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INTRODUCTION 
 

Gastric cancer is a gastrointestinal disease with high 

molecular and phenotypical heterogeneity. Gastric 

cancer involves multiple genes, factors, and stages; 

however, its specific molecular mechanisms remain 

unclear [1]. Due to yet-unknown causes and limited 

preventive measures, the five-year survival rate of 

gastric cancer remains less than 30% [2], reducing  

the quality of life of patients and increasing the 

economic burden. The continuing increase in new cases 

makes gastric cancer a serious public health issue 

worldwide. At present, early detection of gastric cancer 

is mainly based on gastroscopy, an unpopular and 
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ABSTRACT 
 

The biological role and prognostic value of thrombospondin domain-containing 7A (THSD7A) in gastric cancer 
remain unclear. Our purpose was to determine the molecular mechanisms underlying the functioning of THSD7A 
and its prognostic value in gastric cancer. Gastric cancer-associated single cell and bulk RNA sequencing data 
obtained from two databases, were analyzed. We used bulk RNA sequencing to examine the differential expression 
of THSD7A in gastric cancer and normal gastric tissues and explored the relationship between THSD7A expression 
and clinicopathological characteristics. Kaplan–Meier survival and Cox analyses revealed the prognostic value of 
THSD7A. Gene set enrichment and immune infiltration analyses were used to determine the cancer-promoting 
mechanisms of THSD7A and its effect on the immune microenvironment. We explored the relationship between 
THSD7A expression and sensitivity of anti-tumor drugs and immune checkpoint levels. Biological functions of 
THSD7A were validated at single-cell and in vitro levels. THSD7A expression was significantly increased in gastric 
cancer samples. High THSD7A expression was associated with poor clinical phenotypes and prognoses. Cox analysis 
showed that THSD7A was an independent risk factor for patients with gastric cancer. Enrichment analysis 
suggested that epithelial-mesenchymal transition and inflammatory responses may be potential pro-cancer 
mechanisms of THSD7A. Upregulation of THSD7A promoted infiltration by M2 macrophages and regulatory T cells. 
High THSD7A expression suppressed the sensitivity of patients with gastric cancer to drugs, such as 5-fluorouracil, 
bleomycin, and cisplatin, and upregulated immune checkpoints, such as HAVCR2, PDCD1LG2, TIGIT, and CTLA4. At 
the single cell level, THSD7A was an endothelial cell-associated gene and endothelial cells overexpressing THSD7A 
showed unique pro-oncogenic effects. In vitro experiments confirmed that THSD7A was overexpressed in gastric 
cancer samples and cells, and that knocking out THSD7A significantly inhibited gastric cancer cell proliferation and 
invasion. THSD7A overexpression may be a unique prognostic marker and therapeutic target in gastric cancer. 
Therefore, our study provides a new perspective on the precise treatment of gastric cancer. 
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invasive test. The value of traditional biomarkers, such 

as carcinoembryonic antigen and carbohydrate antigen 

19-9, in the prognosis of patients with gastric cancer as 

well as in predicting the efficacy of neoadjuvant therapy 

remains controversial [3]. Currently, a large volume of 

data pertaining to potential biomarkers of gastric cancer, 

such as anti-Helicobacter pylori antibodies, pepsinogen, 

and gastrin 17, are available [4, 5]. Biomarkers have  

also been utilized to treat gastric cancer. However, 

inconsistencies in examination methods, standards, and 

quality control techniques have led to the realization that 

these markers need to be further validated via large-scale 

clinical studies. This situation is further exacerbated by 

the decreased efficacy of traditional first-line therapies, 

increased drug resistance to drugs aimed at gastric 

cancer, and the complexities associated with signaling 

pathways within the tumor microenvironment (TME), all 

of which indicate the necessity for developing effective 

therapeutic targets for gastric cancer. 

 
Thrombospondin type 1 domain containing 7A 

(THSD7A), a transmembrane protein with a relative 

molecular mass of approximately 250,000 Da, is 

commonly expressed on the surface of glomerular 

podocytes in humans and rodents [6]. The extracellular 

region of THSD7A consisting of the thrombospondin 

type 1 domain, which is tagged by the histamine of 

thrombospondin 1 and complement component 6, inter-

acts with proteases and the extracellular matrix (ECM) 

[7–9]. Studies indicate that the main anti-THSD7A 

antibody in patients with idiopathic membranous 

nephropathy is IgG4, which targets the N-termini of 

autoantigens, and that the expression of IgG4 is 

positively correlated with the severity of proteinuria  

[10]. THSD7A reportedly plays an important role in 

diseases such as osteoporosis and tumorigenesis [11, 12]. 

Hoxha et al. found that THSD7A-positive patients with 

membranous nephropathy, whose tumor foci exhibited 

significantly elevated expression levels of THSD7A 

mRNA, showed an increased risk for cancer development 

[13]. In addition, Stahl et al. reported that THSD7A-

based staining was enhanced in a variety of solid tumors, 

such as colorectal, prostate, and renal cancers, and that 

immunohistochemical analysis of tissue microarrays 

indicated the prognostic potential of THSD7A [12]. 

 
However, reports on the correlation between  

THSD7A expression and gastric cancer remain scant, 

indicating the need for further exploration. In this study, 

we investigated whether THSD7A expression shows 

prognostic value in gastric cancer and examined the 

possible molecular mechanisms underlying the role  

of THSD7A in gastric cancer via bioinformatics and  

in vitro experiments, with the expectation that our 

findings would provide new strategies for exploring 

targeted therapy for gastric cancer. 

MATERIALS AND METHODS 
 

Data acquisition 

 

Transcriptomic data and paired clinical data  

containing 32 normal samples and 375 gastric cancer 

samples were obtained from The Cancer Genome  

Atlas (TCGA) database (https://cancergenome.nih.gov/), 

in which gastric cancer samples with incomplete clinical 

information were excluded. The GSE27342 (normal=80, 

tumor=80), GSE29272 (normal=134, tumor=134), 

GSE54129 (normal=21, tumor=111), and GSE65801 

(normal=32, tumor=32) from the Gene Expression 

Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo) database 

provided the standardized transcriptomic data of normal 

gastric tissues and gastric cancer tissues. In addition, we 

obtained 10 gastric cancer samples from GSE167297, 

including the scRNA-seq data from five superficial 

gastric cancer, five deep gastric cancer, and four para-

cancer samples [14]. 

 

Expression of THSD7A in gastric cancer 

 

The differential expression of THSD7A in gastric 

cancer and normal gastric tissues was analyzed based on 

the UALCAN database (https://ualcan.path.uab.edu/) 

[15] and validated in the external data of GEO. 

Meanwhile, we also explored the expression level of 

THSD7A associated with different clinicopathological 

characteristics. 

 

Prognostic significance of THSD7A 

 

To identify the prognostic value of THSD7A in  

gastric cancer, we analyzed the correlation between 

THSD7A expression and OS and DFS using The  

Gene Expression Profiling Interactive Analysis 

(GEPIA) database (http://gepia.cancer-pku.cn/index. 

html). Subsequently, the Kaplan–Meier Plotter tool 

(https://kmplot.com/analysis/) was used to validate the 

association between THSD7A (check ID: 213894_at) 

and the OS, FPS, and PPS of patients with gastric 

cancer. To test whether THSD7A was an independent 

prognostic factor, we integrated the clinical information 

of the TCGA-STAD cohort with the transcriptomic 

data of THSD7A for univariate and multivariate Cox 

analyses. We also constructed a THSD7A-nomogram 

for predicting the survival probability of patients with 

gastric cancer at 1, 3, and 5 years. 

 

Functional enrichment analysis 

 

In the gene set enrichment analysis (GSEA), we can 

obtain the gene expression profile data by setting 

specific functional gene sets [16]. The GSEA software 

(version 4.1.0) was used to analyze the functional 

https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo
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http://gepia.cancer-pku.cn/index.%20html
http://gepia.cancer-pku.cn/index.%20html
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signaling pathway of high- and low-THSD7A 

expression groups in the TCGA-STAD dataset, with a 

permutation test parameter of 1000 and the gene set 

parameters being “h.all.v2022.1.Hs.symbols.gmt” and 

“c2.cp.kegg.v2022.1.Hs.symbols.gmt”. The statistical 

significance threshold was set at NOM P-value <0.05. 

 

Analysis of THSD7A and tumor immune cells 

 

As previously described [17], we used the CIBERSORT 

algorithm to evaluate the infiltration abundance of 22 

types of leukocytes in each TCGA-STAD sample. The 

Spearman correlation test confirmed the correlation 

between THSD7A levels and infiltration of tumor 

immune cells (TICs). 

 

Drug sensitivity, immune checkpoints, effectiveness 

of immunotherapy, and tumor mutation burden 

 

To fully understand the predictive role of THSD7A  

in anti-tumor treatment of gastric cancer, we first 

divided the TCGA-STAD cohort into high- and  

low-THSD7A expression groups according to the 

median THSD7A expression value. Using the 

Genomics of Drug Sensitivity in Cancer database 

(https://www.cancerrxgene.org/) [18], with the help  

of the “pRRophetic” and “limma” packages, we 

analyzed the differences in common chemotherapeutic 

drugs and immune checkpoints between the high-  

and low-THSD7A expression groups. Based on  

the Tumor Immune Dysfunction and Exclusion  

(TIDE) (http://tide.dfci.harvard.edu/login/) to compare 

the risk of the efficacy of immunotherapy between 

gastric cancer patients with high and low THSD7A 

expression. Additionally, we examined the correlations 

between THSD7A expression and Tumor Mutation 

Burden (TMB) score. We also evaluated the differences 

in survival among individuals with gastric cancer who 

had various THSD7A expression and TMB scores. 

 

Single-cell RNA sequence analysis 

 

The single-cell RNA sequence (scRNA-seq)  

analysis provides further insight into the role of 

THSD7A in subsets of gastric cancer cells. The 

“Seurat” package was used to process the scRNA- 

seq data of the gastric cancer and para-cancer cells in 

this study. The imported single-cell gene expression 

profiles were converted into analysis objects using  

the “CreateSeuratObject” function, and low-quality 

cells were discarded based on a high percentage  

of mitochondrial genes (>20%) and the number  

of expressed genes in the cells being <500. After 
normalizing the data using the “NormaliseData” 

function, we selected 2000 highly variable genes  

for principal component analysis and clustered the  

cell subgroups at a resolution of 0.5 using the t-SNE 

algorithm. The “FindAllMarkers” function was used  

to calculate the marker genes in each cell cluster. We 

annotated the cell types with the help of the CellMarker 

database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/) 

[19]. The “PercentageFeatureSet” function was used  

to analyze THSD7A expression in THSD7A-related 

cells and to define THSD7A-related cells as THSD7A 

(+)-related cells and THSD7A (-)-related cells using 

the percentage of THSD7A expression of >0 and =0, 

respectively. Subsequently, the “monocle2” package 

was used to analyze the developmental trajectory  

of THSD7A-related cells during gastric cancer 

progression. The function “differentialGeneTest” was 

employed to ascertain the differential genes present in 

THSD7A (+) endothelial cells and THSD7A (-) endo-

thelial cells. Subsequently, the genes that exhibited 

differential expression with a significant q-value < 

0.01 were utilized as input for the “reduceDimension” 

function. The function was configured with the 

following parameters: max_components = 3, num_dim 

= 4, and reduction_method = “DDRTree”. We 

employed dimensionality reduction clustering and 

subsequently utilized the “orderCells” function to 

estimate cell trajectories. To further explore the 

biological mechanisms involving THSD7A at the 

single-cell level in gastric cancer, we calculated the 

gene clusters along the cell developmental trajectory 

and performed enrichment analysis for the gene 

clusters with consistent THSD7A expression patterns. 

The “CellChat” package [20] was used to identify  

the interactions between THSD7A-related cells and 

other cells in the TME.  

 

Immunohistochemistry procedure  

 

Tissue microarrays (array no. ZL-StmA961) containing 

48 gastric cancer samples and paired para-cancer 

samples were purchased from Shanghai Weiao Biotech 

Co., Ltd. (Shanghai, China). The primary antibody for 

THSD7A was a rabbit polyclonal primary antibody 

(HPA000923; Sigma Aldrich, St. Louis, MO, USA), 

diluted at a ratio of 1:100. After dewaxing and 

hydration, the tissue microarrays were incubated in 

3% hydrogen peroxide for 10 min, followed by 

antigen repair with sodium citrate solution for 10 min, 

blocking at room temperature for 120 min, and 

incubation with anti-THSD7A antibody overnight  

at 4° C. Finally, 3,3′-diaminobenzidine staining was 

used to examine THSD7A expression, and re-staining 

was performed with hematoxylin for 5 min. The 

expression of THSD7A protein was quantified using 

the Image Pro Plus (version 6.0; Media Cybernetics, 
Rockville, MD, USA) software, and the quantification 

criterion was density mean = density sum/area sum, 

with larger values indicating stronger staining [21]. 

https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/login/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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Cell culture 
 

One normal gastric cell line (GES-1) and three gastric 

cancer cell lines (MKN-45, HGC-27, and BGC-823) 

were purchased from Hangzhou Frieden Biotechnology 

Co., Ltd. (Hangzhou, China). The MKN-45 and BGC-

823 cells were cultured in RPMI-1640 medium, 

whereas the GES-1 and HGC-27 cells were cultured in 

the Dulbecco’s modified Eagle’s medium containing 

10% fetal bovine serum. All cells were cultured at 37° 

C under a 5% CO2 environment. 
 

Quantitative reverse transcription PCR 
 

To quantify THSD7A expression in the normal gastric 

cell line and gastric cancer cell lines, total RNA was 

extracted from GES-1 and the remaining three gastric 

cancer cell lines using the TRIzol Reagent. Thereafter, 

Quantitative Reverse Transcription PCR (qRT-PCR) 

was performed using SYBR Premix Ex Taq (Code: 

DRR041A; Takara; Tokyo, Japan) according to the 

manufacturer’s protocol; β-actin was used as an 

internal control. The expression level of THSD7A was 

quantified using the 2-ΔΔCT method. The primers for β-

actin were F: 5’-TGGCACCCAGCACAATGAA-3’ 

and R: 5’-CTAAGTCATAGTCCGCCTAGAAGCA-

3’, and those for THSD7A were F: 5’-GTGGAGGGA 

TGGACTACACTG-3’ and R: 5’-TGCCAATCGCAA 

ACTTTGAAAC-3’. 
 

Cell transfection 
 

Silencing of THSD7A was achieved through the 

human target gene THSD7A shRNA (purchased  

from GenePharma Co., Ltd., Suzhou, China) with the 

following sequences: THSD7A-shRNA1: 5’-AGGA 

GACGCGGGAAGAATAAA-3’, THSD7A-shRNA2: 

5’-ATGCCGACATGTAACATATAA-3’ and THSD7A- 

shRNA3: 5’-TGTCCTTGTGACAAATATAAT-3’. 

Lipofectamine 3000 (Invitrogen, Waltham, MA, USA) 

was used to transfect HGC-27 cells, and those infected 

for 72 h were used for subsequent analysis. 
 

Cell proliferation assays 
 

To evaluate the proliferative capacity of gastric cancer 

cells after THSD7A silencing, THSD7A-shRNA- and 

NC-shRNA-transfected HGC-27 cells were incubated at 

37° C and 5% CO2. Cell proliferation was evaluated 

using CCK-8 (Dojindo, Tokyo, Japan), and the absor-

bance at 450 nm was measured at 0, 24, 48, and 72 h 

post-transfection. 
 

Wound healing test 
 

The above HGC-27 cells were inoculated in 6-well 

plates at a density of 1×105 cells/well. After the cells 

adhered and reached 80–100% confluence, they were 

wounded with a 2 μL sterile pipette tip, washed three 

times with phosphate-buffered saline, and then cultured 

in a fresh complete medium for 48 h. The cultures were 

photographed at 0, 24, and 48 h under a microscope at 

100× magnification. 

 
Cell invasion assays 

 
The cell invasion ability of HGC-27 cells was evaluated 

using a transwell chamber (Corning Inc., Corning, NY, 

USA). The transwell apparatus consists of two distinct 

compartments, namely the upper and lower chambers. 

The top component is incubated at a temperature of  

37° C for a duration of 4-5 hours, resulting in the 

formation of a gel-like matrix. 2 × 1 05 HGC-27 cells 

transfected with THSD7A-shRNA and NC-shRNA 

were placed in the upper chamber, whereas complete 

medium was placed in the lower chamber. After 

incubation at 37° C with 5% CO2 for 48 h, the upper 

layer of non-invaded cells was removed with cotton 

swabs. The HGC-27 cells were subjected to fixation 

using anhydrous methanol for a duration of 15 minutes. 

The migration of cells from the upper chamber to the 

lower chamber was facilitated by the permeability of the 

membrane and the composition of the interstitial media 

in both chambers. The non-migratory cells presented in 

the upper chamber were eliminated, resulting in the 

retention of just the migrated cells in the lower 

chamber. The wells should be washed using a solution 

of 1 × phosphate-buffered saline and the HGC-27  

cells were fixed and stained with 4% paraformaldehyde 

and 0.1% crystal violet, respectively. Subsequently, an 

additional rinse was performed using a solution of 1 x 

phosphate-buffered saline. Following this, a cotton 

swab was utilized to remove all cells that have not 

moved. The cells were observed under a microscope at 

400× magnification and analyzed using the ImageJ 

software (version 1.8.0.112; National Institutes of 

Health, Bethesda, MD, USA). 

 
Colony formation assays 

 
HGC-27 cells transfected with NC-shRNA and 

THSD7A-shRNA were uniformly seeded onto plates 

and incubated for a duration of 2 weeks at a temperature 

of 37° C in a controlled incubation environment. The 

cell density was maintained at 500 cells/well. The 

formation and observation of colonies were carried out, 

followed by the termination of the culture and sub-

sequent removal of the supernatant. This was followed 

by two rinses in phosphate-buffered saline. The cells 

were fixed with 4% paraformaldehyde and stained with 
crystal violet. The cells should be washed in the staining 

solution at a gentle pace, followed by rinsing with 

running water and subsequent air drying, followed by 
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quantitative analysis using the ImageJ software (version 

1.8.0.112; National Institutes of Health). 

 

Statistical analysis 

 

All statistical analyses were performed using the R 

software (version 4.1.0). The Wilcoxon test and Student’s 

t-test were used to compare the differences between two 

groups. The Kruskal–Wallis test and One-way ANOVA 

were used to compare the differences between multiple 

groups, respectively. The Kaplan–Meier method and 

log-rank test were used to determine the differences in 

OS between the high- and low-THSD7A expression 

groups. The univariate and multivariate Cox regression 

analyses were used to determine the independent 

prognostic factors. Spearman’s rank correlation was 

used for correlation analysis. The graphs were plotted 

using the R (version 4.1.0) and GraphPad Prism 

(version 7.0; GraphPad, San Diego, CA, USA) software. 

The statistical analyses of the cellular studies were 

conducted using GraphPad Prism software. Student’s t-

test was employed to compare two groups, while One-

way ANOVA was used to compare three or more 

groups. The resulting results were reported as the mean 

± standard deviation. All experiments were repeated 

three times. Unless stated otherwise, the differences 

were considered statistically significant at P<0.05. 

 

Data availability statement 

 

The scRNA-seq and bulk RNA-seq data from this 

study are available in the GEO (https://www.ncbi.nlm. 

nih.gov/geo/) and TCGA (https://portal.gdc.cancer. 

gov/) databases. Other data can be obtained from the 

corresponding author upon reasonable request. 

 

RESULTS  
 

THSD7A expression is upregulated in gastric cancer 

 

Analysis of the data from the UALCAN datasets 

(cohorts), GSE27342, GSE29272, GSE54129, and 

GSE65801, revealed that THSD7A is significantly 

increased in gastric cancer tissues compared with that in 

normal gastric tissues (P<0.05; Figure 1A–1E). We used 

immunohistochemistry to analyze THSD7A protein 

levels in tissue microarrays involving 48 cases of gastric 

cancer and paired para-cancerous tissues and found that 

THSD7A protein levels were significantly higher in 

gastric cancer tissues than in normal gastric tissues 

(P<0.001; Figure 1F, 1G). THSD7A expression was 

highest in the 41–60-year age group (P<0.001; Figure 

2A). Regarding the grade and TNM stage of gastric 

cancer, THSD7A was most significantly upregulated  

in higher grades (grade 3; P<0.001) and higher stages 

(stage II, III, and IV; P<0.001; Figure 2B, 2C). Compared 

with that in the normal group, THSD7A expression  

was higher in patients with gastric cancer of different 

sexes, those showing positive lymph node metastasis 

status, and those in the TP53 mutation subgroups 

(P<0.001; Figure 2D–2F). With respect to race and the 

characteristics of histological subtypes, the expression 

of THSD7A was highest in Caucasian patients with 

gastric cancer (P<0.001) and intestinal adenocarcinoma 

(mucinous) subtypes (P<0.001; Figure 2G, 2H), 

respectively. Although the expression of THSD7A in 

the normal group was lower than that in patients with 

gastric cancer who were not infected with Helicobacter 

pylori (P<0.001), it was not different from that in H. 

pylori-infected patients with gastric cancer (Figure 2I), 

which may be attributed to the small sample size. 

 

Prognostic value of THSD7A and associated clinical 

factors in gastric cancer 

 

GEPIA online analysis showed that patients with gastric 

cancer and high THSD7A expression had shorter 

overall survival (OS; P<0.05; Figure 3A) and disease-

free survival (DFS; P<0.05; Figure 3B), compared with 

those with low THSD7A expression. The Kaplan–Meier 

Plotter tool validated the finding that patients with 

gastric cancer and low THSD7A expression had higher 

OS (P<0.001), first progression survival (FPS; P<0.001), 

and post-progression survival (PPS; P<0.001), com-

pared with those with high THSD7A expression (Figure 

3C–3E). Combined with the clinical data from TCGA-

stomach adenocarcinomas (STAD) cohort, univariate 

Cox analysis demonstrated that THSD7A expression 

[hazard ratio (HR) = 1.741, 95% confidence interval 

(CI): 1.165–2.601, P = 0.007], age (HR = 1.024, CI: 

1.006-1.042, P = 0.010), T-stage (HR = 1.225, CI: 

1.001-1.573, P = 0.049), and N-stage (HR = 1.327,  

95% CI: 1.132-1.555, P < 0.001) were significantly 

associated with a high-risk ratio (Figure 4A). Multi-

variate Cox analysis indicated that THSD7A expression 

(HR = 1.570, 95% CI: 1.050-2.350, P < 0.028) and  

age (HR = 1.033, 95% CI: 1.014-1.053, P < 0.001)  

were independent prognostic factors for gastric cancer 

(Figure 4B). Finally, the nomogram constructed by 

integrating the THSD7A expression profile and the 

clinical information of gastric cancer showed that 

THSD7A expression may play a good predictive role in 

gastric cancer (Figure 4C), the reliability of which was 

confirmed by the calibration curve (Figure 4D). 

 

Functional analysis of THSD7A 

 

Based on the GSEA of both gene sets, we explored 

signaling pathways that THSD7A may possibly be 
involved in. The results indicated that high THSD7A 

expression may promote the progression of gastric 

adenocarcinoma via processes such as epithelial-
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mesenchymal transition (EMT), the activity of cell 

adhesion molecules, inflammatory responses, angio-

genesis, vascular smooth muscle contraction, the IL2-

STAT5 signaling pathway, focal adhesion, and ECM-

receptor interaction (Figure 5A, 5B). 

THSD7A expression is correlated with tumor 

immune cells 
 

Oya et al. reported that investigating the gastric cancer-

associated TME may aid in identifying new therapeutic 

 

 

 

Figure 1. Analysis of THSD7A expression in the UALCAN database, TCGA database, GEO database, and tissue microarrays. 
Differential expression of THSD7A in the UALCAN database (A), GSE27342 (B), GSE29272 (C), GSE54129 (D), and GSE65801 (E) cohorts.  
(F, G) Differential expression of THSD7A in the tissue microarrays of gastric cancer verified via immunohistochemistry (scale bar = 50 μm) 
(*: P<0.05, **: P<0.01, ***: P<0.001). 
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Figure 2. Relationship between THSD7A expression and clinical characteristics. Relationship between THSD7A expression and age 
(A), grade (B), stage (C), sex (D), lymph node metastasis stage (E), TP53 mutation (F), ethnicity (G), histological subtypes (H) and Helicobacter 
pylori infection (I) (*: P<0.05, **: P<0.01, ***: P<0.001, ns: P>0.05). (Normal is the control group.) 
 

 
 

Figure 3. Survival analysis based on THSD7A expression. The relationship between high and low THSD7A expression groups in the 

GEPIA database and OS (A) and DFS (B). The relationship between the high and low THSD7A expression groups and the OS (C), FPS (D), and 
PPS (E) using the Kaplan–Meier Plotter tool. 
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Figure 4. Prognostic value of THSD7A. The univariate (A) and multivariate (B) Cox analyses of the prognostic significance of THSD7A in 

gastric cancer. (C) The THSD7A-nomogram constructed by combining THSD7A expression with clinical characteristics. (D) Calibration curve of 
THSD7A-nomogram. 
 

 
 

Figure 5. Functional enrichment analysis of THSD7A. Functional enrichment analysis based on the KEGG gene set (A) and the 
HALLMARK gene set (B). 
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targets [22]. Therefore, we performed a correlation 

analysis between THSD7A and TICs. The results 

showed that resting mast cells (P<0.001), M2 macro-

phages (P=0.008), and regulatory T cells (Tregs; 

P=0.020) were significantly positively correlated with 

THSD7A expression. In addition, THSD7A expression 

showed a negative correlation with follicular helper  

T cells (P<0.001), activated memory CD4+ T cells 

(P=0.007), and M1 macrophages (P=0.019), as shown 

in Figure 6. 

 

Half-maximal inhibitory concentration, immune 

checkpoints, effectiveness of immunotherapy, and 

tumor mutation burden 

 

Next, we evaluated the efficacy of THSD7A expression 

in predicting the half-maximal inhibitory concentration 

(IC50) values of anti-tumor drugs and checkpoint 

expression. We found that 5-fluorouracil (P<0.001), 

bleomycin (P<0.001), cisplatin (P<0.05), doxorubicin 

(P<0.001), etoposide (P<0.001), and gemcitabine 

(P<0.001) in the high-THSD7A expression group had 

higher IC50 values than those in the low-THSD7A 

expression group, whereas lapatinib (P<0.05) and 

pazopanib (P<0.01) in the high-THSD7A expression 

group had lower IC50 values than those in the low-

THSD7A expression group (Figure 7A). In addition, 

checkpoint molecules such as HAVCR2 (P<0.001), 

PDCD1LG2 (P<0.001), TIGIT (P<0.001), and CTLA4 

(P<0.05) were significantly upregulated in the high-

THSD7A expression group (Figure 7B). The TIDE 

score has been established as a reliable indicator for the 

prediction of immunotherapy efficacy [23]. The findings 

of the study indicated that the TIDE score of the group 

with high expression of THSD7A was notably greater 

than that of the group with low expression, which 

indicated that immunotherapy may be less successful in 

gastric cancer patients with elevated THSD7A expression 

(Supplementary Figure 1A). Numerous studies have 

demonstrated that TMB serves as a helpful prognostic 

indication for tumor immune response. 

 

Patients exhibiting high TMB levels have been 

observed to get benefits from immunotherapy inter-

ventions [24]. The Spearman correlation analysis 

revealed a negative association between THSD7A and 

TMB (Supplementary Figure 1B). The findings of our 

study demonstrated that the TMB in the group with  

low THSD7A expression was much higher compared to 

the group with high expression (Supplementary Figure 

1C). These results implied that individuals with gastric 

cancer who exhibited low THSD7A expression might 

potentially experience greater therapeutic benefits from 

immunotherapy interventions. Furthermore, survival 

 

 
 

Figure 6. Analysis of the correlation between THSD7A expression and immune cell infiltration. 
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analysis was performed on various TMB subgroups. 

The patients who exhibited high TMB demonstrated a 

more favorable outcome in comparison to those with 

low TMB (Supplementary Figure 1D). Following this, 

we conducted a survival study in gastric cancer patients 

by integrating the expression of TMB and THSD7A. 

The findings revealed that patients with gastric cancer 

who belonged to the high TMB group and the low 

expression THSD7A group had the most favorable 

prognosis in terms of survival (Supplementary Figure 

1E). This finding provided more evidence supporting 

the notion that individuals with gastric cancer who 

exhibit reduced THSD7A expression are more 

susceptible to the effects of immunotherapy. 

 

Gastric cancer single cell RNA sequencing data 

analysis 

 

After performing cell quality control (Supplementary 

Figure 2), we obtained a total of 19766 cells from  

10 gastric cancer samples and 4 normal gastric tissue 

samples. We performed dimensionality reduction via 

 

 
 

Figure 7. Analysis of drug sensitivity and immune checkpoints. (A) Correlation between high- and low-THSD7A expression 

subgroups and the sensitivity to different anti-tumor drugs. (B) Expression of immune checkpoints in the high- and low-THSD7A expression 
groups (*: P<0.05, **: P<0.01, ***: P<0.001). 
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principal component analysis and imported the first  

9 principal components (Supplementary Figure 3)  

into the t-distributed Stochastic neighbor Embedding  

(t-SNE) algorithm; 19 cell subgroups were obtained  

via clustering (Figure 8A). T cells, plasma cells, 

endothelial cells, mesenchymal stromal cells, B cells, 

macrophages, and epithelial cells were characterized via 

annotation of the “CellMarker” database (Figure 8B). 

 

 
 

Figure 8. Overview of the scRNA-seq data from 10 gastric cancer tissue samples and 4 normal gastric tissue samples. The t-

SNE plots classified by cluster (A), cell type (B), and tissue type (C, D). The expression of THSD7A in different tissues (E) and cell types (F). 
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Marker genes of the cell subpopulations are  

shown (Supplementary Figure 4). Meanwhile, we 

visualized the cell subpopulations in different samples 

(Supplementary Figure 5) and different tissue types 

(Figure 8C, 8D). THSD7A expressed in deep gastric 

cancer tissues (Figure 8E) was mainly distributed in  

the endothelial cell subpopulation (Figure 8F). These 

findings suggested that THSD7A may be an endothelial 

cell-related gene. 

Trajectory analysis 

 

To explore the developmental trajectory of THSD7A-

related endothelial cells, we first isolated the endo- 

thelial cell subpopulations in gastric cancer and normal 

gastric tissues, including 802 endothelial cells. The 

“PercentageFeatureSet” function identified 135 and 677 

endothelial cells that expressed or did not express 

THS7DA, respectively (Figure 9A). We simulated the 

 

 
 

Figure 9. Pseudotime analysis of endothelial cell subpopulations. (A) Endothelial cells are classified into two subpopulations, namely 

THSD7A (+) and THSD7A (-) (B) Pseudotime trajectory of endothelial cells. (C) Change in THSD7A expression with pseudotime trajectory in 
different types of tissues. (D) Dynamic expression of genes in the pseudotime trajectory; red represents upregulated gene expression; blue 
represents downregulated gene expression. (E) Enrichment analysis of gene cluster 2. 
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trajectory of endothelial cells using the Monocle2 

algorithm, which divided endothelial cells into seven 

differentiation states (Figure 9B). From the perspective 

of pseudotime trajectory, the endothelial cells from 

normal gastric tissue were mainly distributed at the 

beginning of the branch, whereas endothelial cells from 

superficial and deep gastric cancer were distributed  

at the middle and end of the differentiation trajectory, 

respectively. THSD7A (+) endothelial cells were 

enriched at the end of the differentiation trajectory, 

compared with the THSD7A (-) endothelial cells. 

THSD7A expression gradually increased with pseudo-

time trajectory (Figure 9C). We further clustered the 

genes expressed along the differentiation trajectory of 

endothelial cells into three clusters and plotted a  

heat map (Figure 9D), where THSD7A was located in 

cluster 2, which contained 607 genes (Supplementary 

Table 1). We performed enrichment analysis for the 

genes in cluster 2, and the results for some pathways, 

such as EMT, inflammatory responses, IL2-STAT5 

signaling pathway, cell adhesion molecules, focal 

adhesion, and ECM-receptor interaction were consistent 

with previous GSEA results (Figure 9E). Among the 

pathways mentioned above, the genes in cluster 2 were 

most enriched in the EMT pathway, suggesting that at 

the single-cell level, EMT may be a key pathway 

through which THSD7A and its co-expressed genes 

promote gastric cancer progression. 

 
Cell-cell communication analysis 

 
In order to determine the interactions between THSD7A 

(+) endothelial cells and other cell subpopulations in the 

gastric cancer microenvironment, the cell subpopulations 

from gastric cancer tissue were isolated and re-annotated 

(Figure 10A). Subsequently, we conducted a cellular 

interaction analysis of the eight cell subpopulations  

that were obtained (Figure 10B) and compared the 

differences in communication interactions between both 

THSD7A (+) and THSD7A (-) endothelial cells and  

the other cells (Figure 10C). Our results indicated that as 

both signal senders and receivers, the THSD7A (+) 

endothelial cell subpopulation enriched a stronger 

signaling pathway network than the THSD7A (-) endo-

thelial cell subpopulation (Figure 10D). We visualized 

the relationships among the ligand-receptor pairs in the 

relevant signaling pathways when THSD7A (+) and 

THSD7A (-) endothelial cells act as signal senders and 

receivers, respectively (Supplementary Figure 6). When 

endothelial cells were analyzed as signal senders, the 

signaling pathways that were only enriched in THSD7A 

(+) endothelial cells were those such as galectin, C-X-

C motif chemokine ligand (CXCL), thrombospondin 

(THBS), and tenascin (Figure 10E); when endothelial 

cells were analyzed as signal receivers, the signaling 

pathways that were only enriched in THSD7A (+) 

endothelial cells were those such as THBS, insulin- 

like growth factor, and semaphorin-4A, with CD46  

only being present in the THSD7A (+) endothelial cells 

(Figure 10F). Among them, the galectin (LGALS9 - 

CD44 and LGALS9 - CD45), CXCL (CXCL12 – [C-X-

C chemokine receptor type 4] CXCR4) and THBS 

(THBS1 - CD47, THBS1 - SDC1, and THBS1 - SDC4) 

pathways showed the most significant communication 

differences in signal sending and receiving, respectively. 

Therefore, we visualized the intercellular commu-

nication relationships between these three pathways 

(Supplementary Figure 7). We also analyzed interactions 

within the endothelial cell subpopulation and found  

that THSD7A (+) and THSD7A (-) endothelial cells 

showed strong levels of interactions in the amyloid- 

beta precursor protein (APP)-CD74 signaling pathway 

(Supplementary Figure 8). 

 

Knocking down THSD7A inhibits the proliferation 

and migration of gastric cancer cells 

 

The effects exerted by THSD7A on the proliferation 

and migration of gastric cancer cells were investigated. 

qRT-PCR analysis showed that THSD7A was signi-

ficantly upregulated in gastric cancer cells (MKN-45 

and HGC-27) compared with normal gastric cells, with 

THSD7A being most significantly expressed in the 

HGC-27 cells (Figure 11A). We selected HGC-27 cells 

for subsequent functional experimental analysis and 

used various types of short hairpin RNAs (shRNAs) to 

suppress THSD7A expression in the HGC-27 cells. The 

qRT-PCR test revealed that THSD7A-shRNA-1 had the 

best silencing efficiency (Figure 11B). Cell counting 

kit-8 (CCK-8) assay results showed that, following 

THSD7A gene knockout, the number of HGC-27 cells 

were significantly reduced compared to that in the 

normal control (NC)-shRNA group (Figure 11C). The 

results of the wound scratch assay indicated that the 

healing ability of gastric cancer cells was reduced at 

different periods following THSD7A gene knockout 

(Figure 11D, 11E). The results of the transwell assay 

showed that the migration and invasion abilities of 

HGC-27 cells were significantly reduced following 

THSD7A gene knockout (Figure 11F, 11G). The result 

of the colony formation assay showed that THSD7A 

deletion significantly reduced the number of new HGC-

27 cell clones (Figure 11H, 11I). 

 

DISCUSSION 
 

With due consideration given to the low survival rate of 

those afflicted with gastric cancer, it is necessary to 

explore effective gastric cancer-related biomarkers for 

prognostic value and usefulness as new therapeutic 

targets. The mechanism of action and the diagnostic 

value of THSD7A in gastric cancer have not been fully 
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investigated. Therefore, we performed a comprehensive 

analysis of the bulk and single cell RNA sequencing 

(scRNA-seq) data pertaining to gastric cancer in public 

databases. An examination of bulk sequencing data 

from the TCGA-STAD and GEO databases indicated 

that THSD7A was highly expressed in gastric cancer 

tissues compared to non-cancerous tissue samples. 

Furthermore, THSD7A expression was correlated with 

 

 
 

Figure 10. The role of THSD7A-associated endothelial cells in intercellular communication. (A) Isolation of gastric cancer-

derived cell subpopulations and re-annotation of endothelial cell subpopulations. (B) Cellular communication of eight cell subpopulations, 
with the numbers representing the number of pathways. (C) Communication interactions between two THSD7A (+) endothelial cells and 
THSD7A (-) endothelial cells and other cell subpopulations, with the number representing the number of pathways. (D) Intensity and 
number of signals in each cell subpopulation. The values of the coordinate axes and the sizes of the circles represent the intensity and 
number of output and input signals, respectively. Differences in cellular communication between two groups when endothelial cells act as 
signal receivers (E) and senders (F). 
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Figure 11. Effects of THSD7A gene deletion on gastric cancer cell proliferation and invasion. (A) The results of the qRT-PCR 

analysis of THSD7A expression in normal gastric cells and gastric cancer cells. (B) In HGC-27 cells, THSD7A expression is downregulated in the 
shRNA group, with the THSD7A-shRNA-1 group being downregulated most significantly. (C) CCK-8 assay results showing the proliferation and 
viability of HGC-27 cells following THSD7A knockout. (D, E) Wound-healing assay results showing the migration ability of HGC-27 cells 
following THSD7A knockout (scale bar = 20 μm). (F, G) Transwell assay results showing the invasion and migration abilities of HGC-27 cells in 
the NC-shRNA and THSD7A-shRNA groups (scale bar = 10 μm). (H, I) Colony formation assay results comparing the number of clones of HGC-
27 cells between the NC-shRNA and THSD7A-shRNA groups (*: P<0.05, **: P<0.01, ***: P<0.001, ****:P<0.0001, ns: P>0.05. Error bars 
represent standard deviation). (GES-1 and NS-shRNA are the control group). 
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TNM stage, grade, race, and histological subtypes. 

Survival analysis, conducted using the GEPIA database 

and the Kaplan–Meier Plotter tool, showed that high 

THSD7A expression predicted shorter OS, DFS, FPS, 

and PPS in patients with gastric cancer, which further 

supported the finding that the upregulation of THSD7A 

was correlated with the degree of gastric cancer 

malignancy. Univariate and multivariate Cox regression 

analyses indicated that THSD7A was an independent 

risk factor for gastric cancer. To determine the efficacy 

of THSD7A as a clinical application, a THSD7A-

nomogram was drawn in combination with clinical 

features, and its calibration curves reflected good 

predictive performance. 

 

The functional enrichment analysis revealed that 

THSD7A expression in gastric cancer may be associated 

with pathways such as inflammatory responses, 

angiogenesis, EMT, focal adhesion, and cell adhesion 

molecules. Ma et al. reported that while inflammatory 

mediators secreted by immune cells promoted EMT on 

the one hand, they transformed normal gastric epithelial 

cells to cancer cells on the other hand, by increasing 

cellular DNA damage and mutations [25]. Uncontrolled 

angiogenesis is considered a hallmark of cancer [26]. 

Previous studies have shown that EMT not only 

regulates the invasion and metastasis of tumor cells 

[27], but also facilitates the development of multidrug 

resistance [28]. Furthermore, the dysregulation of ECM 

homeostasis and cell-cell adhesion in the TME is a key 

driver of cancer development [29–31]. Increased 

activity of the IL2-STAT5 signaling pathway was seen 

in gastric cancer patients with elevated levels of 

THSD7A expression. The research done by Lutz et al. 

unveiled that the occurrence of CD8+ T-cell exhaustion 

in pancreatic cancer is regulated by the IL2-STAT5 

signaling pathway [32]. Chronic inflammation is a 

significant factor in the pathogenesis of several 

malignancies, as the inflammatory elements inside the 

TME promote interaction between immune and non-

immune cells, so creating a conducive environment  

for the advancement of cancer [33]. Eke et al. have 

previously reported that the focal adhesion signalling 

pathway functions as an intermediary mechanism for 

drug resistance in tumor cells [34]. Considered together, 

these findings suggest that the contribution of THSD7A 

to the development of gastric cancer cell invasion and 

drug resistance is multi-dimensional. 

 

The presence of TICs in the TME has been clearly 

identified as an important prognostic indicator of patient 

survival as well as a potential target in the treatment of 

tumors [35]. To the best of our knowledge, our current 
study is the first to report the relationship between 

THSD7A and TICs. Upregulation of THSD7A showed a 

significantly positive correlation with resting mast cells, 

M2 macrophages, and Tregs, but showed a negative 

correlation with follicular helper T cells, activated CD4+ 

memory T cells, and M1 macrophages, suggesting that 

the upregulation of THSD7A promotes the recruitment 

of resting mast cells, M2 macrophages, and Tregs in the 

microenvironment of gastric cancer. The TME is 

enriched in mast cells due to recruitment by chemokines, 

which promote the EMT of tumor cells via the secretion 

of CXCL8 [36]. Angiogenic factors, which promote 

tumor angiogenesis, are produced under cytokine stimu-

lation and hypoxic environments [37, 38]. Ribatti et  

al. reported that mast cells were highly correlated with 

gastric cancer angiogenesis [39]. Evidently, the massive 

infiltration of M2 macrophages that act as immuno-

suppressive cells in the TME, predicts a shorter survival 

time [40]. According to Tanaka et al., Tregs heavily 

infiltrate the TME of a variety of human tumors, such as 

gastrointestinal tumors, lung cancer, and breast cancer, 

where they mediate immunosuppression via CTLA4. 

Tregs are key cells that trigger tumor immune escape 

[41]. In their study, Cui et al. discovered that T follicular 

helper cells possess the ability to engage in interactions 

with tumor-specific B cells, hence facilitating the 

manifestation of anti-tumor immune responses [42]. 

Prior research has indicated that individuals afflicted 

with tumors that have a high degree of infiltration by 

activated CD4+ memory T cells and plasma cells tend to 

experience a favorable prognosis [43, 44]. Exosomes 

generated from M1 macrophages exhibit a specific 

affinity for the interleukin-4 receptor found on M2-

polarized macrophages. Consequently, this interaction 

leads to the suppression of tumor development [45]. The 

M1 macrophage exhibits promising potential for the 

therapeutic intervention of several types of malignancies 

[46, 47]. Furthermore, NK cells are acknowledged as 

immune cells that have anti-tumor properties [48].  

This study found that the expression of THSD7A may  

be associated with the suppression of the anti-tumor 

immune response. 

 

Compared with surgery alone, adjuvant chemotherapy 

has improved the survival rate of patients with gastric 

cancer. However, many patients with gastric cancer do 

not benefit from adjuvant chemotherapy [49], and the 

therapeutic response to chemotherapeutic agents is 

affected by the interaction between cells in the TME and 

the chemokine network produced by them [50]. The 

currently used conventional tumor staging systems are 

not ideal for predicting the response to chemotherapy 

[51], whereas biomarkers have shown the capacity to 

play a useful role in predicting the therapeutic response. 

Jiang et al. constructed a risk signal based on periostin, 

cyclooxygenase-2, and TME-associated cells that 
predicts the chemosensitivity of patients with gastric 

cancer [52]. The current study evaluated the IC50 values 

of selected chemotherapeutic agents in patients with 
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gastric cancer in high- and low-THSD7A expression 

groups. Moreover, 5-fluorouracil and cisplatin are known 

important anti-cancer agents that are used against 

gastric cancer [53]. We found that upregulation of 

THS7DA may promote resistance to 5-fluorouracil and 

cisplatin in patients with gastric cancer. Further analysis 

indicated that sensitivity to bleomycin, doxorubicin, 

etoposide, and gemcitabine may be reduced in patients 

with high THSD7A expression. A previous enrichment 

analysis has shown that THSD7A is involved in 

resistance-related pathways, which may explain the 

decreased sensitivity shown by patients with high 

THSD7A expression to the above chemotherapeutic 

agents. Notably, upregulation of THSD7A increased 

sensitivity to lapatinib and pazopanib. A clinical trial 

targeting patients with human epidermal growth  

factor receptor 2 (HER2)-amplified gastroesophageal 

adenocarcinoma showed that the addition of lapatinib 

significantly prolonged patient survival compared  

with a combination chemotherapy consisting only of 

capecitabine and oxaliplatin [54]. In addition, lapatinib 

combined with paclitaxel resulted in significantly longer 

median OS in patients with HER2-amplified gastric 

cancer than paclitaxel alone [55]. Kim et al. reported 

that pazopanib inhibited the proliferation of fibroblast 

growth factor receptor 2-amplified gastric cancer  

cells [56]. Högner et al. found that pazopanib combined 

with 5-fluorouracil and oxaliplatin (FLO) was more 

effective than FLO alone in improving OS in patients 

with advanced gastric cancer [57]. However, the 

relationship between the above chemotherapeutic agents 

and THSD7A needs to be verified in future clinical 

trials. Immunotherapy has been widely used as an 

innovative approach in the treatment of solid tumors, 

and gastric cancer-related immune targets are being 

developed [58]. This study found that immune 

checkpoints, including HAVCR2, PDCD1LG2, TIGIT, 

and CTLA4, are highly expressed in patients with high 

expression of THSD7A. Current analyses combined 

with previous immune infiltration analyses, indicate that 

THSD7A not only induces a poor immune micro-

environment, but also enables immune escape in gastric 

cancer. These results provide a clue for the development 

of immunotherapy targeting patients in the high 

THSD7A expression group. 

 

The scRNA-seq technology compensates for  

traditional bulk sequencing defects, including the 

inability to reveal heterogeneity between cells, satisfies 

the requirements of various types of tumor research,  

and demonstrates the molecular characteristics of the 

TME in different pathological backgrounds by plotting 

maps for cancer cell subpopulations [59]. We analyzed 
the role played by THSD7A at the cell subpopulation 

level using scRNA-seq data. First, THSD7A was mainly 

expressed in endothelial cells with gastric cancer and 

minimally expressed in the endothelial cells of normal 

gastric tissues. Kuo et al. reported that soluble THSD7A 

is an N-glycoprotein with the ability to promote 

endothelial cell migration and accelerate angiogenesis 

via a mechanism that may be associated with the 

regulation of focal adhesions [60]. Our GSEA results 

showed that THSD7A participates in signaling path-

ways related to angiogenesis, focal adhesion, and cell 

adhesion molecules, which is consistent with the 

findings of previous studies. Subsequently, cell trajectory 

analysis revealed that THSD7A (+) endothelial cells  

are mainly located at the end of the differentiation 

trajectory, and that THSD7A expression increased with 

the progression of gastric cancer infiltration. These 

findings indicated that the upregulation of THSD7A 

may drive the process of gastric cancer cell invasion 

from a superficial level to a higher level. In addition, we 

analyzed the genes that changed with the differentiation 

trajectory and found that the expression pattern of genes 

in cluster 2 was consistent with changes in THSD7A. 

Enrichment analysis revealed that these genes mainly 

participated in pathways such as EMT, inflammatory 

responses, IL2-STAT5 signaling pathway, cell adhesion 

molecules, focal adhesion, and ECM-receptor interaction. 

Further analysis indicated that EMT mediated by 

THSD7A (+) endothelial cells may be an important 

pathway affecting gastric cancer cell proliferation and 

metastasis. 

 

Intercellular communication analysis indicated that 

THSD7A (+) endothelial cells participated in a more 

unique signaling pathway network compared to 

THSD7A (-) endothelial cells. Among these pathways 

and ligand-receptor pairs, the galectin (LGALS9 - 

CD44 and LGALS9 - CD45), CXCL (CXCL12 – 

CXCR4), and THBS (THBS1 - CD47, THBS1 - SDC1 

and THBS1 - SDC4) pathways differed significantly. 

Previous studies have reported that the differentiation 

and maintenance of Tregs are highly correlated with 

LGALS9-CD44 in the galectin signaling pathway  

[61]. Iqbal et al. found that endothelial cells recruit 

neutrophils by expressing LGALS9 ligands that bind to 

CD44 receptors, which in turn induce an inflammatory 

response [62]. LGALS9 may also inhibit the activation 

of B cells by binding to CD45 [63]. The CXCL 

signaling pathway not only plays a key role in gastric 

cancer immune resistance [64], but also induces  

EMT progression vis the CXCL12-CXCR4 axis [65], 

the role of which has also been confirmed in breast 

cancer metastasis [66]. THBS1 and CD47 also jointly 

participate in anti-tumor immunosuppressive effects 

[67], where upregulated expression of THBS1-CD47 

not only accelerates the progression of EMT, but also 
induces fibrosis and inflammation [68]. The interaction 

between THBS1 and SDC1 expressed in malignant 

gliomas promotes tumor cell invasion [69]. Ferrari do 
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Outeiro-Bernstein et al. discovered that the binding of 

THBS1 to SDC4 inhibited apoptosis of vascular 

endothelial cells and maintained their adhesion function 

[70]. Yao et al. reported that SDC1 and SDC4 were 

upregulated in lung adenocarcinoma cells with high 

EMT scores [71]. Moreover, THSD7A (+) and THSD7A 

(-) endothelial cells may interact within endothelial cell 

subpopulations in an autocrine manner, with APP-CD74 

playing a key role. Although APP is an Alzheimer’s 

disease-associated protein, it is also reportedly over-

expressed in nasopharyngeal, colon, and pancreatic 

cancers [72–74]. The upregulation of CD74, which acts 

as a key signal in the immune process, is associated 

with poor prognoses, as has been demonstrated in 

gastric cancer, pancreatic cancer, and glioma [75–77]. 

Borghese et al. reported that CD74 may be a potential 

target in the treatment of tumors [78]. The role of APP-

CD74 in cancer has rarely been reported and requires 

further investigation. This study demonstrated that the 

upregulation of THSD7A may drive immunosuppression, 

inflammatory responses, and activation of EMT 

signaling pathways via the aforementioned ligand-

receptor pairs, resulting in gastric cancer progression. 

 
Previous studies have confirmed that inhibition of 

THS7DA may significantly inhibit the proliferative and 

invasive capacities of esophageal cancer cells [79].  

Our cellular experiments demonstrated that THSD7A 

expression was significantly higher in HGC-27 cells 

than in GES-1 cells, and that silencing it significantly 

inhibited the proliferation, invasion, and migration 

abilities of HGC-27 cells. 

 
The present study observed that the expression  

of THSD7A was notably higher in HGC-27 cells. 

Furthermore, we conducted a preliminary investigation 

to examine the impact of inhibiting THSD7A on  

the activity of gastric cancer cells. Nevertheless, it is 

important to acknowledge certain limitations in our 

study. Firstly, due to financial constraints, we were only 

able to conduct functional experiments on HGC-27 cells. 

Consequently, the findings may not comprehensively 

represent the impact of inhibiting THSD7A on gastric 

cancer. Furthermore, we anticipate investigating the 

protein-level expression levels of THSD7A in gastric 

cancer cells, as well as its interference in mice tumor 

models. These future experiments should employ more 

advanced and established experimental equipment, as 

well as more refined experimental techniques. In 

addition, we intend to carry out clinical prospective 

research including individuals diagnosed with stomach 

cancer. 

 
In conclusion, the findings of this study revealed that 

upregulation of THSD7A expression in endothelial cells 

is associated with the recruitment of tumor-associated 

immunosuppressive cell infiltration as well as poor 

prognoses in patients with gastric cancer. Furthermore, 

our findings indicate that THSD7A shows potential for 

use as an effective prognostic biomarker for gastric 

cancer and a new target in the treatment of gastric 

cancer. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Evaluation of immunotherapy efficacy and tumor mutation burden. (A) Evaluation of immunotherapy 
effectiveness in individuals with high and low THSD7A expression. (B) Correlation between THSD7A expression and TMB. (C) Distribution of 
TMB scores in high- and low-THSD7A groups (H: High; L: Low). (D) Gastric cancer patients in high- and low-TMB groups have different survival 
rates. (E) Patients with various levels of THSD7A expression and TMB scores had variable survival rates for gastric cancer (*: P<0.05, **: 
P<0.01, ***: P<0.001, ns: P>0.05.). 
 

 
 

Supplementary Figure 2. Quality control of scRNA-seq data. 
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Supplementary Figure 3. First nine principal components (PCs) obtained from principal component analysis (PCA) 
dimensionality reduction analysis. 

 

 
 

Supplementary Figure 4. Marker genes corresponding to seven cell subpopulations. 
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Supplementary Figure 5. The t-SNE plots classified by the source of samples. 
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Supplementary Figure 6. Communication interactions between endothelial cells and other cell subpopulations when the endothelial cells 

act as signal senders (A, B) and receivers (C, D). 
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Supplementary Figure 7. Intercellular communication among galectin, CXCL and THBS signalling pathways. 
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Supplementary Figure 8. Cellular interactions within endothelial cell subpopulations. 
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Supplementary Table 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Gene clusters expressed along the pseudotime trajectory. 


