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INTRODUCTION 
 

With multiple subtypes and different clinical  

outcomes, STS has attracted researchers’ attention in 

the recent years [1]. Being a rare tumor, STS accounted 

for 0.71% of estimated new cases based on the latest 

cancer statistics in United States [2]. According to 

different origin and morphology, STS can be also 

divided into liposarcoma, hemangioma, neuroma, etc. 

At present, the main treatment of soft tissue sarcoma  

is surgery resection combined with radiology therapy, 

which reduces the risk of reoccurrence [3]. However, 
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ABSTRACT 
 

Ferroptosis regulators have been found to affect tumor progression. However, studies focusing on ferroptosis and 
soft tissue sarcoma (STS) are rare. Somatic mutation, copy number variation, reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR) analysis, consensus clustering, differentially expressed genes analysis 
(DEGs), principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used to identify and 
explore different ferroptosis modifications in STS. A nomogram was constructed to predict the prognosis of STS. 
Moreover, three immunotherapy datasets were used to assess the Fescore. Western blotting, siRNA transfection, 
EdU assay and reactive oxygen species (ROS) measurement were performed. 16 prognostic ferroptosis regulators 
were screened and significant differences were observed in somatic mutation, copy number variation (CNV) and 
RT-qPCR among these ferroptosis regulators. 2 different ferroptosis modification patterns were found (Fe cluster 
A and B). Fe cluster A with higher Fescore was correlated with p53 pathway and had better prognosis of STS (p = 
0.002) while Fe cluster B with lower Fescore was correlated with angiogenesis and MYC pathway and showed a 
poorer outcome. Besides, the nomogram effectively predicted the outcome of STS and the Fescore could also well 
predict the prognosis of other 16 tumors and immunotherapy response. Downregulation of LOX also inhibited 
growth and increased ROS production in sarcoma cells. The molecular characterization of ferroptosis regulators in 
STS was explored and an Fescore was constructed. The Fescore quantified ferroptosis modification in STS patients 
and effectively predicted the prognosis of a variety of tumors, providing novel insights for precision medicine. 
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the probability of STS patients being alive at 5 years  

is only 10% [4]. Therefore, exploring new targets  

and implementing individualized treatment is of great 

significance to improve the prognosis of STS patients. 

 
Ferroptosis is characterized by the iron dependent 

accumulation of lipid peroxidation to a lethal level [5]. 

Recent studies have revealed a close relationship between 

ferroptosis and tumor progression. Ferroptosis regulator 

HSPB1 was also related to decreased ferroptosis  

by reducing the expression of TFR1, which further 

accelerated cervical carcinoma growth [6]. Another 

research revealed that rhabdomyosarcoma cells death 

was induced by Erastin through lipid peroxidation and 

reactive oxygen species production, which were typical 

features of ferroptosis [7]. Besides, recent research 

showed that ME1 absence could lead to synovial sarcoma 

cells being more sensitive to ferroptotic cell death [8]. 

Moreover, desmoid-type fibromatosis cells death could 

be induced by sorafenib through ferroptosis [9]. 

Considering the close relationship between ferroptosis 

and the progression of STS and other tumors, it is very 

necessary to further explore the ferroptosis modification 

patterns in STS. 

 
Since the advent of immunotherapy, it has been of  

wide interest to clinicians and scientists all over the 

world. Immunotherapy mainly included PD-1/PD- 

L1 and CTLA-4, which were also called immune 

checkpoint blockade (ICB) [10]. Although ICB has 

made good achievements against cancer, only a small 

number of patients could respond to ICB, and the price 

of treatment was expensive, which greatly limited the  

use of ICB [11]. Tumor microenvironment (TME); 

microenvironment around tumor cells, also plays an 

important role in regulating the outcome of immuno-

therapy. A recent study reported that PD-L1 could  

be regulated by Interferon γ in vascular endothelial  

cell [12]. Besides, interleukin-17 (IL-17) in the TME 

could also increase the expression of PD-L1 in prostate 

cancer and colon cancer, which further affected 

immunotherapy response [13]. A previous study also 

revealed that transforming growth factor beta (TGF-β) 

could enhance the expression of PD-1/L1 in hepato-

cellular carcinoma [14]. Although the relationship 

between TME and tumor immunotherapy have been 

discussed, these studies were not associated with 

ferroptosis. Hence, it was imperative to explore the 

modification pattern of ferroptosis in STS and identify 

novel predictive markers for immunotherapy response. 

 
Recently we explored the role of N6-methyladenosine 
modification in STS [15]. Based on this experience, 

here 16 prognostic ferroptosis regulators were screened 

through univariate Cox regression analysis. RT-qPCR, 

somatic mutation and copy number variation further 

revealed significant differences of these regulators  

in STS. Two ferroptosis modification patterns were 

identified using consensus clustering [16]. Moreover, 

significant differences in immune infiltration and prog-

nosis between the ferroptosis modification patterns were 

observed by CIBERSORT, ESTIMATE and survival 

packages [17]. Hence, we constructed an Ferroptosis-

related score (Fescore), which well predicted the immune 

infiltration and prognosis of STS. The Fescore could 

also predict the response to ICB, which provided new 

insights for precision medicine and targeted therapy. 
 

MATERIALS AND METHODS 
 

Sample collection and data processing 
 

In this study, 33 types of cancer and the corresponding 

survival information in The Cancer Genome Atlas 

(TCGA) were downloaded from UCSC-XENA (http:// 

xena.ucsc.edu/). The somatic mutation and CNV of 

TCGA-SARC (n = 265) were also obtained from 

UCSC-XENA. Sarcoma datasets GSE17674 [18], un-

differentiated sarcoma (GSE119041 [19]), Liposarcoma 

(GSE159848 [20]), Leiomyosarcoma (GSE159847 [20]), 

Synovial Sarcoma (GSE40021 [21]), Ewing Sarcoma 

(GSE17168 [18]), and Fibrosis sarcoma (GSE71118 

[22]) were collected from Gene Expression Omnibus 

(GEO) database. GPL570 platform was used for 

GSE17674, GSE17618 and GSE71118 while gencode 

platform (https://www.gencodegenes.org/) was used for 

33 types of cancer in TGCA. GPL6480 platform was 

used for GSE159848, GSE40021 and GSE159847. 

GPL17692 platform was used for GSE119041. Robust 

multi-array average (RMA) normalization was applied 

in GSE17674 and GSE17618 and Transcripts Per 

Kilobase Million (TPM) normalization was performed 

in 33 types of cancer. GCRMA algorithm was applied 

in GSE71118 and Quantile algorithm was applied in 

GSE159848, GSE40021 and GSE159847. Data from 

GSE119041 were normalized with the default settings 

on Thermo Fishers Expression Console 1.4.1.46 Software. 
 

Three immunotherapy datasets IMvigor210 [18] (n = 

298), GSE78220 (n = 28) and GSE35640 (n = 65) were 

collected from recent studies. IMvigor210, GSE78220 

and GSE35640 were normalized by trimmed mean  

of M-values, FPKM (Fragments Per Kilobase Million) 

and RMA, respectively. Ferroptosis regulators were 

screened according to recent research [23]. Samples 

without full clinical characteristics were excluded from 

this study. Three STS samples and the corresponding 

normal tissue were obtained from Department of 

Orthopedics, Zhongnan Hospital of Wuhan University. 
Detailed information of these datasets was shown in 

Supplementary Table 1. The list of ferroptosis regulators 

was shown in Supplementary Table 2. The flowchart 

was shown in Figure 1. 

https://www.gencodegenes.org/
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LOX knockdown using siRNA transfection 

 

A siRNA strategy was used to knock down LOX in 

HT1080 and A204 cells. Briefly, 1 × 105 cells were 

added to fresh medium without antibiotics and seeded in 

six-well plates 24 hrs before transfection. For trans-

fection, all siRNAs (si-LOX or the negative control, 

siNC) (Tsingke Biotechnology Co., Ltd., Beijing, China) 

were resuspended at a concentration of 20 μM and then 

transfected into HT1080 and A204 cells. TSnanofect  

V1 transfection reagent (Tsingke Biotechnology) was 

used when the cells reached 50–70% confluence. A 

transfection rate of 70–85% of cells was used for  

further experiments. The siRNA sequences targeting 

LOX were shown in Supplementary Table 3. 

 

Western blotting 

 

HT1080 and A204 cells were seeded in 6-well plates, 

and then transfected with NC group and Si group 

respectively for 48 hours and then collected. Cells were 

washed once with PBS and then lysed with Protein 

Lysis Buffer containing protease and phosphatase 

inhibitor cocktail for 30 min on ice. Cell lysates were 

centrifuged at 12,000 × g for 15 min at 4°C, and the 

supernatant was collected. Protein concentration was 

quantified using the BSA protein assay according to the 

manufacturer’s instructions. Equal amounts of total 

protein were separated by SDS-PAGE (8–12%) at 80–

120 V for 1.5 h and transferred to a 0.45 μM PVDF 

membrane at 230 mA for 1.5 h. After blocking with 5% 

 

 

 
Figure 1. The flowchart of this study. 



www.aging-us.com 11415 AGING 

skim milk in TBST buffer for 1 h at room temperature, 

membranes were incubated with primary antibodies 

anti-GAPDH and ant-LOX (GAPDH, LOX antibodies 

were purchased from ProteinTech (Wuhan, China)) 

overnight at 4°C. Membranes were washed three times 

with TBST buffer and then incubated with peroxidase-

conjugated secondary antibodies for 1 h at room 

temperature. Specific antibody binding was detected  

by a chemiluminescence kit. 
 

EdU assay 
 

EdU assay was performed using the EdU–555 Cell 

Proliferation Assay Kit (Beyotime, Shanghai, China). 

Observation and photography were performed using  

a fluorescence microscope (Olympus, Tokyo, Japan). 
 

ROS 
 

To assess the intracellular ROS scavenging activity,  

the cells were stained with the fluorescent 2,7-dichloro-

dihydrofluorescein diacetate (DCFH-DA) probe with 

ROS assay kit as previously described [24]. In short, 

HT1080 and A204 cells were harvested and collected 

48 hours after transfection, and washed with serum free 

medium. Then, the cells were combined with 10 μ M 

DCFH-DA probes (Molecular Probes, Eugene, OR, 

USA) and were mixed in serum-free medium and 

incubated in 37°C darkness for 30 minutes, with slight 

stirring every 5 minutes. Then, we collected the cell 

granules, washed them with PBS three times, and  

BS is used for flow cytometry analysis. Induced green 

fluorescent nanoparticles from 10000 cells were recorded 

at 488 nm. FlowJ software was used to analyze the 

average fluorescence intensity. 
 

Transwell assays 
 

A Transwell assay was performed using a Transwell 

system (24 wells, 8 μm pore size with poly-carbonate 

membrane) according to the manufacturer’s instructions. 

First, HT1080 and A204 cells were seeded into the 

upper chamber with serum-free corresponding medium. 

Medium with 10% FBS was put into the lower compart-

ment, and the cells were allowed to migrate for 48 h. 

The remaining cells in the upper chamber were scraped 

out by a cotton swap. Cells were fixed with ice-cold 

methanol and stained with 0.1% crystal violet solution. 

The number of cells that migrated to the lower side was 

counted in five randomly selected fields under a light 

microscope. The cell number was counted and analyzed 

statistically. 
 

Cell line, RNA extraction and RT-qPCR 
 

Human skeletal muscle cell line (HSMC) and sarcoma 

cell line (A673) were purchased from the American Type 

Culture Collection (Manassas, VA, USA). Human 

fibrosarcoma cell line HT1080 and rhabdomyosarcoma 

cell line A204 were purchased from Procell (Wuhan, 

China). A673 and HSMC were cultured in RPMI 1640 

medium (Hyclone, Logan, UT, USA) and DMEM 

(Hyclone) respectively. HT-1080 and A204 were 

cultured in MEM (Procell) and McCoy’s 5A medium 

(Procell). All complete media were supplemented with 

10% fetal bovine serum (Gibco, Langley, OK, USA) 

and 1% anti-biotics (100 U/mL penicillin, 100 μg/mL 

streptomycin). The cells were maintained in an incubator 

with 37°C and 5% CO2. The total RNA of cell lines and 

tissue was extracted by Trizol method (Invitrogen, 

Waltham, MA, USA), and then the RNA was reverse 

transcribed by reverse transcription kit (Roche, Basel, 

Switzerland) to obtain cDNA; RT-qPCR was performed 

according to the instructions. The prime sequences of 

all genes were listed in Supplementary Table 4. 
 

Identification of different ferroptosis modification 

patterns in STS through consensus clustering 

analysis 
 

Prognostic ferroptosis regulators were screened using 

survival and survminer packages [25]. Then different 

ferroptosis modification patterns were calculated through 

consensus clustering analysis according to the expression 

of these 16 prognostic ferroptosis regulators. The above 

analysis was performed 1000 times to achieve stable 

clustering by ConsensusClusterPlus package. 
 

Differentially expressed genes analysis and 

connectivity map analysis 
 

DEGs were performed between different ferroptosis 

modification patterns by limma package [26]. Benjamini-

Hochberg procedure was performed to adjust multiple 

hypothesis [27]. The requirement for DEGs was: adjust 

p < 0.050 and logFC > 1 or logFC < −1. Connectivity Map 

(cMap) was applied to reveal the functional relationship 

between small molecule compounds, genes and disease 

status [28]. The above DEGs were subsequently used 

for cMap analysis to explore potential drugs for STS. p 

< 0.05 indicated statistical significance. 
 

Immune cell infiltration in STS 

 

The CIBERSORT algorithm was used to explore the 

immune infiltration in STS samples. LM22 signature 

was used here and the permutation was set to 1000. 

Then ESTIMATE package was further applied to 

calculate the STS purity score [29]. 
 

Functional enrichment analysis 
 

The 16 prognostic ferroptosis regulators were used for 

Gene Ontology (GO) analysis by clusterProfiler 
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package [30]. Significant pathways between different 

ferroptosis modification patterns were also identified 

using gene set enrichment analysis (GSEA) [31]. False 

discovery rate (FDR) < 0.05 was considered significant. 
 

Construction of the Fescore and prognostic 

nomogram 
 

To quantify the ferroptosis modification patterns in 

STS, an Fescore was constructed according to previous 

experience [32]. Detailed process of calculating  

Fescore was as follows: First, the DEGs between 

different ferroptosis modification patterns were used  

for consensus clustering analysis. Then Cox regression 

was performed to screen prognostic DEGs. Finally, 

PCA was performed to establish the Fescore on the 

basis of prognostic DEGs after z-score standardization 

and principal component 1 was regarded as signature 

score. The formula of Fescore is shown below: 
 

 1 1m nFescore pc pc=  −  

 

m was prognostic DEGs with Hazard Ratio (HR) < 1 

while n was prognostic DEGs with HR > 1. 
 

Besides, the prognostic nomogram to predict the 

survival of STS was constructed based on gender,  

age, race, metastatic status, margin status and Fescore 

by rms package (https://hbiostat.org/R/rms/). Bootstrap 

method was used with 1000 iterations and the 

calibration curves of survival of STS were also used to 

assess the predictive function of the nomogram. 
 

Statistical analysis 
 

Statistical Product and Service Solutions software (SPSS 

22.0) and R 3.6.2 were used for data analysis. The 

somatic mutation of STS was displayed using maftool 

package [33]. The relative location of 16 prognostic 

ferroptosis regulators in human chromosome was shown 

by Rcircos package [34]. The relationship between 

different ferroptosis regulators and different immune 

cells were displayed by corrplot package, respectively 

[35]. Cox regression analysis [36] was used to explore 

prognostic ferroptosis regulators, prognostic DEGs and 

evaluate the prognostic value in other 32 types of cancer 

in TCGA. Survival package and survminer package 

were used for survival analysis and setting cut-off point. 

The heatmaps were drawn by Pheatmap package [37]. 

Log-rank test was used to compare the survival rate. 

The receiver operating characteristic (ROC) curve for 

predicting the prognosis of STS and immune response 

were performed by using timeROC package and pROC 

package, respectively. FactoMineR package [38] was 
used for PCA. Protein-protein interaction analysis was 

performed and visualized by STRING and cytoscape 

[39], respectively and hub genes were identified based 

on degree > 4. Kruskal-Walls test was used to compare 

differences among different clusters and groups. p < 

0.05 was considered significant. 

 

RESULTS 
 
Overview of prognostic ferroptosis regulators 

variation in STS 

 
A total of 60 ferroptosis regulators were screened 

according to a recent research [23]. After univariate Cox 

analysis of these 60 regulators in STS, a total of 16 

regulators were significantly related to the prognosis of 

STS and were used for subsequent analysis. The result 

of univariate Cox regression analysis for prognostic 

ferroptosis regulators was shown in Figure 2A. A  

total of 16 ferroptosis regulators were considered to be 

closely related to the prognosis of STS: SQLE (p < 

0.001), NFE2L2 (p < 0.001), GSS (p < 0.001), HSPB1 

(p = 0.0013), NCOA4 (p = 0.002), HMGCR (p = 

0.0027), CBS (p = 0.0063), AIFM2 (p = 0.0065), 

CRYAB (p = 0.021), NQO1 (p = 0.021), FANCD2 (p = 

0.024), RPL8 (p = 0.027), ACSF2 (p = 0.029), ACACA 

(p = 0.031), CD44 (p = 0.031), SLC1A5 (p = 0.033). 

Then we explored the somatic mutation of these 

prognostic ferroptosis regulators and the results were 

shown in Figure 2B–2D. The main variant classification 

and type of somatic mutation in STS were mis- 

sense mutation and single nucleotide polymorphism, 

respectively. Besides, 6 STS samples had ferroptosis-

related mutations, accounting for 2.58% of the total STS 

samples (n = 237). The result of CNV analysis for these 

ferroptosis regulators was also shown in Figure 2E. 

CNV widely existed in these ferroptosis regulators. 

Among them, AIFM2 (56%), NCOA4 (48%) and 

CRYAB (47%) showed a higher frequency of CNV 

gain while GSS (40%), SQLE (32%) and RPL8 (30%) 

exhibited more CNV loss. We further analyzed the 

relationship between gene expression and CNV and  

the results were shown in Supplementary Figure 1. 

CNV was positively correlated with the expression  

of ferroptosis regulators. The relative location of 16 

ferroptosis regulators was also marked in Supplementary 

Figure 2 and the correlation among these ferroptosis 

regulators was shown in Figure 3A. Many ferroptosis 

regulators had significant linear correlations with other 

ferroptosis regulators at gene expression level. Since 

huge differences of these ferroptosis regulators were 

detected in STS through somatic mutation and CNV 

analysis, we further explored their expression differences 

between STS and normal skeletal tissue based on  

public database GSE17674 (Figure 3B). The results  

of PCA and sample correlation heatmap also showed 
that ferroptosis could well differentiate the normal and 

tumor samples (Supplementary Figure 3). The result 

turned out that most ferroptosis regulators showed 

https://hbiostat.org/R/rms/
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significant expression differences. GO functional 

enrichment analysis was also performed and the result 

was shown in Figure 3C. The ferroptosis regulators 

were enriched in response to oxidative stress (p < 0.001) 

and aging (p < 0.001). To further explore the trend of 

these ferroptosis regulators and their potential meaning, 

we also performed the functional enrichment analysis of 

ferroptosis regulators that were significantly increased 

in tumor and normal tissues, respectively. The results 

showed that ferroptosis regulators up-regulated in tumor 

 

 

 
Figure 2. Landscape of prognostic difference, somatic mutations, CNV of ferroptosis regulators in STS. (A) Univariate Cox 

regression analysis for each ferroptosis regulators in STS. (B) Variant classifications of mutations in STS. (C) Summary of somatic mutations 
in STS. (D) Summary of somatic mutations of ferroptosis regulators in STS. (E) CNV of 16 ferroptosis regulators in STS. 
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tissues were mainly enriched in cholesterol biosynthetic 

process while ferroptosis regulators up-regulated in normal 

tissues were mainly enriched in response to oxidative 

stress (Supplementary Figure 4 and Supplementary 

Table 5). Moreover, the RT-qPCR was also performed 

to explore the expression difference of ferroptosis 

regulators at tissue and cell line levels and the result 

was shown in Figure 4 and Supplementary Figure  

5. Similarly, compared with normal adjacent tissue, 

ferroptosis regulators exhibited significant expression 

differences in STS. The above results indicated that 

ferroptosis had a wide range of differential expression 

and variation in STS and different ferroptosis 

modification might regulate the clinical outcome and 

progression of STS. 

 

Identification of 2 ferroptosis modification patterns 

through consensus clustering analysis 

 

To further explore the role of ferroptosis in STS,  

2 ferroptosis modification patterns (Fe cluster A  

and B) were identified through consensus clustering  

analysis based on the expression of these 16 ferroptosis 

regulators (Figure 5A). Fe cluster A had 134 samples 

while Fe cluster B had 131 samples. The expression of 

16 ferroptosis regulators between different ferroptosis 

modification patterns was displayed as heatmap in 

Figure 5B. AIFM2 (p = 0.004), CRYAB (p < 0.001), 

HMGCR (p = 0.003), HSPB1 (p < 0.001), NFE2L2  

(p = 0.001), NQO1 (p = 0.003), SLC1A5 (p < 0.001) 

and SQLE (p < 0.001) were considered significantly 

differentially expressed between these 2 clusters. PCA 

also suggested a good clustering effect (Figure 5C). 

Then survival analysis was performed between Fe 

cluster A and B and the result was shown in Figure 5D. 

Compared with Fe cluster B, Fe cluster A showed a 

significantly better prognosis of STS (p = 0.0018). 

Considering the huge prognostic differences between 

these 2 clusters, GSEA was further used to explore 

potential pathways between different ferroptosis 

modification patterns and the results were shown in 

Figure 5E–5I. All enriched pathways were shown in 

Supplementary Tables 6, 7. Fe cluster A was correlated 

with α interferon (Enrichment score (ES) = 0.50, FDR 

= 0), γ interferon (ES = 0.36, FDR = 0.001) and p53 

pathway (ES = 0.27, FDR = 0.034) while WNT 

signaling (ES = −0.54, FDR = 0) and angiogenesis (ES 

= −0.55, FDR = 0) were related to Fe cluster B. These 

results were consistent with the result of survival 

analysis, which also proved that different ferroptosis 

modification patterns affected the prognosis of STS 

significantly. 

 

Exploration of immune infiltration between different 

ferroptosis modification patterns in STS 

 

In order to explore the role of ferroptosis in TME 

infiltration, a key factor regulating tumor immuno-

therapy, general immune infiltration of STS samples 

from TCGA-SARC were displayed in Supplementary 

Figure 6. Moreover, the 22 immune cells infiltration  

of different ferroptosis modification were shown in 

Figure 6A. Among them, dendritic resting cells (p < 

0.05), eosinophils (p < 0.05), CD8 T cells (p < 0.05) 

were found to have a higher expression in Fe cluster  

A. Meanwhile, mast resting cells (p < 0.0001), M0  

(p < 0.01) and M2 macrophages (p < 0.05) were  

highly expressed in Fe cluster B. The correlation  

plot of these 22 immune cells were also displayed in 

Figure 6B. Besides, the immune score and stromal score 

 

 
 

Figure 3. Expression, interactions and functional annotations of ferroptosis regulators in STS. (A) Correlation plot among 16 

regulators using Pearson correlation analysis. PPI analysis of ferroptosis regulators. (B) Expression of different ferroptosis regulators 
between normal samples and STS samples in GSE17674. (C) Functional annotations for 16 ferroptosis regulators. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p = 0. Abbreviation: ns: no significance. 
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of different ferroptosis modification were calculated. In 

Figure 6C, there was no significant difference in 

immune scores between the two ferroptosis modification 

patterns. In Figure 6D, the stromal score between two 

ferroptosis modification patterns showed statistically 

significant (p = 0.004). Moreover, the survival curve for 

different immune/stromal score in different ferroptosis 

modification patterns were displayed in Figure 6E,  

6F. Different immune score/ stromal score showed 

significant prognostic differences in different ferroptosis 

modification patterns (p < 0.0001). The above results 

revealed that different ferroptosis modification patterns 

affected the STS microenvironment and had a significant 

impact on the prognosis of STS. 

Establishment of the Fescore 

 

In order to further verify the stability of consensus 

clustering in STS, DEG analysis was performed 

between two Fe clusters and the result was shown  

in Figure 7A. 125 genes were upregulated in Fe cluster 

A while 49 genes were upregulated in Fe cluster  

B. The full list of these DEGs were shown in 

Supplementary Table 8. Functional enrichment analysis 

was performed based on these DEGs and the results 

showed that these DEGs were enriched in oxidoreductase 

activity-related pathways, which was necessary for 

ferroptosis occurrence (Supplementary Figure 7 and 

Supplementary Table 9). The heatmap of these DEGs 

 

 
 

Figure 4. Expression of each ferroptosis regulators between STS and adjacent tissue by RT-qPCR. (A–P) The relative expression 

of ACACA, ACSF2, AIFM2, CBS, CD44, CRYAB, FANCD2, GSS, HMGCR, HSPB1, NCOA4, NFE2L2, NQO1, RPL8, SLC1A5 and SQLE between 
tumor and normal tissues, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p = 0. Abbreviation: ns: no significance. 
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was also displayed in Figure 7B. These DEGs were 

further used for cMap analysis and the results were 

shown in Supplementary Table 10. Among them, 

sulfadimethoxine (p < 0.001) and withaferin A (p = 

0.016) might be potential targets treating STS. Then, 

consensus clustering analysis was performed based on 

the expression of these 174 DEGs and the results were 

shown in Figure 7C, 7D. Similarly, STS samples were 

divided into 2 new clusters (gene cluster A and B). 

Gene cluster A had 95 samples while gene cluster B  

had 170 samples. After comparing the results of two 

consensus clustering, 96.8% of samples from gene 

cluster A were found in Fe cluster A while 75.3% of 

samples from gene cluster B were also found in 

 

 
 

Figure 5. Identification of two ferroptosis modification patterns in STS. (A) The result of consensus clustering analysis in STS. (B) 

Heatmap of expression of 16 ferroptosis regulators in Fe clusters A and B. (C) The result of PCA of two Fe clusters. (D) Survival plot of two 
clusters in TCGA-SARC (p = 0.0018). (E) Enriched pathways in Fe cluster A: α interferon response. (F) Enriched pathways in Fe cluster A: γ 
interferon response. (G) Enriched pathways in Fe cluster A: p53 pathway. (H) Enriched pathways in Fe cluster B: WNT signaling. (I) Enriched 
pathways in Fe cluster B: angiogenesis. 
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Fe cluster B. These results indicated that our clustering 

result was relatively reliable. Further, the survival 

analysis between gene cluster A and B was performed 

(Figure 7E). Gene cluster A showed a better clinical 

outcome than gene cluster B (p = 0.0024). Besides, 174 

DEGs were used for univariate Cox regression analysis 

to screen prognostic DEGs. A total of 43 prognostic 

DEGs were identified and the result was shown in 

 

 
 

Figure 6. Effects of different ferroptosis modification patterns on immune infiltration of STS. (A) Comparison of immune cells-

infiltration among Fe clusters A and B. (B) Correlation plot of each immune cells in TCGA-SARC. (C) Comparison of immune score among Fe 
clusters A and B. (D) Survival analysis of different immune scores among Fe clusters A and B (A: Fe cluster A, B: Fe cluster B, Abbreviations: 
LSS: Low immune score; HSS: High immune score); (E) Comparison of stromal scores among Fe clusters A and B. (F) Survival analysis of 
different stromal scores among Fe clusters A and B. (A: Fe cluster A, B: Fe cluster B, Abbreviations: LIS: Low stromal score; HIS: High stromal 
score); *p < 0.05, **p < 0.01. 
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Supplementary Table 11. Then the Fescore of each STS 

sample was calculated through PCA and the results 

were shown in Figure 7F, 7G. Fe cluster A exhibited  

a significantly higher Fescore than Fe cluster B (p < 

0.001). Similarly, gene cluster A also had a significantly 

higher Fescore than gene cluster B (p < 0.001). After 

STS samples were divided into high and low Fescore 

groups, the corresponding survival analysis results were 

shown in Figure 7H. High Fescore group showed a 

significantly better prognosis of STS than low Fescore 

(p = 0.0025). Finally, a Sankey chart (Figure 7I) was 

drawn to summarize our above findings: Fe cluster A 

and gene cluster A were related to a better prognosis of 

STS and high Fescore while Fe cluster B and gene 

 

 
 

Figure 7. Construction of Fescore. (A) Volcano plot of DEGs between Fe cluster A and B. (B) The heatmap of expression of DEGs in Fe 
cluster A and B. (C) The result of consensus clustering analysis in STS based on 143 DEGs; The relationship between DEGs and these 
prognostic genes visualized as a Sankey diagram. (D) The cumulative distribution function plot in TCGA-SARC based on 143 DEGs. (E) 
Survival plot of gene clusters A and B in TCGA-SARC (p = 0.0024). (F) Comparison of Fescore among Fe clusters A and B. (G) Comparison of 
Fescore among gene clusters A and B. (H) Survival plot of high and low Fescore in TCGA-SARC (p = 0.0025). (I) The relationship between Fe 
clusters, gene clusters survival status and Fescore visualized as a Sankey diagram. 
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cluster B were related to a poorer outcome of STS and 

lower Fescore. The Fescore could quantify ferroptosis 

modification in STS and well indicate the clinical 

outcome of STS. 

 

Fescore was related to the prognosis of multiple 

tumors 

 

To further evaluate the prognostic value of Fescore  

in STS, the ROC curve of Fescore for predicting the 

survival of STS was shown in Figure 8A. Area under 

curve of Fescore predicting the 1 year, 3- and 5-years 

survival of STS were 0.85, 0.78, 0.75, respectively. 

Besides, a prognostic nomogram based on gender, age, 

race, metastasis, margin status and Fescore was also 

constructed (Figure 8B). The corresponding calibration 

curve of 1 year, 3- and 5-years survival of STS were 

also displayed in Figure 8C–8E. The nomogram could 

effectively predict the prognosis of STS. Besides, we 

further explored the prognostic value of Fescore in other 

 

 
 

Figure 8. Construction of a prognostic nomogram and validation of the Fescore in multiple tumors. (A) ROC curve of Fescore 

for predicting the 1-year, 3- and 5-years survival of STS. (B) The prognostic nomogram based on gender, age, race, metastasis, margin status 
and Fescore for predicting the prognosis of STS. (C–E) The calibration curve of 1-year, 3- and 5-years survival of STS. (F, G) Validation of 
Fescore across 33 types of tumors. 
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32 tumors from TCGA database. The results of 

univariate Cox analysis of Fescore in different tumors 

were shown in Figure 8F, 8G. Among them, Fescore 

was significantly related to the prognosis of TCGA-

ACC (p < 0.001), TCGA-BLCA (p = 0.012), TCGA-

CHOL (p = 0.032), TCGA-BRCA (p < 0.001), TCGA-

CESC (p < 0.001), TCGA-KICH (p = 0.024), TCGA-

KIRP (p = 0.018), TCGA-DLBC (p = 0.013), TCGA-

LIHC (p = 0.017), TCGA-LGG (p = 0.002), TCGA-

LUAD (p < 0.001), TCGA-LUSC (p = 0.001), TCGA-

MESO (p < 0.001), TCGA-PAAD (p < 0.001), TCGA-

READ (p = 0.033) and TCGA-UCS (p = 0.005).  

We also tested the Fescore on different subtypes of  

STS including undifferentiated sarcoma, Liposarcoma, 

Leiomyosarcoma, Synovial Sarcoma, Ewing Sarcoma, 

and Fibrosis sarcoma through survival analysis, tumor 

grading, CINSARC index and metastasis analysis  

and results were shown in Supplementary Figure 8. 

While the significant differences between high and  

low Fescore groups were not detected in liposarcoma, 

Fescore could be applied to the majority of STS 

subtypes and well predicted its prognosis and clinical 

characteristics. The above results showed that the 

Fescore could serve as a prognostic predictor in a 

variety of tumors. 

 
Fescore effectively predicted immunotherapy 

response 

 
Next, we explored the role of Fescore in predicting 

tumor immunotherapy response. The Fescore was cal-

culated for each sample in immunotherapy dataset 

IMvigor210 (PD-L1). Then survival curve among high 

and low Fescore groups was shown in Figure 9A. High 

Fescore group showed a better prognosis than low 

Fescore group (p = 0.0027). The relative percent of 

complete response (CR), Progressive disease (PD), 

partial response (PR) and stable disease (SD) in high 

Fescore group were 4.4%, 63.0%, 8.2% and 24.4%, 

respectively. Meanwhile in low Fescore group the 

relative percent of CR, PD, PR and SD were 2.0%, 

75.8%, 8.1% and 14.1%, respectively. The relative 

percent of CR/PR in high Fescore group and low 

Fescore group were 12.6% and 10.1%, respectively 

(Figure 9B, 9C). These results indicated that high 

Fescore was correlated with a better immunotherapy 

outcome. The AUC of Fescore for predicting the 

immunotherapy response in IMvigor210 was 0.800 

(Figure 9D). 

 
Besides, the Fescore of each sample in immunotherapy 

dataset GSE78220 (PD-1) was also calculated. Compared 

with high Fescore group, low Fescore group exhibited  

a poorer prognosis (Figure 9E, p = 0.17). The relative 

percent of CR, PD, PR in high Fescore group were 

25%, 40% and 35%, respectively. The proportion of PD 

and PR in low Fescore group were 62.5% and 37.5%, 

respectively. In high Fescore group CR/PR accounted 

for 60% while in low Fescore group CR/PR accounted 

for 37.5% (Figure 9F, 9G). The AUC of Fescore for 

predicting the immunotherapy response in GSE78220 

was 0.750 (Figure 9H). 

 

Moreover, the Fescore of samples from immunotherapy 

dataset GSE35640 (MAGE-A3) was calculated. In high 

Fescore group, 46.4% of the patients responded to 

immunotherapy while in low Fescore group this number 

dropped to 32.1% (Figure 9I). The AUC of Fescore for 

predicting the immunotherapy response in GSE35640 

was 0.763 (Figure 9J). The above results show that 

Fescore had a good predictive effect in different 

immunotherapy response. 

 
The downregulation of LOX inhibited the biological 

behavior of STS cells and increased the production 

of ROS 

 

In order to further prove the robustness of Fescore, we 

performed experiments to verify the function of hub 

gene that constructed the Fescore in STS and its 

relationship with ferroptosis. First, we conducted protein-

protein interaction analysis among the genes that 

constructed Fescore and further screened LOX as a  

hub gene based on degree more than 4 (Supplementary 

Figure 9). Then, we focused on whether LOX played  

an important role in ferroptosis. Then, the expression  

of LOX was knockdown in HT-1080 and A204 cells 

(Figure 10A, 10B). And EdU assay were used to evaluate 

the proliferative capacity of HT-1080 and A204 cells. 

When LOX was knocked down, the proliferation of  

HT-1080 and A204 cells were decreased (Figure 10C, 

10D). Besides, ROS levels in HT-1080 and A204  

cells were increased after LOX knockdown (Figure 

10E, 10F). Furthermore, the HT-1080 and A204 cells 

migration were assessed by Transwell assay and the 

results showed that knockdown of LOX were inhibited 

the migration of HT-1080 and A2044 cells (Figure  

10G, 10H). 

 

DISCUSSION 
 
Although STS is a rare tumor originated from 

mesenchymal tissue, there has been few breakthroughs 

to improve the prognosis of STS in recent decades. 

Ferroptosis, a special way of cell death, has been 

gradually found in a variety of cancer cells and 

promoting ferroptosis in tumor cells has become a novel 

treatment for cancer. For example, decreased KLF2 

attenuated ferroptosis in renal cell carcinoma by 
regulating GPX4 level [40]. Induced ferroptosis in 

gastric cancer could also lead to the higher sensitivity of 

gastric cancer cells to cisplatin [41]. However, the role 
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and modification characteristics of ferroptosis in STS 

are still unclear. Therefore, it is urgent to clarify the 

classification of STS related to ferroptosis and quantify 

the modification of ferroptosis in STS. 

 

In this study, we screened 16 ferroptosis regulators  

that were significantly related to the prognosis of STS, 

and further found that they showed great differences  

in both expression level and variation level. The 

functional enrichment analysis indicated differentially 

expressed ferroptosis regulators were enriched in 

cholesterol and glutathione biosynthetic processes and 

response to oxidative stress. A recent study revealed 

that glutathione biosynthesis and oxidative stress were 

closely related to the progression of ferroptosis [42]. In 

addition, previous research also reported that high 

cholesterol could make tumor cells resistant to 

ferroptosis, thus promoting tumor development [43]. 

Therefore, the differentially expressed ferroptosis 

regulators between normal and tumor tissues might  

also regulate ferroptosis through these pathways. SQLE, 

NFE2L2 and GSS were the ferroptosis regulators most 

related to the prognosis of STS. Further, the result of 

CNV implied that GSS and AIFM2 had the highest 

frequency of variation. A recent study showed that 

decreased expression of SQLE could lead to limited 

growth of liver cancer through p53 pathway [44]. 

Recent research indicated that reduced expression of 

NFE2L2 was related to a better prognosis of breast 

cancer [45]. In Chen’s study GSS was also determined 

 

 
 

Figure 9. The Fescore predicted immune response in immunotherapy datasets. (A) Survival plot of high and low Fescore in 

IMvigor210 dataset (p = 0.0027). (B) Relative percent of immune responses in high and low Fescore in IMvigor210 dataset. Abbreviations: 
CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease. (C) Relative percent of CR/PR and SD/PD in high 
and low Fescore in IMvigor210 dataset. (D) ROC curve for prediction of immune response in IMvigor210 dataset. (E) Survival plot of high 
and low Fescore in GSE78220 dataset (p = 0.17). (F) Relative percent of immune responses in high and low Fescore in GSE78220 dataset. 
Abbreviations: CR: complete response; PR: partial response; PD: progressive disease. (G) Relative percent of CR/PR and SD/PD in high and 
low Fescore in GSE78220 dataset. (H) ROC curve for prediction of immune response in GSE78220 dataset. (I) ROC curve for prediction of 
immune response in GSE35640 dataset. (J) Relative percent of CR/PR and SD/PD in high and low Fescore in GSE35640 dataset. 
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as a potential target against tumor by regulating 

polydatin [46]. Increased GSS was also found to 

enhance the resistance to cisplatin in ovarian cancer 

[47]. Activated AIFM2 could also accelerate the 

apoptosis in lung cancer [48]. These literature reports 

were consistent with our analysis, which also suggested 

that these ferroptosis regulators might be important for 

STS progression. 

 

 
 

Figure 10. Downregulation of LOX inhibits growth and increases ROS production in HT1080 and A204 cells. (A, B) qPCR 

analysis and Western blotting analysis were performed to detect the mRNA and protein levels of LOX in HT-1080 and A204 cells. (C, D) EdU 
assay was used to detect the proliferation of HT-1080 and A204 cells. (E, F) ROS levels were analyzed by flow cytometry in HT-1080 and 
A204 cells. (G, H) Transwell assay was performed to assess migration of HT-1080 and A204 cells. ***p < 0.001, ****p = 0. 
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By using consensus clustering, we identified two 

different ferroptosis modification patterns in STS.  

These two Fe clusters showed significant differences in 

prognosis and enrichment pathways. Fe cluster A was 

correlated with p53 pathway and had a better prognosis 

of STS while Fe cluster B was correlated with angio-

genesis and MYC pathway and showed a poorer outcome 

of STS. P53 pathway is a recognized pathway that inhibit 

tumor progression [49]. Angiogenesis has also been 

proven to be a key part of tumor progression. A recent 

study reported that angiogenesis was necessary for 

bladder cancer progression [50]. MYC is an oncogene 

accelerating tumor progression. A latest study revealed 

that MYC could inhibit tumor immunity in neuro-

blastoma and melanoma [51]. The immune infiltration 

among different ferroptosis modification revealed that 

M2 macrophage was enriched in Fe cluster B while CD8 

T cell was enriched in Fe cluster A. M2 macrophages 

have been proved to promote tumor development in 

many studies. A recent study implied that M2 macrophage 

polarization induced by FNDC5 was associated with 

hepatocellular carcinoma cell growth [52]. A former 

study also reported that M2 macrophage was related  

to poor prognosis of lung cancer [53]. These reports 

supported our results and indicated that different 

ferroptosis modification patterns were correlated with the 

prognosis and immune infiltration of STS. 

 

The cMap analysis screened sulfadimethoxine and 

withaferin A based on different ferroptosis modification 

patterns. A former study reported that sulfadimethoxine 

could be used as potential drugs against breast cancer 

and colon cancer [54]. Withaferin A, a promising com-

pound with anti-tumor potential, has been studied in 

many fields. A recent article showed that withaferin A 

could be a potential target treating breast cancer [55]. 

Moreover, withaferin A could also promote apoptosis in 

osteosarcoma cell [56]. These drugs might be potential 

targets against STS. The Fe clusters and gene clusters 

determined based on DEGs had a great intersection with 

each other, indicating the consensus clustering was 

relatively stable. Besides, high Fescore group showed a 

significantly better prognosis of STS than low Fescore. 

The prognostic nomogram also effectively predicted  

the survival of STS and the ROC curve of Fescore for 

predicting the prognosis of STS showed that Fescore 

was a good prognostic predictor. Fescore was also 

significant correlated with the prognosis of 16 other 

tumors from TCGA. Fescore played a protective role in 

some tumors while in other tumors, Fescore was a risk 

factor, which might be due to the heterogeneity between 

different tumors. 

 
Tumor immunotherapy has been controversial because 

of its limited application and high price. Therefore, 

exploring a good predictor to predict the outcome and 

prognosis of tumor immunotherapy is of great 

significance. Here we reported the Fescore could well 

predict the immunotherapeutic response in different 

kinds of immunotherapy (MAGE-A3, PD-1/L1). High 

Fescore also was correlated with better immuno-

therapeutic response and prognosis. Hence, the Fescore 

could also be used to predict the response to tumor 

immunotherapy, which contribute to the clinical 

application of tumor immunotherapy in the future. 

 
Our further experiments also showed that LOX, as  

the hub gene in Fescore, could regulate the STS 

progression. Iron is involved in the activation of LOX, 

an iron-containing enzyme that promotes the generation 

of lipid ROS such as lipid peroxides [57]. Increased 

lipid peroxidation subsequently leads to damage and 

rupture of cellular and mitochondrial membranes, 

causing ferroptosis. EDU proliferation experiments and 

Transwell experiments confirmed that LOX had an 

important value in STS. The ROS experiment showed 

that LOX played a role through ferroptosis and affected 

the prognosis of tumors, which was also consistent with 

Shintoku’s reports [57]. 

 
Although we determined different modifications of 

ferroptosis in STS and established the Fescore to 

quantify the modification of ferroptosis, our study still 

had limitations. First of all, the modifications of 

ferroptosis in STS were identified by public datasets, 

and more clinical samples were needed to perform trans-

criptome sequencing to validate the Fescore. Secondly, 

we also noticed that due to different sequencing methods, 

population baselines (race, gender, stage, etc.), and 

sampling methods, there was some heterogeneity among 

datasets. Although the Fescore could well predict the 

prognosis and immunotherapy response in different 

cohorts, larger STS cohorts are needed for further 

research. Thirdly, due to the difference of subtypes of 

STS, few immune cells had different infiltration between 

the ferroptosis modification patterns. We are currently 

collecting clinical STS samples from our department and 

will continue to conduct ferroptosis-related research. We 

also hope more researchers will pay attention to this field. 

 
CONCLUSION 

 
In summary, we identified different modifications  

of ferroptosis in STS and constructed the Fescore to 

quantify the modification of ferroptosis. The Fescore 

was significantly related to the immune infiltration and 

prognosis of STS and immunotherapy response. The 

Fescore was also successfully validated in multiple 
tumors and STS subtypes. Therefore, the Fescore could 

provide a new prospect for precision medicine and 

tumor immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The relationship between CNV and expression of ferroptosis regulators. 
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Supplementary Figure 2. The relative location of 16 ferroptosis regulators. 

 
 

 
 

Supplementary Figure 3. The PCA (A) and sample correlation heatmaps (B) of normal and tumor samples based on expression of 

ferroptosis regulators. 
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Supplementary Figure 4. Functional enrichment analysis of differentially expressed ferroptosis regulators between normal 
and tumor tissues. (A) Biological processes of upregulated ferroptosis regulators in tumor tissue. (B) Cell component of up-regulated 

ferroptosis regulators in normal tissue. 
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Supplementary Figure 5. Expression of each ferroptosis regulators between STS cell and normal skeletal cell by RT-qPCR. 
(A–P) The relative expression of ACACA, ACSF2, AIFM2, CBS, CD44, CRYAB, FANCD2, GSS, HMGCR, HSPB1, NCOA4, NFE2L2, NQO1, RPL8, 
SLC1A5 and SQLE between tumor and normal cells, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p = 0. 
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Supplementary Figure 6. Immune infiltration of each sample in TCGA-SARC. 

 
 

 
 

Supplementary Figure 7. Functional enrichment analysis of DEGs between two ferroptosis modification patterns. 
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Supplementary Figure 8. Validation of Fescore in different subtypes of STS. (A) The survival plot between high and low Fescore 

group in UDS. (B, C) The survival plot and grading differences between high and low Fescore groups in LMS. (D, E) The metastasis and 
CINSARC index between high and low Fescore groups in SS. (F) The survival plot between high and low Fescore group in ES. (G, H) The 
metastasis and CINSARC index between high and low Fescore groups in FS. (I, J) The metastasis and grading between high and low Fescore 
groups in FS. 
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Supplementary Figure 9. Protein-protein interaction analysis of genes that constructed Fescore. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 8. 

 

Supplementary Table 1. Basic information of datasets included in this study. 

Accession number/ 

Source 
Platform 

Number of 

patients 

Number of 
samples used in 

this study 

Research 

object 

Survival 

data 

GSE21122 
Affymetrix Human Genome U133  
Plus 2.0 Array 

62 158 Human OS 

GSE35640 
Affymetrix Human Genome U133  
Plus 2.0 Array 

65 56 Human OS 

GSE78220 Illumina RNAseq 28 28 Human OS 

IMvigor210 Illumina RNAseq 348 282 Human OS 

GSE119041 
Affymetrix Human Genome U133  
Plus 2.0 Array 

50 50 Human OS 

GSE40021 Agilent-014850 58 58 Human NA 

GSE159848 Agilent-014850 50 50 Human OS 

GSE159847 Agilent-014850 87 87 Human OS 

GSE17618 
Affymetrix Human Genome U133  
Plus 2.0 Array 

55 44 Human OS 

GSE71118 
Affymetrix Human Genome U133  
Plus 2.0 Array 

312 58 Human OS 

TCGA: SARC Illumina RNAseq 265 262 Human OS 

TCGA: LAML Illumina RNAseq 151 132 Human OS 

TCGA: ACC Illumina RNAseq 79 79 Human OS 

TCGA: CHOL Illumina RNAseq 45 45 Human OS 

TCGA: BLCA Illumina RNAseq 430 425 Human OS 

TCGA: BRCA Illumina RNAseq 1217 1214 Human OS 

TCGA: CESC Illumina RNAseq 309 296 Human OS 

TCGA: COAD Illumina RNAseq 512 487 Human OS 

TCGA: UCEC Illumina RNAseq 583 567 Human OS 

TCGA: ESCA Illumina RNAseq 173 172 Human OS 

TCGA: GBM Illumina RNAseq 173 167 Human OS 

TCGA: UCS Illumina RNAseq 56 54 Human OS 

TCGA: HNSC Illumina RNAseq 546 545 Human OS 

TCGA: KICH Illumina RNAseq 89 87 Human OS 

TCGA: KIRC Illumina RNAseq 607 602 Human OS 

TCGA: KIRP Illumina RNAseq 321 318 Human OS 

TCGA: DLBC Illumina RNAseq 48 47 Human OS 

TCGA: LIHC Illumina RNAseq 424 418 Human OS 

TCGA: LGG Illumina RNAseq 529 523 Human OS 

TCGA: LUAD Illumina RNAseq 585 572 Human OS 

TCGA: LUSC Illumina RNAseq 550 542 Human OS 

TCGA: SKCM Illumina RNAseq 472 458 Human OS 

TCGA: MESO Illumina RNAseq 86 84 Human OS 

TCGA: UVM Illumina RNAseq 80 80 Human OS 

TCGA: OV Illumina RNAseq 379 378 Human OS 

TCGA: PAAD Illumina RNAseq 182 181 Human OS 

TCGA: PCPG Illumina RNAseq 186 186 Human OS 

TCGA: PRAD Illumina RNAseq 551 551 Human OS 

TCGA: READ Illumina RNAseq 177 167 Human OS 

TCGA: STAD Illumina RNAseq 407 381 Human OS 

TCGA: TGCT Illumina RNAseq 156 139 Human OS 

TCGA: THYM Illumina RNAseq 121 118 Human OS 

TCGA: THCA Illumina RNAseq 568 567 Human OS 

Abbreviation: NA: Not applicable. 
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Supplementary Table 2. The list of ferroptosis regulators. 

ACSL4 

AKR1C1 

AKR1C2 

AKR1C3 

ALOX15 

ALOX5 

ALOX12 

ATP5MC3 

CARS 

CBS 

CD44 

CHAC1 

CISD1 

CS 

DPP4 

FANCD2 

GCLC 

GCLM 

GLS2 

GPX4 

GSS 

HMGCR 

HSPB1 

CRYAB 

LPCAT3 

MT1G 

NCOA4 

PTGS2 

RPL8 

SAT1 

SLC7A11 

FDFT1 

TFRC 

TP53 

EMC2 

AIFM2 

PHKG2 

HSBP1 

ACO1 

FTH1 

STEAP3 

NFS1 

ACSL3 

ACACA 

PEBP1 

ZEB1 

SQLE 
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FADS2 

NFE2L2 

KEAP1 

NQO1 

NOX1 

ABCC1 

SLC1A5 

GOT1 

G6PD 

PGD 

IREB2 

HMOX1 

ACSF2 

 

 

Supplementary Table 3. The sequences of siRNA for LOX (5′ to 3′). 

siLOX-1: GCAGGACTAGATGGAGCAA 

siLOX-2: TGGGACGAGTCAATCAACT 

siLOX-3: GATGGTGGATTACAATGGA 

 

 

Supplementary Table 4. The prime sequences of all genes. 

Genes Prime sequences (5′–3′) 

ACACA-F AGGTGCCTAGAGGGTTGAAGA 

ACACA-R TCGGCCCTGCTTTACTAGGT 

ACSF2-F GCAGGCAGAGGATTTCAGTTC 

ACSF2-R TTCATGGAGGACGACCAAGG 

AIFM2-F TGATTCTCTGCACCGGCATC 

AIFM2-R GCTGGCTAGTCTGCTCTCAA 

CBS-F GACCAAGTTCCTGAGCGACA 

CBS-R CGGAGGATCTCGATGGTGTG 

CD44-F CTGCCGCTTTGCAGGTGTA 

CD44-R CATTGTGGGCAAGGTGCTATT 

CRYAB-F GGGGTCCTCACTGTGAATGG 

CRYAB-R TTCACGGGTGATGGGAATGG 

FANCD2-F ACATACCTCGACTCATTGTCAGT 

FANCD2-R TCGGAGGCTTGAAAGGACATC 

GSS-F GGTGAGCTATGCCCCATTCA 

GSS-R CACCAGAGCACTGGGCAAT 

HMGCR-F TTCGGTGGCCTCTAGTGAGA 

HMGCR-R GATGGGAGGCCACAAAGAGG 

HSPB1-F GCTTCACGCGGAAATACACG 

HSPB1-R GTGATCTCGTTGGACTGCGT 

NCOA4-F GAGGTGTAGTGATGCACGGAG 

NCOA4-R GACGGCTTATGCAACTGTGAA 

NFE2L2-F TCAGCGACGGAAAGAGTATGA 
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NFE2L2-R CCACTGGTTTCTGACTGGATGT 

NQO1-F GACCTTGTGATATTCCAGAGTAAGA 

NQO1-R CCAGGCGTTTCTTCCATCCT 

RPL8-F TGTGATCCGTGGACAGAGGA 

RPL8-R GATCCCGGAAGACCACCTTG 

SLC1A5-F CACGTCCCACCCAGAGAAAC 

SLC1A5-R TGTCCGAAAGCTGGGAGTTC 

SQLE-F GTGCTGGTGTTCCTCTCGCT 

SQLE-R ATTGGTTCCTTTTCTGCGCCT 

LOX-F GGATACGGCACTGGCTACTT 

LOX-R TCTGGGTGTTGGCATCAAGC 

GAPDH-F GCACCGTCAAGGCTGAGAAC 

GAPDH-R TGGTGAAGACGCCAGTGGA 

 

 

Supplementary Table 5. Functional enrichment analysis of differentially expressed ferroptosis regulators between 
normal and tumor tissues. 

ID Description P-value p.adjust q-value geneID Count 

GO:0006979 response to oxidative stress 5.5E-05 0.012817 0.004632 CRYAB/NQO1/HSPB1 3 

GO:0045540 
regulation of cholesterol 
biosynthetic process 

2.14E-06 0.000601 0.000344 ACACA/HMGCR/SQLE 3 

GO:0106118 
regulation of sterol biosynthetic 
process 

2.14E-06 0.000601 0.000344 ACACA/HMGCR/SQLE 3 

GO:0090181 
regulation of cholesterol metabolic 
process 

4.32E-06 0.000742 0.000424 ACACA/HMGCR/SQLE 3 

GO:0006695 cholesterol biosynthetic process 7.32E-06 0.000742 0.000424 ACACA/HMGCR/SQLE 3 

GO:1902653 
secondary alcohol biosynthetic 
process 

7.62E-06 0.000742 0.000424 ACACA/HMGCR/SQLE 3 

GO:0016126 sterol biosynthetic process 9.24E-06 0.000742 0.000424 ACACA/HMGCR/SQLE 3 

GO:1902930 
regulation of alcohol biosynthetic 
process 

9.24E-06 0.000742 0.000424 ACACA/HMGCR/SQLE 3 

GO:0050810 
regulation of steroid biosynthetic 
process 

1.49E-05 0.001048 0.000599 ACACA/HMGCR/SQLE 3 

GO:0019218 
regulation of steroid metabolic 
process 

3.32E-05 0.001965 0.001123 ACACA/HMGCR/SQLE 3 

GO:0006750 glutathione biosynthetic process 3.5E-05 0.001965 0.001123 GSS/NFE2L2 2 

GO:0019184 
nonribosomal peptide biosynthetic 
process 

4.39E-05 0.002245 0.001282 GSS/NFE2L2 2 

GO:0008203 cholesterol metabolic process 5.85E-05 0.002741 0.001566 ACACA/HMGCR/SQLE 3 

GO:1902652 
secondary alcohol metabolic 
process 

6.45E-05 0.00279 0.001594 ACACA/HMGCR/SQLE 3 

GO:0016125 sterol metabolic process 7.91E-05 0.003176 0.001814 ACACA/HMGCR/SQLE 3 

GO:0046165 alcohol biosynthetic process 9.26E-05 0.003468 0.001981 ACACA/HMGCR/SQLE 3 

GO:0044272 
sulfur compound biosynthetic 
process 

0.000122 0.004167 0.00238 GSS/ACACA/NFE2L2 3 

GO:0006694 steroid biosynthetic process 0.00013 0.004167 0.00238 ACACA/HMGCR/SQLE 3 

GO:0046890 
regulation of lipid biosynthetic 
process 

0.000133 0.004167 0.00238 ACACA/HMGCR/SQLE 3 

GO:0010664 
negative regulation of striated 
muscle cell apoptotic process 

0.000209 0.006193 0.003538 HMGCR/NFE2L2 2 

GO:0042398 
cellular modified amino acid 
biosynthetic process 

0.000312 0.008767 0.005008 GSS/NFE2L2 2 



www.aging-us.com 11443 AGING 

GO:1901617 
organic hydroxy compound 
biosynthetic process 

0.000337 0.009007 0.005145 ACACA/HMGCR/SQLE 3 

GO:0006749 glutathione metabolic process 0.000392 0.009717 0.005551 GSS/NFE2L2 2 

GO:0010665 
regulation of cardiac muscle cell 
apoptotic process 

0.000406 0.009717 0.005551 HMGCR/NFE2L2 2 

GO:0010656 
negative regulation of muscle cell 
apoptotic process 

0.000435 0.009717 0.005551 HMGCR/NFE2L2 2 

GO:0010662 
regulation of striated muscle cell 
apoptotic process 

0.000435 0.009717 0.005551 HMGCR/NFE2L2 2 

GO:0010659 
cardiac muscle cell apoptotic 
process 

0.00045 0.009717 0.005551 HMGCR/NFE2L2 2 

GO:0010658 
striated muscle cell apoptotic 
process 

0.00048 0.009991 0.005707 HMGCR/NFE2L2 2 

GO:0007568 aging 0.000552 0.011088 0.006334 GSS/HMGCR/NFE2L2 3 

GO:0051188 cofactor biosynthetic process 0.000578 0.011199 0.006398 GSS/ACACA/NFE2L2 3 

GO:0008202 steroid metabolic process 0.000604 0.011317 0.006465 ACACA/HMGCR/SQLE 3 

GO:0006066 alcohol metabolic process 0.000797 0.014442 0.00825 ACACA/HMGCR/SQLE 3 

GO:0006790 sulfur compound metabolic process 0.000849 0.014902 0.008513 GSS/ACACA/NFE2L2 3 

 

 

Supplementary Table 6. Enriched pathways in Fe cluster A. 

NAME ES NES NOM p-val FDR q-val 

HALLMARK_MYOGENESIS 0.634332 3.307229 0 0 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.604331 3.160266 0 0 

HALLMARK_ADIPOGENESIS 0.479207 2.496 0 0 

HALLMARK_INTERFERON_ALPHA_RESPONSE 0.503841 2.335555 0 0 

HALLMARK_FATTY_ACID_METABOLISM 0.446815 2.273059 0 0 

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.560496 2.267417 0 0 

HALLMARK_BILE_ACID_METABOLISM 0.445523 2.114106 0 1.14E-04 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.389252 2.058489 0 3.29E-04 

HALLMARK_UV_RESPONSE_UP 0.398036 2.016938 0 2.93E-04 

HALLMARK_HEME_METABOLISM 0.357601 1.886102 0 8.47E-04 

HALLMARK_INTERFERON_GAMMA_RESPONSE 0.355599 1.861583 0 8.33E-04 

HALLMARK_KRAS_SIGNALING_DN 0.349546 1.806281 0 0.00131 

HALLMARK_XENOBIOTIC_METABOLISM 0.335465 1.736298 0.0020408 0.002037 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.321899 1.661753 0 0.003715 

HALLMARK_PEROXISOME 0.35326 1.639113 0.001996 0.004375 

HALLMARK_APICAL_JUNCTION 0.311443 1.632621 0 0.00443 

HALLMARK_COAGULATION 0.304079 1.484184 0.0105042 0.018053 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.331957 1.471765 0.0347648 0.01924 

HALLMARK_P53_PATHWAY 0.272602 1.404251 0.0217822 0.033998 

HALLMARK_SPERMATOGENESIS 0.228275 1.128314 0.246124 0.227237 
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Supplementary Table 7. Enriched pathways in Fe cluster B. 

NAME ES NES NOM p-val FDR q-val 

HALLMARK_MYC_TARGETS_V2 −0.71611 −3.08285 0 0 

HALLMARK_TGF_BETA_SIGNALING −0.68269 −2.83247 0 0 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE −0.55997 −2.68873 0 0 

HALLMARK_MYC_TARGETS_V1 −0.5152 −2.67385 0 0 

HALLMARK_PROTEIN_SECRETION −0.55427 −2.59826 0 0 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION −0.48943 −2.56332 0 0 

HALLMARK_G2M_CHECKPOINT −0.4862 −2.55363 0 0 

HALLMARK_UV_RESPONSE_DN −0.45711 −2.2864 0 0 

HALLMARK_KRAS_SIGNALING_UP −0.42344 −2.21573 0 0 

HALLMARK_NOTCH_SIGNALING −0.59168 −2.17589 0 0 

HALLMARK_MITOTIC_SPINDLE −0.4068 −2.15244 0 0 

HALLMARK_WNT_BETA_CATENIN_SIGNALING −0.54391 −2.14052 0 0 

HALLMARK_MTORC1_SIGNALING −0.4043 −2.11334 0 0 

HALLMARK_ANGIOGENESIS −0.55215 −2.08895 0 0 

HALLMARK_E2F_TARGETS −0.39287 −2.08114 0 0 

HALLMARK_GLYCOLYSIS −0.38931 −2.03895 0 0 

HALLMARK_INFLAMMATORY_RESPONSE −0.37657 −1.96033 0 0.00E+00 

HALLMARK_TNFA_SIGNALING_VIA_NFKB −0.34199 −1.82698 0 2.39E-04 

HALLMARK_ALLOGRAFT_REJECTION −0.33756 −1.7869 0.0020534 0.000825 

HALLMARK_HEDGEHOG_SIGNALING −0.47323 −1.76656 0.0094162 0.001076 

HALLMARK_ANDROGEN_RESPONSE −0.36871 −1.71922 0.0020747 0.001525 

HALLMARK_COMPLEMENT −0.3241 −1.7179 0 0.001456 

HALLMARK_IL2_STAT5_SIGNALING −0.32191 −1.70063 0 0.001571 

HALLMARK_HYPOXIA −0.30643 −1.62027 0.0019342 0.00444 

HALLMARK_APOPTOSIS −0.29261 −1.49237 0.001992 0.013702 

HALLMARK_APICAL_SURFACE −0.35631 −1.40262 0.0677656 0.031103 

HALLMARK_DNA_REPAIR −0.27639 −1.39083 0.0291971 0.03286 

HALLMARK_IL6_JAK_STAT3_SIGNALING −0.29632 −1.37348 0.0384615 0.037574 

 

 

Supplementary Table 8. The full list of DEGs between Fe cluster A and B. 
 

 

Supplementary Table 9. Functional enrichment analysis of DEGs between two ferroptosis modification patterns. 

ID Description p-value p.adjust q-value geneID Count 

GO:0005201 
extracellular matrix 

structural constituent 
8.44286E-12 3.05E-09 2.81E-09 

POSTN/COL1A1/COL5A1/COL12A1/ 

SBSPON/DCN/FBLN2/NPNT/ 

HMCN2/MXRA5/SRPX2/LUM/ 

MFAP2/PCOLCE/PRELP 

15 

GO:0008307 
structural constituent 

of muscle 
4.38733E-09 7.92E-07 7.3E-07 

MYL9/CSRP1/SYNM/PDLIM3/ 

MYH11/TPM1/TPM2/MYOM1 
8 

GO:0003779 actin binding 1.51403E-07 1.82E-05 1.68E-05 

CAP2/SORBS1/ADD3/CNN1/SYNPO2/ 

FLNA/LMOD1/PDLIM3/MYH11/MYLK/ 

MICAL1/FSCN1/TAGLN/TMOD1/ 

TPM1/TPM2/MYOM1 

17 
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GO:0051015 actin filament binding 7.37154E-06 0.000602 0.000555 
ADD3/FLNA/MYH11/MICAL1/FSCN1/ 

TAGLN/TMOD1/TPM1/TPM2/MYOM1 
10 

GO:0016641 

oxidoreductase 

activity, acting on the 

CH-NH2 group of 

donors, oxygen as 

acceptor 

8.33687E-06 0.000602 0.000555 LOX/MAOA/MAOB/AOC3 4 

GO:0016638 

oxidoreductase 

activity, acting on the 

CH-NH2 group of 

donors 

2.1615E-05 0.001301 0.001198 LOX/MAOA/MAOB/AOC3 4 

GO:0048407 
platelet-derived 

growth factor binding 
9.36937E-05 0.004832 0.004452 COL1A1/COL5A1/PDGFRA 3 

 

 

Supplementary Table 10. Cmap analysis for DEGs. 

Cmap name Mean n Enrichment p Specificity 
Percent 
non-null 

Doxylamine −0.655 5 −0.888 0.00006 0 100 

Sulfadimethoxine −0.399 5 −0.851 0.00022 0 60 

Carteolol −0.266 4 −0.837 0.00123 0 50 

3-acetamidocoumarin −0.352 4 −0.837 0.00125 0.026 50 

PHA-00851261E 0.421 8 0.627 0.00154 0 75 

Sulfaquinoxaline −0.646 3 −0.899 0.00192 0.0062 100 

AH-6809 −0.707 2 −0.961 0.0033 0.0056 100 

Harmine 0.31 4 0.796 0.00342 0.0076 50 

Karakoline −0.371 6 −0.653 0.00475 0 50 

Difenidol 0.455 3 0.863 0.00481 0.0152 66 

Sulfadiazine −0.528 5 −0.684 0.00717 0.0263 80 

Isoniazid −0.388 5 −0.672 0.00885 0.0497 60 

Cefotiam −0.282 4 −0.741 0.00891 0.0065 50 

Hydrocortisone 0.382 3 0.834 0.00915 0 66 

Etiocholanolone −0.402 6 −0.612 0.01124 0.1948 66 

Mafenide −0.291 5 −0.654 0.0122 0.018 60 

STOCK1N-35874 0.649 2 0.92 0.01272 0.0435 100 

Proscillaridin 0.491 3 0.813 0.01302 0.0842 66 

Withaferin A 0.624 4 0.71 0.01452 0.1947 75 

16-phenyltetranorprostaglandin E2 −0.535 4 −0.708 0.0151 0.0298 75 

Sitosterol 0.261 4 0.7 0.01667 0.0172 50 

PF-00539745-00 −0.384 3 −0.798 0.01703 0.0815 66 

Puromycin 0.474 4 0.695 0.01818 0.2472 75 

Ticarcillin 0.366 3 0.789 0.01889 0.0133 66 

Flunarizine 0.35 4 0.691 0.01898 0.034 50 

Gliquidone 0.519 4 0.69 0.01932 0 75 

Cyproterone 0.328 4 0.677 0.02367 0.024 50 

Alverine −0.354 4 −0.672 0.02586 0 75 

Clenbuterol −0.407 5 −0.598 0.03004 0.0397 60 

Oxybenzone −0.369 4 −0.657 0.03191 0.0986 50 

Practolol 0.258 4 0.649 0.03599 0.0259 50 
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Abamectin −0.493 4 −0.646 0.0375 0.0617 75 

Diazoxide −0.356 5 −0.574 0.04189 0.061 60 

PHA-00767505E 0.433 4 0.636 0.04307 0.0387 75 

Harmalol −0.479 3 −0.724 0.04333 0.052 66 

Sparteine 0.481 4 0.635 0.04345 0.0072 75 

Econazole 0.242 4 0.632 0.04552 0.1949 75 

Nialamide 0.429 4 0.63 0.04677 0.036 75 

5255229 0.34 2 0.847 0.0472 0.0474 50 

Indoprofen −0.314 4 −0.626 0.04852 0.1333 50 

Colecalciferol −0.409 4 −0.625 0.04886 0.0272 75 

Cinnarizine 0.549 4 0.625 0.04933 0.0584 75 

 

 

Supplementary Table 11. Full list of 43 prognostic DEGs. 

 cox_HR 

LIMS2 0.382144 

AOC3 0.481967 

SOD3 0.495754 

C11orf96 0.543024 

HMCN2 0.543768 

A2M 0.546305 

GADD45G 0.554395 

HSPB8 0.573024 

CLU 0.573242 

MYOC 0.582298 

RASL11A 0.582661 

CSRP1 0.59421 

MRVI1 0.618517 

PARM1 0.622781 

RASSF3 0.629226 

SLC24A3 0.634694 

PPP1R12B 0.634896 

CHRDL2 0.641911 

HSPB2 0.642656 

RBPMS 0.645255 

RASL12 0.649648 

SGCA 0.649931 

MICAL1 0.652491 

LMOD1 0.65268 

HMGN2P19 0.65459 

MYL9 0.663697 

HSPB1 0.663706 

ALDH1B1 0.666453 

PRELP 0.667319 

DLK1 1.499914 

POSTN 1.530762 

COL5A1 1.53084 
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SRPX2 1.543947 

FSCN1 1.587907 

CREB3L1 1.594449 

CCDC8 1.631176 

GOLM1 1.63245 

CPXM1 1.658367 

MDFI 1.665139 

PYCR1 1.732861 

LOX 1.819126 

MFAP2 1.903821 

LRRC17 2.177627 

 

 


