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INTRODUCTION 
 

Stroke is the third most common contributor to disability 

[1]. The incidence of CI accounts for approximately 

87% of all stroke cases [2]. Stroke often leads to severe 

motor dysfunction and cognitive impairment. Cognitive 

impairment after stroke is highly prevalent (15%– 

70%) [3]. The prevalence of stroke increases during 

aging; therefore, CI occurs more often among elderly 

individuals. In recent years, stroke-related cognitive 

impairment has seriously endangered the health of  

the elderly [4]. Effective treatment of neurovascular 

dysfunction of CI has attracted increasing attention. The 

neurovascular function of the hippocampus plays an 

important role in the pathogenesis of CI [5]. CI induces 

inflammation, apoptosis, glial overactivation, blood 

brain barrier (BBB) and neuron disruption in the 

hippocampus, contributing to cognitive decline [6]. The 

neurovascular integrity in the hippocampus is critical 

for learning and memory and susceptible to ischemia 

and hypoxia [5]. Therefore, neurovascular protection in 

the hippocampus is extremely important for the 

treatment of CI. 

 
AKT, a serine-threonine kinase, plays a vital role in  

cell death/survival. Phosphorylated/activated AKT is 

decreased in focal ischemia with aging [7]. Activated 

AKT exhibits a wide range of phosphorylation cascade 
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ABSTRACT 
 

Alisol A, a triterpene isolated from Alisma Orientale, has been shown to exhibit anti-inflammatory effects 
and vascular protection. This study was designed to observe the effect of alisol A on cerebral ischemia  
(CI)-induced neurovascular dysfunction in the hippocampus and to further explore the potential mechanisms. 
The results showed that alisol A treatment improved the neurological deficits and cognitive impairment of 
CI mice. Alisol A reduced gliosis and improved neuronal/glial metabolism. Accordingly, alisol A inhibited 
inflammatory factors IL-6 and IL-1β induced by overactivation of astrocytes and microglia, thus protecting the 
neurovasculature. Furthermore, alisol A promoted the survival of neurons by decreasing the ratio of Bax/ 
Bcl-2, and protected brain microvascular endothelial cells (BMECs) by upregulating the expression of ZO-1, 
Occludin and CD31. The phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β) 
increased after treatment with alisol A. To explore the underlying mechanism, AKT was inhibited. As 
expected, the neurovascular protection of alisol A above was eliminated by AKT inhibition. The present study 
primarily suggested that alisol A could exert neurovascular protection in the hippocampus of CI mice by 
activating the AKT/GSK3β pathway and may potentially be used for the treatment of CI. 
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events and phosphorylates GSK3β. GSK3β plays a 

pivotal role in regulating the balance between pro-

inflammatory and anti-inflammatory effects. GSK3β  

is inactivated by PI3K/AKT activation, which protects 

the brain by promoting angiogenesis, neurogenesis, 

anti-apoptosis, and anti-inflammation. Activation of  

the AKT/GSK3β signaling pathway enhanced neuro-

vascular restoration against ischemic brain injury [8]. 

Furthermore, inhibition of AKT/GSK3β was involved 

in ischemia-induced cognitive impairment [9]. These 

findings suggest that the AKT/GSK3β pathway plays  

a key role in neurovascular protection and cognitive 

improvement. 

 

Traditional Chinese medicine (TCM) has multiple 

targets for improving CI [10]. In recent years, the 

pharmacology of Alisma Orientale has attracted 

increasing attention. Alisma Orientale are used to treat 

cardiovascular diseases, inflammatory diseases, and 

prevent atherosclerosis [11]. Triterpenoids isolated  

from the dried rhizomes of Alisma species have been 

shown to have antiproliferative, antiallergic, anti-

bacterial and antiviral properties [12]. Alisol A is one of 

the main single component extracts of Alisma Orientale 

and shows significant anti-inflammatory and anti-

atherosclerosis effects. It has been reported that alisol A 

is a multitargeted agent that exerts vascular protection 

by inhibiting inflammation [13]. The protein-protein 

interaction network analysis showed that AKT is one of 

the core therapeutic targets of Alisma Orientale [14]. 

The PI3K/AKT pathway is the central mechanism of 

Alisma Orientale [12]. These findings suggest that AKT 

may be one of the key targets of alisol A in the 

treatment of CI-induced neurovascular destruction. 

Therefore, we speculated that alisol A might play a role 

in neurovascular protection and alleviate cognitive 

decline by activating the AKT/GSK3β pathway. 

 

MATERIALS AND METHODS 
 

Animals 

 

C57BL/6J mice (n = 50) (male, weighing 22– 

25 g, 12 weeks) were obtained from GemPharmatech 

(Jiangsu, China). All procedures, protocols, treatments 

and sampling were approved by the Ethics Committee 

of Fujian University of Traditional Chinese Medicine 

and were performed in strict accordance with the animal 

care and use guidelines of the National Institutes  

of Health. Permit number: SCXK (Su) 2018-0008). 

Animal ethics approval number: 2020091. The CI model 

was produced as described previously [15]. Mice were 

anesthetized with 1% pentobarbital sodium (0.3 ml/100 

g), and both carotid arteries were occluded for 20 

minutes. Then, the occlusion was removed to restore 

cerebral blood flow. Mice in the sham group received 

the same surgical procedure, but the carotid arteries 

were not occluded. 

 

Experimental design 

 

Alisol A (Shanghai Yuanye Bio-Technology, Shanghai, 

China, B21638) was suspended in a solvent made up of 

lotus root powder and normal saline and then fully 

stirred in a warm bath to disperse evenly, and 

administered by gavage once a day for 7 consecutive 

days after CI (30 mg/kg). The AKT inhibitor 

GSK690693 (Apexbio, TX, USA, Catalog No. A5072) 

was injected intraperitoneally into mice at a dosage of 

30 mg/kg [16] for 3 days and dissolved in DMSO.  

After CI, mice were randomly divided into four  

groups: sham-operated group (sham group, n = 10), 

cerebral ischemia group (CI group, n = 10), cerebral 

ischemia + alisol A group (CI+AA group, n = 10), and 

cerebral ischemia + alisol A+AKT inhibitor group 

(CI+AA+inh group, n = 10). The sham group and CI 

group were administered equal amounts of lotus root 

powder. 

 

Modified neurological severity score (mNSS) 

 

mNSS was used to assess animals’ motor, sensory, 

balance, and reflex behaviors in each group (n = 10), 

which was performed by an investigator who was blinded 

to the grouping at 1, 3, 5, and 7 days after CI. mNSS 

scores ranged from 0 to 18 points. 0, no deficit; 1–6, mild 

deficit; 7–12, moderate deficit; 13–18, severe deficit. 

 
Morris water maze (MWM) 

 

MWM was performed after 7 days of intragastric 

intervention, when the body capacity and wound of  

the mice had recovered completely. The first stage was 

MWM training (1–4th day). Mice in each group (n = 

10) were dropped into the water from four different 

quadrants to swim to the target platform that was set 

before. Escape latency and total distance (the time and 

distance required for mice to find the target platform) 

were recorded in the MWM training stage. Mice were 

required to stay on the platform for 15 s once they 

reached the target platform for more than 60 s. The 

second stage is the MWM test (the 5th day). The 

platform was removed, and swimming trajectories to 

reach the platform were captured. The number of target 

quadrant crossings and time spent in the quadrant were 

recorded in the MWM test stage. 

 
New object recognition test (NORT) 

 

The ability of mice to recognize new objects was 

evaluated by NORT. Each mouse was allowed to 

explore the open-field arena (40 × 40 × 40 cm) for 
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5 minutes without objects during the adaptation stage. 

24 hours after habituation, two identical objects were 

placed on opposite corners, and mice were allowed to 

explore the two objects for 5 minutes. After 24 hours, 

one of the identical objects was replaced with a novel 

object, and mice were placed in the arena again to 

explore novel objects and familiar objects for 5 minutes. 

The discrimination ratio was calculated as the ratio of 

the number of explorations of the novel object to the 

number of explorations of the two identical objects. The 

movements of mice in the arena were recorded with a 

digital camera. The objects and the open-field arena 

were cleaned with 70% ethanol between each trial. 

 
Magnetic resonance spectroscopy (MRS) 

 

MRS provides information on neuronal/glial metabolism. 

The hippocampal CA1 area was selected as the region 

of interest, with a 1 mm × 1 mm × 1 mm size. MRS was 

acquired using a PRESS sequence, and the parameters 

of MRS were TR = 1500 ms, TE = 144 ms, number  

of averages = 256, and voxel = 5 mm × 4 mm × 4 mm. 

The reference values for each metabolite are as follows: 

N-acetyl aspartate (NAA): 2.02 ppm; creatine (Cr): 3.05 

ppm; choline (Cho): 3.2 ppm; myo-inositol (MI): 3.56 

ppm. Cr was used as an internal reference to calculate 

the relative levels of other metabolites. TOPSPIN 

(V3.1, Bruker Biospin, Ettlingen, Germany) of the MRI 

instrument was used to analyze related images and data. 

 
Transmission electron microscopy (TEM) 

 

TEM was used to detect changes in the neurovascular 

ultrastructure after CI. The hippocampal CA1 region 

was cut into 1 mm × 1 mm × 1 mm blocks and postfixed 

in 4% paraformaldehyde and 2.5% glutaraldehyde at 

4°C. Samples were washed with phosphate buffer saline 

3 times and then immersed in 1% osmium tetroxide  

in 0.1 M phosphate buffer for 2 hours at 4°C. Samples 

were cut into ultrathin sections and stained with 3% 

lead citrate. Then, TEM (Hitachi, HT7800, Tokyo, 

Japan) was used to observe and capture the neurovascular 

ultrastructure. 

 
Nissl staining 

 

After being fixed with 4% paraformaldehyde, tissues 

were embedded in paraffin and then cut into serial 4 

μm-thick coronal sections. After dewaxing, the sections 

were stained with Nissl staining solution (Solarbio, cat# 

G1435, Beijing, China) for 30 min at 37°C. Subsequently, 

the sections were rinsed in graded ethanol and cleared 

with xylene. After drying thoroughly, the sections were 

cover slipped with neutral resin. Images were acquired 

with a Nikon microscope (Nikon, Model Eclipse Ci-L, 

718345, Tokyo, Japan). The neuronal morphology of 

the hippocampal CA1 region was observed at 400X 

magnification. The number of surviving neurons was 

counted by ImageJ software (version 6.0; Motic China 

Group Co., Ltd., Xiamen, China) and calculated by 

averaging the number in the same fields of three 

sections. Three mice in each group were included in the 

statistical analysis. 
 

Immunofluorescence staining 
 

Immunofluorescence staining was applied to evaluate 

the expression of GFAP, Iba1, NeuN, and CD31 in the 

hippocampal CA1 region. Brain tissues were sliced into 

4 μm-thick coronal sections and reacted with antibodies 

against GFAP (1:500, Proteintech, IL, USA, Cat No.: 

16825-1-AP), Iba1 (1:500, Proteintech, Cat No.: 10904-

1-AP), NeuN (1:500, Proteintech, Cat No.:26975-1-AP), 

and CD31 (1:500, Cell Signaling Technology, MA, 

USA) overnight at 4°C. The corresponding secondary 

antibodies of Alexa Fluor 594 (1:500, Cat# ab150080) 

were employed and reacted for 1 h. Then, DAPI was 

added (Beyotime, Shanghai, China, Cat No. P0131) be-

fore being photographed. Finally, images were captured 

using Leica Microsystems under a 200X microscope. 

The fluorescence intensity was analyzed according to 

previous literature [17] and measured in the ipsilateral 

hippocampal CA1 region by ImageJ software. 
 

Western blot 
 

The primary antibodies we used were as follows: ZO-1 

(1:1000, Proteintech, Cat No. 21773-1-AP), Occludin 

(1:1000, Proteintech, Cat No. 66378-1-Ig), IL-6 (1:800, 

Proteintech, Cat. No. 66146-1-Ig), IL-1β (1:1000, 

Proteintech, Cat No. 16806-1-AP), BAX (1:1000, 

Proteintech, Cat No. 50599-2-Ig), Bcl-2 (1:1000, 

Proteintech, Cat No. 26593-1-AP), AKT (1:1000, Cell 

Signaling Technology, Cat#4691), P-AKT (Ser473, 

1:1000, Cell Signaling Technology, Cat#4060), GSK3β 

(1:1000, Cell Signaling Technology, Cat# 12456S), 

P-GSK3β (1:1000, Cell Signaling Technology, Cat# 

9323S), and GAPDH (1:8000, Proteintech, Cat# 60004-

1-lg). The appropriate secondary antibodies (1:8000, 

Cat No. SA00001-1, Anti-Mouse; Cat No. SA00001-2 

Anti-Rabbit) were incubated at room temperature for 1 

hour. Finally, data were detected and analyzed by an 

Image Lab system (Bio-Rad, CA, USA, 721BR18682). 
 

Statistical analysis 
 

All statistical analyses were performed using SPSS 

23.0. Data confirmed to have a normal distribution were 

analyzed by one-way ANOVA followed by the LSD or 

Games-Howell post hoc test and are presented as the 

mean ± SD. Values of P < 0.05 were considered 

statistically significant. Independent experiments were 

repeated at least 3 times. 
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RESULTS 
 

Alisol A improved neurological deficits after CI 

 

The molecular formula of alisol A is shown in  

Figure 1A. CI was established, and the detection of 

cerebral blood flow was described in a previous  

study [18]. The protective effects of alisol A against 

CI were examined by evaluating motor and sensory 

dysfunction according to mNSS (Figure 1B). Compared 

with the sham group, the CI group exhibited obvious 

neurological dysfunction. A significant improvement 

in mNSS was observed in mice treated with alisol A, 

while the result was reversed by the AKT inhibitor. 

The data above revealed that alisol A alleviated 

neurological deficits. 

 

Alisol A improved cognitive impairment after CI 

 

The learning and memory abilities of mice were 

evaluated by the MWM. The escape latency and total 

distance traveled showed a decreasing trend in the 

MWM training stage (Figure 1C, 1D). On Days 2–4 of 

the training stage, the escape latency of mice in the CI 

group was significantly prolonged (P < 0.01, P < 0.001, 

P < 0.001), and the total distance traveled was increased 

(P < 0.01, P < 0.01, P < 0.01) compared with the sham 

group. Compared with the CI group, alisol A treatment 

shortened the escape latency (P < 0.001, P < 0.01, P < 

0.01) and decreased the total distance traveled (P < 

0.001, P < 0.01, P < 0.001). Although the difference 

between the CI+AA group and the CI+AA+inh group 

was not significant on Days 1–3, it still indicated that 

the AKT inhibitor weakened the effect of alisol A on 

the spatial memory and learning abilities of mice. The 

differences in escape latency and total distance traveled 

were significant on Day 4 (P < 0.001, P < 0.01). On 

Day 5 of the test stage, compared with the sham group, 

there were significant reductions in the number of target 

platform crossings (P < 0.001) and time spent in the 

target quadrant (P < 0.001) in the CI group. The results 

were improved by the treatment of alisol A (P < 0.001, 

P < 0.001). However, the effect of alisol A was reversed 

by the AKT inhibitor (P < 0.001, P < 0.001) (Figure 1E, 

1F). The trajectory diagram of mice in each group was 

significantly different in the number of target platform 

crossings (Figure 1H). 

 

The recognition memory of mice was detected by 

NORT (Figure 1G). Compared with the sham group, the 

discrimination ratio in the CI group was significantly 

decreased (P < 0.001), increased in the CI+AA group 

(P < 0.001), and decreased in the CI+AA+inh group 

(P < 0.001). The trajectory diagram of the mice is 

shown in Figure 1I. The data above revealed that alisol 

A effectively alleviated cognitive impairment. 

Alisol A regulated hippocampal metabolism 

 

The relative levels of Cr, NAA, Cho and MI in the  

CA1 region of the hippocampus were detected by MRS 

(Figure 2A). Figure 2B shows a representative spectral 

image of the hippocampal CA1 region of mice. NAA is 

a specific biochemical marker to assess neuronal 

viability/integrity, and Cho and MI levels indicate 

information about glial metabolism [19]. The NAA/Cr 

ratio of the CI group was significantly reduced (P < 

0.05), and the NAA/Cr ratio was increased by alisol A 

treatment (P < 0.05) and decreased by the AKT 

inhibitor (P < 0.05) (Figure 2C). The results indicated 

that alisol A treatment improved the destruction of 

neurons, while the effect was reversed by an AKT 

inhibitor. Compared with the sham group, Cho/Cr and 

MI/Cr ratios in the CI group increased with statistically 

significant (P < 0.01, P < 0.01). Alisol A decreased the 

ratios of Cho/Cr and MI/Cr (P < 0.01, P < 0.01), and the 

inhibitor reversed the results (P < 0.05, P < 0.01) 

(Figure 2D, 2E). MI and Cho have been considered 

putative glial markers, suggesting that alisol A reduced 

gliosis and improved neuronal/glial metabolism after 

CI. 

 
Alisol A protected the neuronal ultrastructure in the 

hippocampal CA1 region 

 

Neurons had an intact nuclear membrane structure and 

regular nuclear morphology in the sham group (Figure 

3A (a, e)). Chromatin was distributed evenly within the 

nucleus. The nuclei with irregular shapes were slightly 

dissolved, and the chromatin showed condensation and 

edge aggregation and an incoherent nuclear membrane 

structure in the CI group (Figure 3A (b, f)). Moreover, 

some organelles were destroyed and even disappeared. 

The nuclear membrane was relatively intact, and the 

edge was clear after treatment with alisol A (Figure 3A 

(c, g)). In the inhibitor group (Figure 3A (d, h)), neurons 

with discontinuous and indistinct nuclear membrane 

structures had irregular morphology. Partial dissolution 

and disappearance of intracytoplasmic organelles can 

still be seen. 

 
Alisol A protected the BBB ultrastructure in the 

hippocampal CA1 region 

 

The sham group showed clear capillary brain structure, 

and the basal layer was in close contact with the 

endothelial cells and had a clear level of clarity (Figure 

3B (a, e)). The CI group was characterized by 

discontinuity of the endothelium and TJs and swelling 

of the astrocytes (Figure 3B (b, f)). The capillary wall 

was thickened, and there was edema between the 

endothelial cells and basement membrane. Alisol A 

treatment improved the swelling of astrocyte end-feet, 
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Figure 1. Alisol A improved neurological deficits and cognitive impairment after CI. (A) The molecular formula of alisol A. (B) 

Neurobehavioral function of mice was evaluated by mNSS at 1, 3, 5, and 7 days after CI, n = 10. (C) Escape latency of each group in the 
MWM training stage. (D) Total distance traveled by each group in the MWM training stage. (E) Frequency of crossing the target quadrant of 
each group in the MWM test. (F) Time spent in the target quadrant of each group in the MWM test. (G) Discrimination ratio of each group 
in NORT. (H) Representative tracking images in the MWM test. (I) Representative tracking images in NORT, n = 10. Data are shown as the 
mean ± SD. **P < 0.01, ***P < 0.001 compared with the sham group, ##P < 0.01, ###P < 0.001 compared with the CI group, @@P < 0.01, @@@P < 
0.001 compared with the CI+AA group.  Note: sham-operated group (sham group); cerebral ischemia group (CI group); cerebral 
ischemia + alisol A (CI+AA group); cerebral ischemia + alisol A+AKT inhibitor group (CI+AA+inh group). 
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and the basal layer was in close contact with  

the endothelial cells, while there were still some 

vacuolar changes around the blood vessels (Figure 3B 

(c, g)). There was edema between the microvascular 

endothelial layer and basal lamina and discontinuity  

of the endothelium after inhibitor intervention (Figure 

3B (d, h)). 

 

Alisol A inhibited the expression of astrocytes, 

microglia, IL-6 and IL-1β after CI 

 

The number of glial cells increased after CI, inducing 

inflammation in the brain. Astrocytes and microglia 

(Figure 4A, 4C) were overactivated in the CI group 

compared with the sham group (P < 0.05, P < 0.05). 

Alisol A inhibited the overexpression of GFAP and Iba1 

(P < 0.05, P < 0.05), and the AKT inhibitor restored the 

overactivation of GFAP and Iba1 (P < 0.01, P < 0.05) 

(Figure 4B, 4D). Overactivated glial cells produce 

proinflammatory factors that further damage brain 

injury. The expression of IL-6 and IL-1β was increased 

in the CI group (P < 0.01, P < 0.01). Alisol A markedly 

reduced IL-6 and IL-1β levels (P < 0.05, P < 0.05). 

Compared with alisol A treatment, the AKT inhibitor 

increased the expression of IL-6 and IL-1β (P < 0.05, 

P < 0.05) (Figure 4E, 4F). The results revealed that 

alisol A inhibited glial activation and reduced the 

production of inflammatory factors. 

 

Alisol A upregulated the expression of CD31, ZO-1 

and Occludin after CI 

 

CD31 is an angiogenesis marker that is mainly 

expressed in BMECs and is used to quantify the 

number of capillaries (Figure 5A). The expression  

of CD31 was decreased in the CI group (P <  

0.001), alisol A treatment dramatically increased the 

expression of CD31 (P < 0.05), and the inhibitor 

abolished the effect of alisol A on CD31 expression  

(P < 0.01) (Figure 5B). ZO-1 and Occludin are 

important components of tight junction proteins  

(TJs), which are associated with BBB integrity and 

permeability. ZO-1 and Occludin were significantly 

decreased in the CI group (P < 0.01, P < 0.001), and 

alisol A treatment upregulated the expression of ZO-1 

and Occludin (P < 0.05, P < 0.05), indicating that 

alisol A effectively protected the structure of the BBB 

by reducing the destruction of TJs. The AKT inhibitor 

reversed the effect of alisol A (P < 0.01, P < 0.01) 

(Figure 5C, 5D). The results confirmed that alisol  

A protected BMECs and TJs, which contributed to  

the protection of BBB integrity. 

 

 
 

Figure 2. Alisol A regulated hippocampal metabolism. (A) The hippocampal CA1 region of mice was chosen as the region of interest. 

(B) Representative spectral image of the hippocampal CA1 region of mice. (C) Quantitative analysis of NAA/Cr. (D) Quantitative analysis of 
Cho/Cr. (E) Quantitative analysis of MI/Cr, n = 6. Data are presented as the mean ± SD, *P < 0.05, **P < 0.01 compared with the sham group, 
#P < 0.05, ##P < 0.01 compared with the CI group, @P < 0.05, @@P < 0.01 compared with the CI+AA group. 
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Alisol A promoted neuronal survival in the 

hippocampus by downregulating the BAX/Bcl-2 

ratio after CI 

 

The expression of NeuN (Figure 6A) in the hippo-

campal CA1 region of the CI group was markedly 

decreased compared with that in the sham group  

(P < 0.001), while alisol A treatment increased the 

expression of NeuN (P < 0.05), and the inhibitor 

decreased the expression of NeuN (P < 0.05) (Figure 

6B). Nissl staining was applied to detect surviving 

neurons in the hippocampal CA1 region (Figure 6C). 

 

 
 

Figure 3. Alisol A protected the neurovascular ultrastructure in the hippocampal CA1 region. (A) Changes in neuronal 

ultrastructure are indicated by black arrows. (a) 1: The nuclear membrane structure of the neurons was intact and clear; 2: Chromatin 
distributed evenly; 3: Normal structural organelles were abundant within the cytoplasm. (b) 1: Incoherent nuclear membrane structure; 2: 
Chromatin condensation, decreased and edge aggregation; 3: Most of the organelles disappeared, and the cytoplasm was empty. (c) 1: The 
nuclear membrane is relatively complete, and the edge is clear; 2: More normal chromatin; 3: The organelles can be seen in the cytoplasm. 
(d) 1: Discontinuous and indistinct nuclear membrane structure; 2: Less chromatin; 3: Partial dissolution and disappearance of 
intracytoplasmic organelles. (a–d) Magnification of the microphotograph is 2500X. Scale bar is 5 μm; (e–h) Magnifications of the 
microphotograph are 8000X. Scale bar is 1 μm. (B) Changes in BBB ultrastructure as indicated by the red arrow. (a) 1: Clear capillary 
structures; 2: Close contact of the endothelial cells with the basement membrane; 3: Continuous endothelial cells; 4: End-feet of astrocyte 
surrounding the basal membrane. (b) 1: Capillary structure enhancement; 2: Edema fluid between the endothelial cells and the basement 
membrane; 3: Discontinuity of endothelium. 4: Marked edema of astrocytic end-foot processes and vacuolization. (c) 1: The edema 
between endothelial cells and the basal layer was weakened; 2: The endothelium was more continuous; 3: Vacuolization of astrocytic end-
foot process edema was alleviated. (d) 1: There is edema between the endothelial cells and the basement membrane; 2: The endothelium 
is discontinuous and interrupted; 3: Perivascular astrocytic end-foot process edema was obvious and still showed vacuolar changes. (a–d) 
Magnification of the microphotograph is 2500X. Scale bar is 5 μm; (e–h) Magnifications of the microphotograph are 8000X. Scale bar is 
1 μm. n = 3. 
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In the sham group, neuronal cells were arranged densely 

and neatly in the hippocampus. In contrast, the neuronal 

cells were arranged in a disorderly manner and even 

disappeared in the CI group (P < 0.001). Alisol A 

treatment restored the destruction of neurons during CI. 

The number of Nissl neurons in the alisol A group was 

higher than that in the CI group (P < 0.001) and 

inhibitor group (P < 0.01) (Figure 6D). Bcl-2 plays a 

role in promoting survival of neurons by inhibiting the 

expression of BAX. The BAX/Bcl-2 ratio in the CI 

group was higher than that in the sham group (P < 

0.01), and the ratio in the alisol A group was lower than 

that in the CI group (P < 0.05) and AKT inhibitor group 

(P < 0.05) (Figure 6E). The results suggested that alisol 

A may promote neuronal survival in the CA1 region of 

the hippocampus by downregulating the BAX/Bcl-2 

ratio. 

 

Alisol A activated the AKT/GSK3β pathway after CI 

 

To verify whether the AKT/GSK3β pathway is involved 

in the protective effects of alisol A, we detected  

the expression of phosphorylated AKT (Ser473) and 

GSK3β (Ser9). Phosphorylation of AKT and GSK3β 

was markedly decreased in the CI group (P < 0.01, 

P < 0.05). Alisol A promoted the phosphorylation  

of AKT and GSK3β (P < 0.05, P < 0.05). The 

phosphorylation levels of AKT and GSK3β were 

reversed following treatment with the AKT inhibitor 

(P < 0.05, P < 0.05) (Figure 6F, 6G). This result 

indicated that alisol A may exert protective effects on 

the neurovascular component of the hippocampus by 

activating the AKT/GSK3β pathway. 

 

DISCUSSION 
 

CI has seriously endangered the health of  

elderly individuals. The neurovascular integrity in the 

hippocampus is critical for learning and memory, 

which is susceptible to CI causes microglia-mediated 

inflammation and neurovascular disruption in the 

hippocampus, which is associated with cognitive 

impairment. Neurovascular impairment after CI 

primarily occurs in the hippocampal CA1 region and is 

often accompanied by cognitive impairment [20].  

It is urgent to seek promising therapeutic strategies  

for neurovascular improvement with CI. 
 

Alisma Orientale and its active constituents have  

been proven to have anti-inflammatory and vascular 

 

 
 

Figure 4. Alisol A inhibited the expression of astrocytes, microglia, IL-6 and IL-1β after CI. (A) Representative image of GFAP in 

the hippocampal CA1 region by immunofluorescence staining. (B) Representative image of Iba1 in the hippocampal CA1 region by using 
immunofluorescence staining. 200×, scale bar is 100 μm. (C) Quantitative analysis of GFAP fluorescence intensity. (D) Quantitative analysis 
of Iba1 fluorescence intensity, n = 3. (E) Western blot showing the expression of IL-6 and quantitative analysis of the ratio of IL-6 to GAPDH. 
(F) Western blot showing the expression of IL-1β and quantitative analysis of the ratio of IL-1β to GAPDH, n = 4. Data are shown as the 
mean ± SD. *P < 0.05, **P < 0.01 compared with the sham group, #P < 0.05 compared with the CI group, @P < 0.05, @@P < 0.01 compared 
with the CI+AA group. 
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protective effects and have been clinically used to treat 

cardiovascular-related diseases [21]. Alisol A, as the 

active ingredient isolated from Alisma Orientale, its 

effect on cerebrovascular diseases is rarely reported.  

It has been reported that alisol A exerted anti-obesity 

effect by ameliorating hyperlipidemia and inflammation 

state [22]. Alisol A could be detected in rat cerebral 

tissue after oral administration [23], indicating that 

alisol A could exert some effects on improving cerebro-

vascular diseases. Moreover, alisol A has been reported 

to exert vascular protection, attenuate the expression of 

proinflammatory cytokines, and increase the expression 

of phospho-AKT [24]. AKT is one of the core 

therapeutic targets of the mechanism of action of  

alisol A. Phospho-AKT exerts protective effects in CI 

by inactivating GSK3β [25]. AKT/GSK3β pathway is 

closely related to the inhibition of inflammation and 

apoptosis and the protection of vascular endothelium. 

Activation of AKT/GSK3β promotes neuronal survival 

in the hippocampus, reduces glial inflammation, and 

maintains BBB integrity after CI, demonstrating that  

the AKT/GSK3β pathway plays an important role  

in neurovascular protection [26]. We speculated that  

alisol A-mediated neurovascular protection might be

 

 
 

Figure 5. Alisol A upregulated the expression of CD31, ZO-1 and Occludin after CI. (A) Representative image of CD31 in the 

hippocampal CA1 region by using immunofluorescence staining. 200×, scale bar is 100 μm. (B) Quantitative analysis of CD31 fluorescence 
intensity. n = 3. (C) Western blot showing the expression of ZO-1 and quantitative analysis of the ratio of ZO-1 to GAPDH. (D) Western blot 
showing the expression of Occludin and quantitative analysis of the ratio of Occludin to GAPDH, n = 4. Data are shown as the mean ± SD. 
**P < 0.01, ***P < 0.001 compared with the sham group, #P < 0.05 compared with the CI group, @@P < 0.01 compared with the CI+AA group. 
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associated with the activation of AKT/GSK3β. The 

present study explored the neurovascular protection of 

alisol A, focusing on neurons, glial cells and BMECs. 

Our study is the first to show that alisol A has a 

protective effect on neurovasculature. We found that 

alisol A improved neurological deficits and cognitive 

impairment, inhibited glial activation, protected BMECs 

and TJs, promoted the survival of neurons and BMECs, 

and ameliorated neurovascular disruption in the 

hippocampus. Moreover, an AKT inhibitor reversed the 

protective effects of alisol A, which suggested that 

activation of the AKT/GSK3β pathway may participate 

in the neurovascular protection of alisol A. 

 

MRS has been used to detect metabolic information  

in CI [27]. We first observed changes in neuronal  

loss and glial activation following ischemia according 

to the changes in NAA, Cho and MI levels, which  

may be associated with neurovascular dysfunction. 

Decreased NAA has been identified as a strong signal 

for neuronal loss [28]. The Cho concentration in glial 

cells is higher than that in neurons and may be used as  

a marker of gliosis [19]. MI is also a marker of glial 

proliferation [29]. Both Cho and MI levels increased 

after ischemia, indicating overactivation of glia after 

ischemia. Interestingly, AKT is a crucial regulator  

of cell energy metabolism, including cholinergic  

function, neurochemical differentiation, neuroprotection 

and inhibition of gliosis [30]. It was confirmed that 

activation of AKT regulated the levels of MI, Cho and 

NAA [18]. In this study, we found that CI induced  

the upregulation of Cho and MI and the downregulation 

of NAA. Interestingly, alisol A decreased Cho and  

MI concentrations in the hippocampal CA1 region 

while increasing the level of NAA, and an AKT 

inhibitor reversed this tendency. The results indicated 

that the regulatory effect of alisol A on hippocampal 

neuronal/glial metabolism might be related to the AKT/ 

GKS3β pathway. 

 

TEM results showed that the neurovascular ultra-

structure was destroyed after CI, which manifested  

as neuronal morphological destruction, thickened 

capillary wall edema, and swelling of astrocytic  

end-foot processes in the hippocampus, which was 

consistent with a previous study [31]. Swollen 

astrocytic end-foot processes and perivascular edema 

are involved in the pathological process of BBB 

breakdown [32]. As expected, we found that treatment 

with alisol A improved the nuclear membrane of 

 

 
 

Figure 6. Alisol A reduced neuronal apoptosis in the hippocampus by downregulating the BAX/Bcl-2 ratio and activating 
the AKT/GSK3β pathway after CI. (A) Representative image of NeuN in the hippocampal CA1 region by using immunofluorescence 
staining. 200×, scale bar is 100 μm. (B) Quantitative analysis of NeuN fluorescence intensity, n = 3. (C) The neuronal morphology of the 
hippocampal CA1 region was observed by Nissl staining. 400×, scale bar is 50 μm. Red arrows show the morphology of neurons in different 
groups. (D) Quantitative analysis of intact neuronal cells in the hippocampal CA1 region, n = 3. (E) Western blot showing the expression of 
BAX and Bcl-2 and quantitative analysis of the BAX/Bcl-2 ratio. (F) Western blot showing the expression of p-AKT and AKT and quantitative 
analysis of the ratio of p-AKT to AKT. (G) Western blot showing the expression of p-GSK3β and GSK3β and quantitative analysis of the ratio 
of p-GSK3β to GSK3β, n = 4. Data are shown as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 compared with the sham group, #P < 0.05, 
###P < 0.001 compared with the CI group, @P < 0.05, @@P < 0.01 compared with the CI+AA group. 
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neurons, mitochondrial cristae, swelling of astrocyte 

end-feet and endothelial cells, while the neurovascular 

protective effect was eliminated by an AKT inhibitor. 

 

We further investigated the underlying mechanism  

of neurovascular changes. Microglia and astrocytes  

are overactivated after CI, inducing inflammatory 

dysfunction [33]. Reactive astrogliosis produces large 

amounts of proinflammatory factors and damages 

neurovascular homeostasis [34]. Microglia-mediated 

inflammation affects basal lamina integrity and leads 

to increased permeability of the BBB, ultimately 

resulting in significant neurovascular disruption [35]. 

A previous study showed that the activation of 

AKT/GSK3β inhibited the proinflammatory “M1” 

phenotype of microglia and then downregulated  

IL-6, IL-1β and TNF-α levels [36–38]. The present 

study showed that alisol A significantly inhibited  

the expression of GFAP and Iba1 and reduced the 

overactivation of glial cells. In addition, the levels  

of the inflammatory factors IL-6 and IL-1β also 

decreased after alisol A intervention. However, the 

effects of alisol A could be attenuated by inhibition  

of AKT at the same time, further confirming that  

the AKT/GSK3β pathway was involved in the anti-

inflammatory effect of alisol A. 

 

The release of inflammatory cytokines induced by over-

activated glial cells has been demonstrated to further 

damage the BBB [39]. CD31 (an angiogenesis marker), 

mostly expressed in BMECs, plays a pivotal role in 

protecting BBB integrity [40]. The activation of the 

AKT/GSK3β pathway exerted an angiogenic effect, and 

raised the CD31 positive microvessel number, while  

the inhibition of AKT inhibited angiogenesis, which  

was consistent with our study [41]. In addition, TJs  

form a virtually impermeable barrier between BMECs, 

which is relevant in maintaining BBB integrity. Studies 

have indicated that activation of AKT/GSK3β reduces 

the disruption of ZO-1, Occludin and Claudin-5 by 

downregulating the expression of inflammatory factors 

[42]. In our study, alisol A treatment upregulated the 

expression of CD31, ZO-1 and Occludin and promoted 

vascular and endothelial protection in the hippocampus, 

whereas the effects were attenuated by an AKT inhi-

bitor, further revealing that alisol A may protect the 

BBB through regulation of the AKT/GSK3β pathway. 

 
Overactivated glial cells also aggravate neuronal 

apoptosis in the hippocampal CA1 region after CI 

[43]. In our study, NeuN immunofluorescence and 

Nissl staining showed that alisol A treatment promoted 

neuronal survival in the hippocampus after CI. In 

addition, we found that alisol A decreased the ratio  

of BAX/Bcl-2, which may be what promotes neuron 

survival. The effect of alisol A was eliminated by 

inhibition of AKT. Therefore, we further explored  

the underlying mechanism. Bcl-2 promotes neuronal 

survival by inhibiting the expression of the pro-

apoptotic factor BAX [44], while BAX is involved  

in neuronal apoptosis by triggering mitochondrial 

dysfunction [45]. AKT inhibits inflammation and 

apoptosis by inactivating GSK3β, and GSK3β 

promotes translocation of this proapoptotic protein to 

mitochondria in neurons undergoing apoptosis by 

directly phosphorylating BAX on Ser163 [46]. The 

BAX/Bcl-2 ratio is increased by downregulating the 

phosphorylation levels of AKT and GSK3β [47]. 

Furthermore, activating the AKT/GSK3β pathway has 

been proven to mediate the survival of hippocampal 

CA1 neurons after CI [48]. Therefore, the results 

suggest that alisol A may promote the protective effect 

of alisol A on neuronal survival in the hippocampus 

and decrease the BAX/Bcl-2 ratio by activating the 

AKT/GSK3β pathway. 

 
The AKT/GSK3β pathway plays an important role in 

the protective effects of alisol A on neurons and the 

BBB. Notably, the inhibition of AKT decreased the 

phosphorylation level of GSK3β and almost reversed 

the neurovascular protective effects of alisol A, which 

was consistent with our hypothesis. Our study is the 

first to show that alisol A has a protective effect on 

cerebrovascular. The present study also showed that 

AKT/GSK3β pathway was involved in the neuro-

vascular protective effect of alisol A, which is another 

novelty different from other studies. 

 
In conclusion, this study showed that alisol A alleviated 

neurovascular injury, which was mainly attributed to the 

activation of the AKT/GSK3β pathway by raising the 

phosphorylation of AKT and GSK3β. 

 
CONCLUSIONS 

 
Alisol A could exert an important role in neurovascular 

protection and alleviate cognitive impairment through 

activation of the AKT/GSK3β pathway in CI mice. 
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