk score and metastasis. (G) The expression level of the IEGs, the patients were grouped according to metastasis. 
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was assessed based on ssGSEA. Those with high scores 

showed low levels of immune cell infiltration and 

function (Figure 6E, 6F). We also validated the appeal 

results using the estimates and found a considerable 

negative relationship between the risk scores and 

stromal scores, immune scores and estimated scores 

(Figure 6G). These findings suggest that patients with a 

low IE score exhibit improved prognosis and increased 

 

 
 

Figure 6. The IEGs score was related to immune infiltration. (A, B) GSEA was used to reveal the risk signature-related pathways. (C) 

Correlation between the five model genes and 22 immune cells based on CIBERSORT. (D) The association between IEGs score and immune 
cell infiltration. (E, F) Relationship between risk score and immune cell infiltration and related functions via ssGSEA analysis. (G) Risk scores 
were significantly correlated with Stromal scores, Immune scores, and ESTIMATE scores. (H, I) The difference in risk score among IEGs 
cluster and prognostic gene cluster. (J) Sankey plot of IEG subtype distribution in groups with different risk scores and survival status. 
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immune cell infiltration. The relationship between 

clusters and the IE score was also analyzed, with box 

plots indicating a high IE score in both IEGcluster B 

and gene cluster B (Figure 6H, 6I). The Sankey diagram 

illustrates the workflow in constructing the IE score 

(Figure 6J). 
 

GBP1 is highly expressed in osteosarcoma 
 

The impact of GBP1 on the score was found to be the 

greatest, making it the preferred subject for further 

investigation (Figure 7A). Analysis of the GSE225588 

and GSE99671 datasets revealed a considerable up-

regulation of GBP1 expression in osteosarcoma samples 

(Figure 7B, 7C). Furthermore, the quantification of 

GBP1 expression was performed in both osteosarcoma 

and osteoblasts cell lines. The results showed a significant 

increase in GBP1 expression levels in osteosarcoma 

cells compared to osteoblasts (Figure 7D). In addition, 

high expression of GBP1 was detected in tumor tissues 

using immunohistochemical staining (Figure 7E). 
 

Pan-cancer analysis of GBP1 
 

An extensive investigation into the expression pattern  

of GBP1 in pan-cancer was conducted. The findings 

indicated a high prevalence of GBP1 expression in 

numerous tumors, such as those found in the esophageal 

cancer, glioblastoma, kidney clear cell carcinoma, and 

stomach. Conversely, reduced expression was observed 

in kidney chromophobe, prostate cancer, and endo-

metrioid cancer, underscoring the importance of GBP1 

as a key biomarker across a wide range of cancers 

(Figure 8A, 8B). Additionally, we conducted a pan-

cancer analysis to examine the influence of GBP1  

on cancer prognosis. The results from Kaplan-Meier 

analysis indicated that GBP1 could act as a risk factor 

for ovarian cancer and skin cutaneous melanoma, while 

it may serve as a protective factor for lower grade 

glioma, kidney renal papillary cell carcinoma, and uveal 

melanoma (Figure 8C, 8D). These discoveries highlight 

the considerable prognostic implications of GBP1 in a 

pan-cancer. 

 
DISCUSSION 

 
Despite substantial advancements in diagnosing and 

treating osteosarcoma, the global mortality rate asso-

ciated with this disease continues to be alarming [31, 

32]. The IE enables neoplastic cells to persist and 

proliferate despite the vigilant scrutiny exerted by the 

immune system [33, 34]. Therefore, our study aimed  

to comprehensively evaluate the prognosis of IEGs in 

 

 
 

Figure 7. The expression levels of GBP1. (A) The coefficients of the five model genes. (B, C) The GBP1 expression level in osteosarcoma 

and non-tumoral paired samples, based on the GSE99671 and GSE225588 cohort. (D) The qRT-PCR result of GBP1 in hFOB 1.19, MG63, 
HOS, Saos-2 cell lines. (E) The expressions of GBP1 in tumor and adjacent normal tissues. *P < 0.05, **P < 0.01 and ***P < 0.001. 
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osteosarcoma and explore potential biological 

differences. The results of this study will enhance our 

understanding of the function of IEGs in osteosarcoma 

and help design more effective treatment strategies. 

 

Based on 182 IEGs, consensus clustering analysis 

identified two distinct osteosarcoma clusters in the 

present study. These two clusters displayed significant 

differences in prognosis and immune cluster. IEGcluster 

A demonstrated superior survival advantages and 

increased immune cell infiltration compared to 

IEGcluster B. Prior studies have emphasized the critical 

role of TME in tumor progression. Based on these 

findings, a higher level of immune infiltration may be 

 

 
 

Figure 8. Expression and significance of GBP1 in Pan-caner. (A) Pan-cancer analysis of GBP1 expression based on the GEPIA2. (B) 

Pan-cancer analysis of GBP1 expression based on TIMER. (C) The survival map with positive results were presented. (D) Kaplan-Meier 
survival curves for overall survival rate over TCGA cancer types. *P < 0.05, **P < 0.01 and ***P < 0.001. 
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responsible for the better prognosis of IEGcluster A. 

Furthermore, DEGs, associated with immune receptor 

and GTPase activity, were identified between the two 

clusters and recognized as IEGs. Consistent clustering 

analysis of DEGs led to identifying two gene clusters 

exhibiting significant prognosis differences. These fin-

dings further validate the existence of two distinct IEG 

clusters and that the collective effects of multiple IEGs 

are integral to immune infiltration. 

 
Given the heterogeneous nature of tumors, an IE score 

system was developed to quantify individual patients, 

thus offering a more precise direction for personalized 

treatment. Immunological subtypes, characterized by 

strong immune infiltration, exhibited lower IE scores. 

The results underscored the potential of the IE score as 

a valuable tool for assessing the immune evasion cluster 

and evaluating immune infiltration in individual osteo-

sarcoma patients. The connection between IEGs and 

tumor metastasis is well-established, so the IE score 

differences in patients across various clinical clusters 

were examined. The findings suggest that the IE score 

can be valuable for evaluating patient metastasis. An 

independent prognostic indicator for osteosarcoma can 

be determined by a comprehensive analysis of the IE 

score. 

 
GBP1, a distinctive large GTPase enzyme, regulates 

cellular reactions to infection, inflammation, and 

environmental stress [35–38]. Its role varies across 

different cancer types [39, 40]. Cytokine stimulation in 

tumor cells leads to the release of soluble GBP1 both 

in vivo and in vitro, suggesting a potential antitumor 

effect in ovarian cancer [41]. These findings align with 

the results from our pan-cancer analysis. Moreover, 

GBP1 has been associated with promoting lymph node 

metastasis in esophageal squamous cell carcinoma 

[42]. In line with recent research findings and our 

results, GBP1 seems to act as a protective factor in 

osteosarcoma [43, 44]. An examination of multiple 

public databases revealed an upregulation of GBP1  

in various tumors, including osteosarcoma. RT-qPCR 

further confirmed high GBP1 expression in osteo-

sarcoma cell lines. These observations indicate the 

potential of GBP1 as a biomarker for osteosarcoma. 

 
However, there are some limitations to this study. 

Firstly, it relies on publicly available datasets, which 

might introduce potential biases. For more accurate 

predictions, larger sample sizes need to be used in the 

future. Secondly, there is a requirement for more 

comprehensive clinical data to evaluate the correlation 

between scores and clinical characteristics. Finally, 

more datasets are needed to validate the differential 

expression of five IEGs. 

CONCLUSION 
 

In this investigation, two distinct clusters of patients 

were identified based on IEGs, and an assessment  

of immune infiltration characteristics was conducted 

by systematically comparing various clusters. The IE 

score was further established to evaluate clinical 

features and immune infiltration status in individual 

osteosarcoma patients. Ultimately, a biomarker was 

discovered and validated. This research offers novel 

insights for identifying new tumor clusters in osteo-

sarcoma, directing personalized and specific therapies, 

and enhancing patient responses to immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The list of the 182 IEGs. 
 

Supplementary Table 2. Primers used in this study. 

Gene Forward primer 5′–3′ Reverse primer 5′–3′ 

GBP1 TATTGCCCACTATGAACAGCAGAT TAGCTGGGCCGCTAACTCC 

 

 


