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INTRODUCTION 
 

Lung cancer (LC), one of the most common 

malignancies worldwide, was the leading cause of 

cancer death with 18.0% of total cancer deaths for  

both sexes combined in 2020 [1]. For men, LC has 

ranked first in both incidence and mortality, accounting 

for 14.3% of total new cases and 21.5% of total cancer 
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ABSTRACT 
 

Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration 
and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic 
roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the 
correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene 
expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative 
analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) 
were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were 
constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, 
=0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, 
CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene 
prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival 
(OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, 
=0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had 
the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was 
significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD 
patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to 
conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological 
roles of CRs in LUAD. 
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deaths, respectively [1]. Especially in some countries 

with a higher human development index (HDI), the 

incidence and mortality of LC are about 4-fold and  

3-fold higher than those in lower HDI countries [1].  

The burden of LC incidence and mortality is rapidly 

growing globally. However, the overall survival (OS) of 

LC patients remains poor and the overall 5-year survival 

rate is only about 19% for all stages combined, much 

lower than 98% of prostate cancer and 90% of female 

breast cancer [2]. 

 
Non-small cell lung cancer (NSCLC) is the most 

common histological subtype and accounts for about 

85% of all LC patients [3], of which lung adeno-

carcinoma (LUAD) is the major subtype and accounts 

for greater than 40% of LC cases and its relative 

frequency is increasing [3, 4]. Currently, the LUAD 

TNM (tumor-node-metastasis) staging system remains 

the prevailing method and the most important factor  

to predict the OS of LUAD patients [5]. However, due 

to the high heterogeneity of LUAD, the prognoses of 

LUAD patients within the same TNM group presented 

heterogeneous outcomes [6], which suggests that some 

new prognostic methods should be developed and  

used to refine risk stratification, such as molecular 

prognostic marker [6]. In recent years, with the progress 

of molecular biology, some molecular prognostic 

markers including protein, mRNA, miRNA, lncRNA, 

and oncogene were identified [6–10]. In addition, liquid 

biopsies based on circulating tumor cells (CTCs)  

and circulating free DNA (cfDNA) and tumor micro-

environment (TME) based on tumor-infiltrating immune 

cells (TICs) are of much interest to many scientists  

in predicting the survival, and some valuable results 

have been obtained [6, 11, 12]. 

 
Epigenetic regulation is an essential mechanism for 

normal development and maintenance of gene expression 

patterns in mammals [13]. Growing evidence has shown 

that epigenetic modification plays a critical role in the 

regulation of all DNA-based processes, and epigenetic 

alterations can lead to induction and maintenance of 

various cancers and are increasingly recognized as  

a cancer hallmark [14]. Chromatin regulators (CRs) 

including DNA methylators, histone modifiers and 

chromatin remodelers, as indispensable regulatory 

factors, play critical roles in driving epigenetic 

modification [15]. Some studies have shown that the 

dysregulation or dysfunction of CRs was correlated 

with various cancers and some CRs have been used as 

key drug targets against cancers [16–19]. For example, 

DNA methylator DNMT1 has been shown to play  

an oncogenic role in promoting cell proliferation, 

migration and invasion by suppressing cell differen-

tiation in pancreatic cancer [20]. Chromatin remodeler 

CTCF has been shown to be upregulated in colorectal 

cancer tissue, and the over-expression of CTCF 

promoted colorectal cancer cell proliferation [21]. A few 

recent studies reported that CRs were correlated with the 

prognoses of cancer patients [22, 23]. For instance, the 

CBX7 expression resulted in a poor prognosis in ovarian 

clear cell adenocarcinoma [22]. Similarly, the CDK1 

overexpression was associated with a poor prognosis in 

colorectal cancer [23]. In addition, several studies 

reported that some CRs were associated with LC such as 

CDK1 and MGMT [24, 25]. Despite some CRs advances, 

little is known about the roles of CRs in LUAD biology 

and a better understanding of CRs associated with the 

prognosis urgently requires identification. 

 

In this study, we first constructed and evaluated  

two molecular prognostic subtypes (MPSs) based  

on the prognostic CRs. Subsequently, we established  

a six-gene prognostic signature based on two MPSs. 

Furthermore, we investigated the clinical and molecular 

features between differing MPSs and between differing 

risk subgroups, especially exploring the relationships  

of MPS and risk signature with TICs. This study will  

be helpful for better understanding the prognostic and 

immunological role of CRs in LUAD. 

 

RESULTS 
 

This study was divided into 5 research modules 

sequentially and the flow chart was presented in Figure 

1: (1) Data collection. LUAD-related gene expression 

datasets and clinical data were retrieved from the public 

databases The Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO). The TCGA-LUAD dataset 

was used to construct prognostic subtypes and prognostic 

gene signature. The GEO-LUAD datasets were used  

to evaluate the validity of prognostic subtype and the 

robustness of prognostic gene signature. (2) Prognostic 

subtype construction. Two MPSs were constructed based 

on 27 differentially expressed chromatin regulators 

(DECRs) with significant prognostic value using the 

TCGA-LUAD dataset and the validity of MPSs was 

evaluated using 4 independent GEO-LUAD datasets. 

(3) Key prognostic gene identification. Six differentially 

expressed genes (DEGs) between two MPSs were 

identified to be key prognostic DEGs based on the 

univariate Cox regression analysis (UCRA), multivariate 

Cox regression analysis (MCRA) and least absolute 

shrinkage and selection operator (LASSO) analysis.  

(4) Prognostic signature establishment. A six-gene  

prognostic signature was established using the TCGA- 

LUAD dataset and its robustness was assessed using  

8 independent GEO-LUAD datasets. Subsequently, the  

predictive ability of six-gene prognostic signature was  

evaluated by comparing with 19 reported prognostic  

signatures. (5) Clinical and immunological features  

analyses. The associations of MPS, key prognostic genes 
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Figure 1. Flow chart of the present study. This study was divided into 5 research modules sequentially. (1) Data collection. Lung 

adenocarcinoma (LUAD) gene expression datasets were retrieved from the public gene expression omnibus (GEO) and the cancer genome 
atlas (TCGA) databases, respectively. (2) Prognostic subtype construction. Prognostic subtypes were constructed based on prognostic 
chromatin regulators. (3) Key prognostic gene identification. Key prognostic genes were identified by Cox regression and the least absolute 
shrinkage and selection operator (LASSO) analyses. (4) Prognostic signature establishment. Prognostic signature was established and 
evaluated. (5) Clinical feature and immunological feature analyses. The relationships of prognostic subtypes, prognostic genes and signature 
with clinical characteristics and immunological features were analyzed. 
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and risk score with clinical and immunological  

features were investigated. Potential responses of 

LUAD patients to immunotherapy and chemotherapy 

were predicted in different MPSs and in different risk 

subgroups, respectively. 

 

Twenty-seven DECRs were correlated with the 

prognosis in LUAD 

 

To identify key prognostic CRs, a DEGA and a UCRA 

were performed. The DEGA result showed that totals of 

2346 upregulated and 1966 downregulated genes were 

identified in LUAD tissue compared to normal lung 

tissue (Figure 2A and Supplementary Table 1). Among 

127 upregulated and 33 downregulated genes were 

DECRs (Figure 2B and Supplementary Table 2). These 

DECRs, especially 127 upregulated DECRs, mainly 

involved in chromatin organization (GO:0051276, p = 

8.37e-49), cell cycle (hsa04110, p = 2.87e-07), chromatin 

modifying enzymes (HAS-3247509, p = 2.67e-15), etc. 

(Figure 2B). The disease ontology (DO) result showed 

that 127 upregulated DECRs were mainly associated  

with cancer (DOID:162, p = 0.0334) (Figure 2B). The 

UCRA result showed that 27 of 160 DECRs had 

significant prognostic values (p < 0.05, Figure 2C). The 

27 prognostic DECRs include 16 histone modifiers,  

4 chromatin remodelers, 2 DNA methylators and 5 

unknown types, respectively (Table 1). Except for CBX6, 

CBX7, CIT and MOCS1, the other 23 DECRs were risk 

factors (Figure 2C) and their expressions showed strong 

positive correlations with each other (most p < 0.001, 

Figure 2D). Except for CBX7, CBX6 and MOCS1,  

the other 24 DECRs were significantly upregulated in 

LUAD tissues (adjusted p < 0.05, Figure 2E). 

 

To further investigate the expression levels of 27 

prognostic DECRs between LUAD and normal lung 

tissues, the gene expressions of these 27 DECRs were 

compared between LUAD and normal lung tissues from 

10 LUAD patients using a paired t-test method. The 

results showed that the expression levels of these 27 

DECRs were highly consistent with the TCGA-LUAD 

results (Figure 3A and Supplementary Table 3). 

 

Two MPSs constructed by 27 prognostic DECRs 

were valid 

 

To investigate the relationships of 27 prognostic 

DECRs with LUAD prognostic subtype, a consensus 

clustering for the TCGA-LUAD samples was performed 

based on the gene expression profiles of 27 prognostic 

DECRs. According to clustering stabilities increasing 

from k = 2 to 9 (Figure 4A), k = 2 was selected for 
sample cluster and LUAD samples were clustered into 

two clusters called Cluster1 (C1 subtype) and Cluster2 

(C2 subtype) (Figure 4B). The LUAD patients in the C2 

subtype had a higher OS rate than those in the C1 

subtype (p = 0.016, Figure 4C). 

 

To evaluate the validity of two MPSs, four independent 

GEO-LUAD gene expression datasets including 

GSE31210, GSE50081, GSE68465 and GSE72094 

were clustered using the same clustering method, 

respectively. The k = 2 was the optimal parameter for 

each of four datasets (Figure 4D, 4G, 4J, 4M) and 

LUAD samples were clearly divided into two clusters 

(Figure 4E, 4H, 4K, 4N). There was a significant 

difference in the OS rate between two clusters (p < 

0.0001, = 0.008, = 0.00038, = 0.00055, respectively, 

Figure 4F, 4I, 4L, 4O). 

 

The expression analysis showed that 26 of 27 prog-

nostic DECRs had significant differences between two 

clusters except for NPAS2 (Figure 5A), and 4 DECRs 

including CBX6, CBX7, MOCS1 and CIT were highly 

expressed in the C2 subtype. Among the 26 DECRs, 

except for CIT, the expression levels of 25 DECRs 

between the C1 subtype and LUAD group showed the 

same trends, and those between the C2 subtype and 

normal lung tissue, respectively (Figures 2E, 5A). 

 

MPSs were correlated with clinical and biological 

features 

 

To explore the correlations of MPSs with clinical 

features, clinical features between C1 and C2 subtypes 

were compared. The results showed that there were 

significant differences in the T staging (chi-square  

p = 0.0083), N staging (chi-square p = 4e-04), age  

(chi-square p = 0.0021) and cancer status (chi-square  

p = 0.0273) between these two MPSs (Figure 5B). The 

LUAD patients in the C2 subtype had a lower T staging 

and N staging than those in the C1 subtype. 

 

To investigate the correlations of MPSs with biological 

features, functional enrichment analyses were performed 

to discover potential functional differences between 

these two MPSs by using GSVA and GSEA methods. 

The GSVA result showed that a total of 184 KEGG 

pathways was significantly enriched (p < 0.05, Figure 

5C). Among these KEGG pathways, some key onco-

genic signaling pathways (OSPs) in the C2 subtype 

were lower active than those in the C1 subtype, such as 

cell cycle and P53 signaling pathway (both p < 0.001, 

Figure 5C). The GSEA result was consistent with that 

obtained by the GSVA method (Figure 5D) and some 

OSPs including cell cycle (p = 4.60e-09) and P53 

signaling pathway (p = 2.12e-04) were significantly 

downregulated in the C2 subtype (Figure 5D). 
 

To further investigate the characteristics of genomic 

variations between two MPSs, a somatic mutation 
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Figure 2. Identification of key differentially expressed chromatin regulators associated with survival. (A) Distribution of 

differentially expressed genes (DEGs) between lung adenocarcinoma (LUAD) and normal lung tissues. Totals of 2346 upregulated and 1966 
downregulated DEGs were identified in LUAD tissue. (B) Identification of differentially expressed chromatin regulators (DECRs). Totals of 
127 upregulated and 33 downregulated DECRs were identified in LUAD tissue. (C) Identification of key DECRs associated with overall 
survival (OS) rate of patients with LUAD. Univariate Cox regression analysis showed that 27 DECRs were associated with the OS of patients 
with LUAD. (D) Correlations between key prognostic DECRs in expression. Except three DECRs including MOCS1, CBX7 and CIT, the 
expressions of the other 24 DECRs showed strong positive correlations on the whole. (E) Heat map of key prognostic DECRs in expression. 
Except three DECRs including MOCS1, CBX7 and CBX6, the expression of the other 24 DECRs were upregulated in LUAD tissue. 
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Table 1. Basic functional information of 27 prognostic chromatin regulators. 

Symbol Type Histone type Methytor type Function 

AURKA Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

BUB1 Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

PBK Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

PRKDC Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

TTK Histone Modifier Writer / Histone modification write cofactor (Histone 

phosphorylation) 

CDK1 Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

CHEK1 Histone Modifier Writer / Histone modification write (Histone phosphorylation) 

CIT Histone Modifier Writer / Histone modification write cofactor (Histone 

phosphorylation) 

ANP32E Histone Modifier Reader / Histone chaperone, Histone modification read 

CBX3 Histone Modifier Reader / Histone modification read 

CBX6 Histone Modifier Reader / Histone modification read 

CBX7 Histone Modifier Reader / Histone modification read 

YWHAZ Histone Modifier Reader / Histone modification read 

RAD51 Histone Modifier Eraser / Histone modification erase (Histone ubiquitination) 

UCHL5 Histone Modifier Eraser / Histone modification erase cofactor (Histone 

ubiquitination) 

HJURP Histone Modifier / / Histone chaperone 

ATAD2 Chromatin 

Remodeler 

/ / Chromatin remodelling 

HELLS Chromatin 

Remodeler 

/ / Chromatin remodelling 

NPAS2 Chromatin 

Remodeler 

/ / Chromatin remodelling 

TOP2A Chromatin 

Remodeler 

/ / Chromatin remodelling 

RMI1 DNA Methylator / / DNA modification 

UHRF1 DNA Methylator 

Histone Modifier 

Reader, Writer Reader Histone modification read, Histone modification write 

cofactor, DNA modification 

LMNB1 / / / Global heterochromatic changes 

ERCC6L / / / / 

HMGA1 / / / / 

MOCS1 / / / / 

PRC1 / / / / 

 

analysis was performed. The result showed that the 

aneuploidy score, non-silent mutation rate, fraction 

altered, number of segments and homologous recombi-

nation defects in the C2 subtype were significantly 

lower than those in the C1 subtype (Wilcoxon test all  

p < 0.0001, Figure 6A). The mutation rate and main 

mutation type of top 10 altered genes were significantly 

different between two MPSs (Figure 6B). 

 

MPSs were correlated with immunological feature 

and therapeutic response 

 
To elucidate the relationships of MPSs with 

immunological features, a comprehensive immuno-

logical analysis was implemented. A CIBERSORT-

based analysis showed that the relative abundances of 14 

of 22 immune cell types had significant differences 

between two MPSs (Wilcoxon test p < 0.05 or < 0.01 or 

< 0.001, Figure 7A). Among these 14 immune cells 

types, the abundances of 6 immune cell types including B 

cells memory (p < 0.001), T cells CD4 memory resting  

(p < 0.001), monocytes (p < 0.001), dendritic cells resting 

(p < 0.001), dendritic cells activated (p < 0.01) and mast 

cells resting (p < 0.001) were significantly higher in the 

C2 subtype than those in the C1 subtype (Figure 7A). 

Inversely, the abundances of 8 immune cell types 

including T cells CD8 (p < 0.05), T cells CD4 memory 
activated (p < 0.001), T cells follicular helper (p < 0.05), 

T cells gamma delta (p < 0.05), NK cells resting  

(p < 0.001), macrophages M0 (p < 0.001), macrophages 
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Figure 3. Expression levels of 27 prognostic chromatin regulators between lung adenocarcinoma (LUAD) and normal lung 
tissues. The expression levels of 27 prognostic chromatin regulators were compared between LUAD and normal lung tissues by a paired t-
test method using 10 pairs of samples from 10 LUAD patients. The result was highly consistent with the TCGA-LUAD result. 
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Figure 4. Molecular prognostic subtypes construction based on 27 key prognostic differentially expressed chromatin 
regulators (DECRs) and the associations with overall survival (OS) of patients in lung adenocarcinoma (LUAD). (A–C) TCGA-
LUAD. (D–F) GSE31210. (G–I) GSE50081. (J–L) GSE68465. (M–O) GSE72094. (A, D, G, J, M) Cumulative distribution function (CDF) curve and 
CDF delta area curve. Clustering stability increasing curves were plotted from k = 2 to 9 for five gene expression datasets including TCGA-
LUAD, GSE31210, GSE50081, GSE68465 and GSE72094. (B, E, H, K, N) Consensus clustering heat map. The k = 2 was selected to cluster 
samples for each of five gene expression datasets, and LUAD patients were divided into two clusters. (C, F, I, L, O) Survival curve. Two 
clusters were significantly associated with the OS of LUAD patients in five independent datasets (p = 0.016, < 0.0001, = 0.008, = 0.00038, = 
0.00055, respectively). 
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Figure 5. Correlations of molecular prognostic subtype with clinical features and KEGG pathway enrichment. (A) Expression of 

27 prognostic chromatin regulators between two clusters. (B) Comparison of clinical features between two clusters. Chi-square test showed 
the significant differences in T staging (p = 0.0083), N staging (p = 4e-04), age (p = 0.0021) and cancer status (p = 0.0273). (C) Gene set 
variation analysis. Totals of 184 KEGG pathways were significantly enriched between two clusters. (D) Gene set enrichment analysis. The top 
26 significantly enriched KEGG pathways were shown between two clusters. 
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M1 (p < 0.001) and mast cells activated (p < 0.001) were 

significantly lower in the C2 subtype (Figure 7A). The 

stromal score (p < 0.001), immune score (p < 0.01)  

and ESTIMAT score (p < 0.001) in the C2 subtype  

were significantly higher than those in the C1 subtype 

(Figure 7B). Two OSPs including cell cycle (p < 0.001) 

and MYC (p < 0.001) in the C2 subtype were less active 

than those in the C1 subtype (Figure 7C), and 4 OSPs 

containing NRF1 (p < 0.001), TGF-beta (p < 0.001), 

RAS (p < 0.001) and WNT (p < 0.001) in the C2 subtype 

were more active than those in the C1 subtype  

(Figure 7C). The TIDE result showed that the TIDE 

score (p < 0.001), IFNG score (p < 0.01), exclusion  

score (p < 0.001) and MDSC score (p < 0.001)  

were significantly lower in the C2 subtype, and the 

dysfunction score (p < 0.001) and TAM.M2 score  

(p < 0.001) were significantly higher in the C2  

subtype (Figure 7D). The estimated IC50 values  

for 6 conventional chemotherapy agents including 

erlotinib (p < 0.0001), sunitinib (p < 0.0001), paclitaxel  

(p < 0.001), VX-680 (p < 0.0001), TAE684 (p <  

0.05) and crizotinib (p < 0.001) in the C2 subtype  

were significantly higher than those in the C1 subtype 

(Figure 7E). 

 

Six key DEGs between two MPSs were correlated 

with the prognosis in LUAD 

 

To identify key DEGs associated with the survival of 

LUAD patients between two MPSs, a comprehensive 

 

 
 

Figure 6. Genomes alterations between two clusters. (A) Molecular features of genome alterations. There was higher aneuploidy 

score, nonsilent mutation rate, fraction altered of genome, number of segments and homologous recombination defects in the cluster 1. *p < 
0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. (B) Gene mutation profiles between two clusters. The mutation frequencies of top 10 
genes including TP53, TTN and MUC16 and so on had significant differences in two clusters, and there was higher mutation frequency in the 
cluster 1. 
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Figure 7. Correlations of molecular prognostic subtypes with immunological features. (A) Infiltration comparisons of 22 immune 

cell types. The scores of some immune cell types had significant differences between two clusters, such as T cells CD4 memory resting, mast 
cells resting and dendritic cells resting with higher scores in the cluster 2. *p < 0.05, **p < 0.01 and ***p < 0.001. (B) Infiltration comparison 
of stromal and immune cells. The cluster 2 had higher stromal score, immune score and ESTIMATE score. *p < 0.05, **p < 0.01 and ***p < 
0.001. (C) Comparisons of activities of 10 oncogenic signaling pathways. The scores of cell cycle, MYC, NRF1, TGF-beta, RAS and WNT 
pathways had significant differences between two clusters, and these oncogenic signaling pathways had lower activities in the cluster 2. *p < 
0.05, **p < 0.01, ***p < 0.001. (D) Comparisons of tumor immune dysfunction and exclusion (TIDE) score, interferon-gamma (IFNG), T cell 
dysfunction (Dysfunction), T cell exclusion (Exclusion), tumor-associated macrophages M2 (TAM.M2) and myeloid-derived suppressor cells 
(MDSC). These terms had significant differences between two clusters, and TIDE, IFNG, Exclusion and MDSC in the cluster 1 were significantly 
higher than those in the cluster 2. Dysfunction and TAM. M2 in the cluster 1 were significantly lower than those in the cluster 2. *p < 0.05, 
**p < 0.01, ***p < 0.001 and ****p < 0.0001. (E) Comparisons of estimated IC50 values for 6 conventional chemotherapy agents. The 
estimated IC50 values for erlotinib, sunitinib, paclitaxel, VX-680, TAE684 and crizotinib in the cluster 1 were significantly lower than those in 
the cluster 2. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. 
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analysis including DEGA, UCRA, LASSO and MCRA 

was performed. The DEGA result showed that totals of 

476 upregulated and 557 downregulated genes were 

identified in the C1 subtype compared with the C2 

subtype (Figure 8A and Supplementary Table 4). 

Compared with the DEGs obtained from LUAD and 

normal lung tissues, a total of 821 dysregulated DEGs 

was common (Figure 8B and Supplementary Table  

5). The UCRA showed that 258 of 821 DEGs had 

significant prognostic values (Supplementary Table 6). 

The LASSO analysis showed that 10 (CENPH, RHOV, 

ANLN, MDFI, TPSB2, CPS1, ANGPTL4, CCL20, 

CENPK, GJB3) of 258 DEGs with UCRA prognostic 

value had the most important feature when lambda  

was equal to 0.0606 (Figure 8C). The MCRA by AIC 

criterion showed that 6 (TPSB2, CPS1, ANGPTL4, 

CCL20, CENPK, GJB3) of 10 DEGs with the most 

important feature had the greatest fitting degree. Except 

for TPSB2, the expressions of the other five prognostic 

DEGs (CPS1, ANGPTL4, CCL20, CENPK, GJB3) were 

significantly negatively correlated with the survival of 

LUAD patients (all p < 0.001, Figure 8D) and their 

expressions were significantly upregulated in LUAD 

tissues (all p < 0.001, Figure 8E) and in the C1 subtype 

(all p < 0.001, Figure 8F). The expression analysis based 

on the GEPIA (gene expression profiling interactive 

analysis), real transcriptome data and GSE19804 data-

sets showed that the expression levels of 6 prognostic 

DEGs were consistent with those from the TCGA 

dataset between LUAD and normal lung tissues (Figure 

8G–8I and Supplementary Table 3). Except for CPS1, 

each of the other five prognostic DEGs had a low 

mutation rate (Figure 9A) and a lower co-occurrence 

and mutually exclusive (Figure 9B). 

 

Six key prognostic DEGs were correlated with 

immunological features 

 

To investigate the relationships of six key prognostic 

DEGs with immunological features, a comprehensive 

immunological analysis was performed. Among six key 

prognostic DEGs, CPS1 and TPSB2 were negatively and 

positively correlated with the stromal score, immune 

score and ESTIMATE score, respectively (all p < 0.001, 

Figure 9C). Similarly, CPS1 and TPSB2 were negatively 

and positively correlated with five immune cell types 

including B cells, CD4 T cells, neutrophils, macro-

phages and dendritic cells (all p < 0.001, Figure 9D). 

Furthermore, a CIBERSORT-based analysis showed that 

there were generally stronger correlations of six key 

prognostic DEGs with 22 immune cell types, especially 

T cells CD4 memory activated, monocytes and mast 

cells resting (Figure 9E). An ssGSEA-based analysis 
showed that six key prognostic DEGs were strongly 

correlated with 29 immune cell types overall, especially 

CPS1 and TPSB2 (most p < 0.001, Figure 9F). As a 

whole, six key prognostic DEGs were strongly 

correlated with 44 immune checkpoints in expression 

(Figure 9G). In particular, CPS1 and TPSB2 were 

strongly negatively and positively correlated with these 

immune checkpoints in expression, respectively (most  

p < 0.001, Figure 9G). 

 

Six-gene prognostic signature is robust in predicting 

the prognosis in LUAD 

 

To further explore the correlation of six key prognostic 

DEGs with the survival, a six-gene prognostic model 

was constructed using the TCGA-LUAD dataset. In the 

light of the MCRA method by AIC criterion, the 

regression coefficient of each of six DEGs was 

calculated and the risk score was formulated: 
 

Risk score 0.235 Exp( )

0.104 Exp( 4) 0.088 Exp( 20)

0.061 Exp( 1) 0.138 Exp( 3)

0.134 Exp( 2).

= 

+  + 

+  + 

− 

CENPK

ANGPTL CCL

CPS GJB

TPSB

 

 

The risk score of each patient was calculated by the 

risk score formula. According to the median risk  

score, LUAD patients were divided into high-risk and 

low-risk subgroups (Figure 9H). Except for TPSB2, 

the other five prognostic DEGs including CENPK, 

ANGPTL4, CPS1, CCL20 and GJB3 were significantly 

upregulated in the high-risk subgroup (all p < 0.05, 

Figure 9I, 9J). The LUAD patients in the high-risk 

subgroup had a poorer OS rate than those in the low-

risk subgroup (p < 0.0001, Figure 9K), and the AUCs 

of 1-year, 3-year and 5-year correlated with the 

survival were separately 0.72, 0.71 and 0.65 in the 

ROC curve (Figure 9L). Survival analysis based on 

eight independent GEO-LUAD datasets showed that 

the OS rate of LUAD patients in the low-risk sub-

group was significantly higher than that in the high-

risk subgroup for each GEO-LUAD dataset (GSE3141,  

p = 0.0045, Figure 10A; GSE72094, p < 0.0001, 

Figure 10B; GSE26939, p = 0.0038, Figure 10C; 

GSE30219, p = 0.021, Figure 10D; GSE31210,  

p = 0.016, Figure 10E; GSE37745, p = 0.0099,  

Figure 10F; GSE50081, p < 0.0001, Figure 10G; 

GSE29016, p = 0.00013, Figure 10H). The AUCs  

of 5-year associated with the survival were 0.67 

(GSE3141, Figure 10A), 0.87 (GSE72094, Figure  

10B), 0.65 (GSE26939, Figure 10C), 0.7 (GSE30219,  

Figure 10D), 0.67 (GSE31210, Figure 10E), 0.64 

(GSE37745, Figure 10F), 0.7 (GSE50081, Figure 10G) 

and 0.78 (GSE29016, Figure 10H) for eight independent 

datasets, respectively. 

 
To further evaluate the robustness of six-gene 

prognostic signature in predicting the prognosis, we 
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Figure 8. Identification of key differentially expressed genes (DEGs) between two clusters. (A) Distribution of DEGs between two 

clusters. Totals of 466 upregulated and 557 downregulated DEGs were identified in the cluster 1. (B) Identification of key DEGs between two 
clusters. An overlap analysis showed that totals of 821 dysregulated DEGs were important between two clusters. (C) LASSO Cox analysis. A 
10-round cross validation was performed to prevent overfitting and 10 DEGs (CENPH, RHOV, ANLN, MDFI, TPSB2, CPS1, ANGPTL4, CCL20, 
CENPK, GJB3) had the most important feature when lambda was equal to 0.0606. (D) Univariate Cox regression analysis. Six DEGs including 
TPSB2, CPS1, ANGPTL4, CCL20, CENPK and GJB3 had significant prognostic values (all p < 0.001). (E) Heat map of expressions of six DEGs 
between lung adenocarcinoma (LUAD) and normal lung tissues. Five DEGs including CPS1, ANGPTL4, CCL20, CENPK and GJB3 were 
upregulated expressed and TPSB2 was downregulated expressed in LUAD tissue. (F) Heat map of expressions of six DEGs between two 
clusters. Five DEGs including CPS1, ANGPTL4, CCL20, CENPK and GJB3 were upregulated expressed and TPSB2 was downregulated expressed 
in the cluster 1. (G–I) The expression levels of 6 prognostic genes between LUAD and normal lung tissues based on GEPIA (gene expression 
profiling interactive analysis), real RNA-seq and GSE19804 datasets. 
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Figure 9. Correlation of six differentially expressed genes (DEGs) with immunity and establishment of six-gene prognostic 
signature. (A) Gene mutation profiles of six DEGs. Only 12.35% of LUAD samples had one or more mutations in six DEGs (CPS1, ANGPTL4, 
CCL20, CENPK, GJB3, TPSB2). (B) Co-occurrence and mutually exclusive of gene mutation. Six DEGs had lower co-occurrence and are mutually 
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exclusive. (C) Correlation of six DEGs with stromal and immune cell infiltration. Two genes including CPS1 and TPSB2 were strongly negatively 
and positively correlated with three infiltration scores of two cells including stromal and immune cells, respectively. *p < 0.05, **p < 0.01 and 
***p < 0.001. (D) Correlations of six DEGs with infiltrations of six immune cells. The expressions of six DEGs had significant correlations with 
one or more types of immune cells. In particular, CPS1 and TPSB2 were strongly negatively and positively correlated with immune infiltrations 
of six types of immune cells, respectively. *p < 0.05, **p < 0.01 and ***p < 0.001. (E) Correlations of six DEGs with 22 immune cell types. In 
general, the expressions of 6 DEGs (CPS1, ANGPTL4, CCL20, CENPK, GJB3, TPSB2) were strongly correlated with 22 immune cell types.  
*p < 0.05, **p < 0.01 and ***p < 0.001. (F) Correlations of six DEGs with 29 immune cell types. The expressions of six genes had very strong 
correlations with multiple immune cell types. In particular, CPS1 and TPSB2 were strongly negatively and positively correlated with immune 
infiltrations of 29 types of immune cells, respectively. *p < 0.05, **p < 0.01 and ***p < 0.001. (G) Correlations of six DEGs with 44 immune 
checkpoint genes. The expressions of six DEGs had very strong correlations with the expressions of multiple checkpoint genes. Especially, 
CPS1 and TPSB2 were strongly negatively and positively correlated with most checkpoint genes, respectively. *p < 0.05, **p < 0.01 and  
***p < 0.001. (H) Risk score distribution and survival overview of LUAD patients. According to the median risk score, LUAD patients were 
divided into high- and low-risk subgroups. (I, J) Expression levels of six prognostic genes between two risk subgroups. Five genes including 
CENPK, ANGPTL4, CPS1, CCL20 and GJB3 were highly expressed and TPSB2 gene were lowly expressed in the high-risk subgroup. (K) Survival 
curve. LUAD patients in the low-risk subgroup had a higher OS rate than that in the high-risk subgroup (p < 0.0001). (L) Receiver operating 
characteristic (ROC) curve. The areas under the curve (AUCs) associated with 1-year, 3-year and 5-year survival were 0.72, 0.71 and 0.65, 
respectively. 

 

compared the prognostic significance and predictive 

performance of six-gene prognostic signature with 19 

reported prognostic signatures [26–45] (Supplementary 

Figures 1–3). The results showed that the six-gene 

prognostic signature in this study had the highest AUC 

values associated with 1-year and 3-year survival, and 

the next highest AUC value associated with 5-year 

survival (Figure 11A). Six-gene prognostic signature 

had the highest concordance index (C-index) 0.673 

(Figure 11B) and hazard ratio (HR) 2.718 of restricted 

mean survival (RMS) time (Figure 11C). 

 

Risk score was correlated with clinical and biological 

features 

 

To investigate the relationships of risk score with 

clinical and biological features, these features between 

the high- and low-risk subgroups were compared. The 

results showed that there were significant differences  

in the MPS (chi-square p = 0), T staging (chi-square p = 

1e-04), N staging (chi-square p = 1e-04), survival status 

(chi-square p = 0) and cancer status (chi-square p = 

0.0023) between the two risk subgroups (Figure 12A). 

The risk scores for LUAD patients in the C2 subtype 

were significantly lower than those in the C1 subtype (p 

< 0.0001, Figure 12B). The risk scores for LUAD 

patients with stage N0 were significantly lower than 

those for patients with stage N1 and patients with stage 

N2 (p < 0.001 and < 0.0001, respectively, Figure 12C). 

Similarly, the risk scores for LUAD patients with stage 

T1 were significantly lower than those for patients with 

stage T2 and patients with stage T3 (both p < 0.0001, 

Figure 12F). The risk scores for LUAD patients in the 

living subgroup were significantly lower than those in 

the dead subgroup (p < 0.0001, Figure 12G). The risk 
scores for patients with tumor free were significantly 

lower than those for patients with tumor and patients 

with discrepancy (p < 0.0001 and < 0.05, respectively, 

Figure 12H). 

The GSVA result showed that 121 KEGG pathways 

associated with risk score were significantly enriched  

(p < 0.01, Supplementary Table 7). Thirteen KEGG 

pathways with a |cor| > 0.4 were found to be more 

active in the high-risk subgroups, including two key 

OSPs cell cycle (p = 0 and cor = 0.5975) and P53 

signaling pathway (p = 0 and cor = 0.5202, Figure 12I). 

There were extremely strong positive correlations 

between the risk score and the activities of 13 KEGG 

pathways (all p < 0.001, Figure 12J). The GSEA result 

showed that 17 KEGG pathways were significantly 

enriched (adjusted p < 0.05, Supplementary Table 8). 

Among these pathways, 9 and 8 KEGG pathways in  

the high-risk subgroup were significantly upregulated 

and downregulated, respectively (Supplementary Table 

8). Except for upregulated cytokine-cytokine receptor 

interaction pathway, the other 16 pathways were 

observed in the pathway list enriched by the GSVA 

method (Supplementary Tables 7, 8). Top 5 upregulated 

pathways were cell cycle (adjusted p = 1.82e-08),  

DNA replication (adjusted p = 0.001377), homologous 

recombination (adjusted p = 0.023061), oocyte meiosis 

(adjusted p = 0.004126) and P53 signaling pathway 

(adjusted p = 0.023061) (Figure 12K), and the top 5 

downregulated pathways were alpha-linolenic acid 

metabolism (adjusted p = 0.030427), cell adhesion 

molecules (CAMs, adjusted p = 0.030427), Fc epsilon 

RI signaling pathway (adjusted p = 0.030427), long-

term depression (adjusted p = 0.030855) and viral 

myocarditis (adjusted p = 0.022938) (Figure 12L). 

 

Risk score is an independent prognostic factor in 

LUAD 

 

To evaluate the independent predictive capability  
of six-gene signature in predicting the survival of  

LUAD patients, an independent prognostic analysis  

was performed. A UCRA-based analysis showed that the  

risk score (p = 0.000, HR = 2.631, 95% CI = 1.927-3.541), 
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Figure 10. Correlations of six-gene signature with overall survival (OS) of patients in lung adenocarcinoma (LUAD).  
(A–H) Survival analysis based on eight independent LUAD datasets from the gene expression omnibus (GEO) database. Eight GEO-LUAD 
datasets were GSE3141, GSE72094, GSE26939, GSE30219, GSE31210, GSE37745, GSE50081 and GSE29016. For each dataset, LUAD patients 
in the low-risk subgroup had a higher OS rate than those in high-risk subgroup (p = 0.0045, < 0.0001, = 0.0038, = 0.021, = 0.016, = 0.0099, < 
0.0001, = 0.00013, respectively), and the AUCs associated with 5-year survival were 0.67, 0.87, 0.65, 0.7, 0.67, 0.64, 0.7 and 0.78, 
respectively. 
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cluster (subtype) (p = 0.016, HR = 0.698, 95% CI = 

0.521-0.936), T staging (p = 0.002, HR = 1.904, 95%  

CI = 1.262-2.872) and N staging (p = 0.001, HR = 1.638, 

95% CI = 1.217-2.205) had significant prognostic values 

(Figure 13A). Furthermore, a MCRA-based analysis 

showed risk score (p = 0.000, HR = 2.57, 95% CI = 

1.825-3.621), T staging (p = 0.041, HR = 1.548, 95% CI 

= 1.018-2.352) and N staging (p = 0.048, HR = 1.366, 

95% CI = 1.033-1.862) had significant prognostic values 

(Figure 13B). 

To better assess the survival of LUAD patients by 

incorporating various prognostic factors, a nomogram 

including the risk score, T staging and N staging was 

constructed to predict the 1-year, 3-year and 5-year  

OS rate of LUAD patients (Figure 13C). The calibration 

curve showed that the actual OS rate was basically in 

line with the predicted value (Figure 13C). The decision 

curve showed that the nomogram model had a better 

predictive ability in predicting the survival of LUAD 

patients (Figure 13C). 

 

 
 

Figure 11. Predictive performances of 20 prognostic signatures. (A) AUC (area under the curve of receiver operating characteristic) 

change curve. Six-gene prognostic signature had the highest AUC values associated with 1-year and 3-year survivals and the next highest AUC 
value associated with 5-year survival. (B) Concordance index (C-index). Six-gene prognostic signature had the highest C-index 0.673 among 20 
prognostic signatures. (C) Restricted mean survival (RMS) curve. Six-gene prognostic signature we developed had the highest hazard rate 
among 20 prognostic signatures. 
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Figure 12. Correlations of risk score with clinical characteristics and biological pathways. (A) Correlations of risk score with clinical 

characteristics. Risk score was significantly correlated with prognostic cluster (p = 0), T staging (p = 1e-04), N staging (p = 1e-04), survival 
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status (p = 0) and cancer status (p = 0.0023). (B) Comparisons of risk scores for patients between two clusters. Risk score in the cluster 1 was 
significantly higher than that in the cluster 2. ****p < 0.0001. (C) Comparisons of risk scores for patients between four N stages. Risk scores of 
patients with stage N0 were significantly lower than those with stage N1 and those with stage N2. **p < 0.01 and ***p < 0.001.  
(D) Comparisons of risk scores for patients between three M stages. The risk scores had no significant differences between three M stages. 
(E) Comparison of risk scores for patients between <= 60 and > 60 age subgroups. The risk scores had no significant differences between two 
age subgroups. (F) Comparisons of risk scores for patients between four T stages. Risk scores of patients with stage T1 were significantly 
lower than those with stage T2 and those with stage T3. ****p < 0.0001. (G) Comparison of risk scores for patients between two survival 
statuses. The risk scores for the living LUAD patients were significantly lower than those for dead patients. ****p < 0.0001. (H) Comparisons 
of risk scores for patients between three cancer statuses. The risk scores for patients with tumor free were significantly lower than those with 
discrepancy tumor. *p < 0.05 and ***p < 0.001. (I) Gene set variation analysis. At the correlation of risk score with KEGG pathway > 0.4 or < -
0.4 and p < 0.001, thirteen KEGG pathways were positively correlated with risk score. (J) Correlations of risk score with KEGG pathways. There 
was a strong positive correlation between risk score and 13 KEGG pathways. ***p < 0.001. (K) Top 5 KEGG pathways enriched in the high-risk 
group. Five KEGG pathways were separately cell cycle, DNA replication, homologous recombination, oocyte meiosis and P53 signaling 
pathway. (L) Top 5 KEGG pathways enriched in the low-risk group. Five KEGG pathways were separately ALPHA linolenic acid metabolism, cell 
adhesion molecules (CAMs), Fc epsilon RI signaling pathway, long term depression and viral myocarditis. 

 

Risk score was correlated with immunological 

features in LUAD 

 
To investigate the correlations of the risk score with 

immunological features, a comprehensive immunological 

analysis was performed. A CIBERSORT-based analysis 

showed that the relative abundances of 11 of 22 immune 

cell types had significant differences between the high- 

and low-risk subgroups (p < 0.05 or < 0.01 or < 0.001, 

Figure 13D). Among these 11 immune cell types, the 

abundances of 6 immune cell types including B cells 

memory (p < 0.001), T cells CD4 memory resting  

(p < 0.01), monocytes (p < 0.001), macrophages M2  

(p < 0.001), dendritic cells resting (p < 0.001) and mast 

cells resting (p < 0.001) were significantly higher in the 

low-risk subgroup than those in the high-risk subgroup 

(Figure 13D). Inversely, the abundances of 5 immune  

cell types including T cells CD4 memory activated  

(p < 0.001), NK cells resting (p < 0.01), macrophages M0 

(p < 0.001), mast cells activated (p < 0.01) and 

neutrophils (p < 0.05) were significantly lower in the 

low-risk subgroup than those in the high-risk subgroup 

(Figure 13D). The ESTIMATE result showed that the 

immune score in the low-risk subgroup was significantly 

higher than that in the high-risk subgroup (p < 0.05, 

Figure 13E) but no significant differences in the stromal 

score and ESTIMATE score (both p > 0.05, Figure 13E). 

The activities of 4 of 10 OSPs were significantly 

different, including cell cycle, MYC, NOTCH and  

NRF1 (Figure 13F). Among the four OSPs, three OSPs 

including cell cycle (p < 0.001), MYC (p < 0.01) and 

NOTCH (p < 0.05) in the high-risk subgroup were more 

active than those in the low-risk subgroup, and one OSP 

NRF1 (p < 0.01) in the low-risk subgroup was more 

active than that in the high-risk subgroup (Figure 13F). 

The TIDE result showed that the TIDE score (p < 0.001), 

exclusion score (p < 0.0001) and MDSC score (p < 

0.0001) were significantly higher in the high-risk 

subgroup, and the dysfunction score (p < 0.0001) and 

TAM.M2 score (p < 0.0001) were significant higher in 

the low-risk subgroup (Figure 13G). The estimated IC50 

values for 6 conventional chemotherapy agents including 

erlotinib, sunitinib, paclitaxel, VX-680, TAE684 and 

crizotinib in the high-risk subgroup were significantly 

lower than those in the low-risk subgroup (all p < 0.0001, 

Figure 13H). 

 

Quantitative real-time PCR validated the expression 

of prognostic genes 

 

To validate the expression of prognostic genes between 

LUAD and normal lung tissues, three prognostic genes 

including CIT, CPS1 and TPSB2 were selected to 

perform the expression analysis using quantitative real-

time PCR (qPCR) method. The result showed that the 

expression of three genes had a consistent trend with 

RNA-seq result (Figures 3, 8H, 14A). 

 

DISCUSSION 
 

Developing a robust prognostic signature is very 

important to effectively predict the survival of LUAD 

patients. In recent years, many types of molecular 

prognostic signatures have been developed, including 

protein, mRNA, miRNA and lncRNA [6–10]. Some 

signatures have also showed better predictive capa-

bility [38, 39, 42, 45]. However, the high heterogeneity 

of LUAD suggests that some new prognostic subtypes 

and signatures must be developed to refine the risk 

stratification. CRs, as the key participators and even 

drivers in tumorigenesis, have been shown to have  

the potential as a robust prognostic signature in some 

cancers, such as bladder cancer and hepatocellular 

carcinoma [46, 47]. However, little is known about  

the roles of CRs in LUAD biology and few studies  

have investigated the prognostic role in LUAD by a 

comprehensive analysis. In this study, we first con-

structed and evaluated two MPSs based on CRs, and 

established and assessed a six-gene prognostic signature 

based on two MPSs. Subsequently, the correlations of 
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Figure 13. Independent prognostic analysis and correlations of risk score with immunological features. (A) Independent 

prognostic analysis for risk score using univariate Cox regression analysis. Risk score was significantly correlated with the overall survival 
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of LUAD patients, and could serve as an independent prognosticator in predicting the survival of LUAD patients. (B) Independent 
prognostic analysis for risk score using multivariate Cox regression analysis. Risk score was significantly correlated with the overall 
survival of LUAD patients, and could serve as an independent prognosticator in predicting the survival of LUAD patients. (C) Construction 
of a nomogram predicting the survival. A nomogram for predicting 1-year, 3-year and 5-year overall survival was constructed.  
(D) Comparisons of 22 immune cell types between high- and low-risk subgroups. Some immune cell types had significant differences 
between two risk subgroups. *p < 0.05, **p < 0.01 and ***p < 0.001. (E) Comparison of immune infiltration score. LUAD patients in the 
low-risk subgroup had higher immune scores than those in the high-risk subgroup. *p < 0.05. (F) Comparisons of activities of 10 oncogenic 
signaling pathways between two risk subgroups. The activities of cell cycle, MYC, NOTCH and NRF1 pathways had significant differences, 
and three oncogenic signaling pathways (cell cycle, MYC, NOTCH) had higher activities in the high-risk subgroup. *p < 0.05, **p < 0.01 and 
***p < 0.001. (G) Comparisons of tumor immune dysfunction and exclusion (TIDE) score, interferon-gamma (IFNG), T cell dysfunction 
(Dysfunction), T cell exclusion (Exclusion), tumor-associated macrophages M2 (TAM.M2) and myeloid-derived suppressor cells (MDSC). 
Except IFNG, those terms had significant differences between two risk subgroups, and TIDE, Exclusion and MDSC in the high-risk subgroup 
were significantly higher than those in the low-risk subgroup. Dysfunction and TAM. M2 in the high-risk subgroup were significantly lower 
than those in the low-risk subgroup. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. (H) Comparisons of estimated IC50 values 
for 6 conventional chemotherapy agents. The estimated IC50 values for 6 chemotherapy agents including erlotinib, sunitinib, paclitaxel, 
VX-680, TAE684 and crizotinib in the high-risk subgroup were significantly lower than those in the low-risk subgroup. *p < 0.05,  
**p < 0.01, ***p < 0.001 and ****p < 0.0001. 
 

 
 

Figure 14. Expression of prognostic genes and underlying prognostic mechanism. (A) Expression of prognostic genes. CPS1 and 

TPSB2 genes were lowly expressed in LUAD tissues by a quantitative real-time PCR method. (B) Survival curve. The high expression of CIT 
gene resulted in a better overall survival rate in patients with lung adenocarcinoma. (C) Prognostic results and potential prognostic 
mechanism based on prognostic chromatin regulators. According to the prognostic results and existing literature, the potential prognostic 
mechanism was delineated. 
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MPS, key prognostic DEGs and risk score with TICs 

were systematically investigated. Last, the correlations 

of MPS and risk score with immunotherapeutic and 

chemotherapeutic responses were predicted. 

 

Through a comprehensive analysis, 27 DECRs were 

identified to have association with the survival of 

LUAD patients and used to construct MPSs. Among 

these 27 prognostic DECRs, 23 risk and 4 protective 

CRs were identified. At present, many of these 27 

prognostic CRs we identified have been shown to have 

correlations with prognosis in some cancers [48–52]. 

For example, CBX6 and CBX7 were identified as 

prognostic biomarkers in bladder cancer [48]. PBK was 

found to be associated with glioblastoma and oral 

squamous cell carcinoma treated with radiotherapy  

[49, 50]. TTK was identified as a prognostic biomarker 

in NSCLC [51]. BUB1 was found as a prognostic factor 

for hepatocellular carcinoma [52]. In addition, some 

new prognostic CRs have also been identified in 

LUAD, such as NPAS2 and HMGA2 [53, 54]. In this 

study, an interesting finding is that CIT was highly 

expressed as a protective gene in LUAD tissue, and  

the high expression of CIT was significantly associated 

with a high OS rate (Figure 14B). CIT was further 

found to be significantly overexpressed in the C2 

subtype with a high OS rate (Figures 4, 5A). Despite 

this, we have a little confusion about the correlation 

between the CIT expression and the OS in LUAD 

patients. CIT (Citron Rho-Interacting Serine/Threonine 

Kinase) is a gene encoding a serine/threonine-protein 

kinase that functions in cell division. Several recent 

studies have reported the potential role of CIT gene in 

the initiation and progression of some tumors [55–57]. 

The upregulation of CIT could promote the growth of 

cancer cells [56, 57], and was associated with a poor 

outcome in some cancers such as bladder cancer and 

pancreatic ductal adenocarcinomas [58, 59]. On the 

contrary, some studies showed that the upregulation of 

CIT resulted in a better time to progression in some 

other cancers such as ovarian carcinomas [60]. From  

the above, we speculated that whether CIT is a risk gene 

or a protective gene might be related to cancer type.  

In this study, although we identified that CIT was a 

protective gene in LUAD, the prognostic mechanism 

still needs to be further revealed. 

 

In the six-gene prognostic signature, CENPK (Centromere 

Protein K) is a subunit of CENP-H-I complex that 

maintains the proper kinetochore function and mitotic 

progression [61]. In the last five years, the role of 

CENPK has been gradually discovered in cancers and 

become a research hotspot. A few recent studies have 
reported that CENPK played roles in cervical cancer, 

thyroid cancer, ovarian cancer, etc. [62–64]. The over-

expression of CENPK promoted cell proliferation and 

migration that was correlated with a poor prognosis  

[63, 64], and the expression downregulation of CENPK 

suppressed cell growth and inhibited cancer progression 

[65, 66]. So far, only a few studies were found to report 

that CENPK was upregulated in LUAD, and the over-

expression of CENPK was associated with advanced 

LUAD and poor prognosis of LUAD patients [67].  

Our result was consistent with those of the above 

findings, which further confirmed the prognostic role  

of CENPK in LUAD. ANGPTL4 (Angiopoietin like  

4) encodes a glycosylated protein that plays roles in 

regulating lipid metabolism, glucose homeostasis and 

insulin sensitivity. In some cancers, the ANGPTL4 

expression promoted venous invasion and cancer 

progression in breast cancer, thyroid cancer, colorectal 

cancer and gastric cancer [68–71], and was associated 

with a poor prognosis in breast cancer [68]. In addition, 

some studies have also showed that ANGPTL4 had 

tumor-suppressive role, even dual roles in some cancers 

such as urothelial carcinoma [72]. So far, little is known 

about the roles of ANGPTL4 in LUAD. Our result 

showed that ANGPTL4 was significantly upregulated in 

LUAD and was associated with a poor prognosis. CPS1 

(Carbamoyl-Phosphate Synthase 1) encodes a crucial 

mitochondrial enzyme that catalyzes the synthesis of 

carbamoyl phosphate in the urea cycle. Several recent 

studies showed the associations of CPS1 with some 

cancers such as gastric cancer and ovarian cancer  

[73, 74]. Two recent published studies showed that the 

expression level of CPS1 was upregulated in LUAD 

tissue, and its high expression resulted in a poor survival 

rate [75, 76]. Some additional studies showed that 

lncRNA CPS1 intronic transcript 1 (CPS1-IT1) as a 

positive regulatory factor suppressed cell invasion and 

metastasis in colorectal cancer, ovarian cancer and LC 

[77–79]. The above studies indicated that CPS1 as a  

risk factor might play an important role and serve as a 

potential prognostic marker in LUAD. Our result was 

consistent with the above results, which supports the 

opinion of CPS1 as a potential prognosticator. CCL20 

(C-C Motif Chemokine Ligand 20), belonging to the 

subfamily of small cytokine CC genes, plays important 

roles in the chemotaxis of some immune cells including 

dendritic cells, effector/memory T cells and B cells  

by the ligand-receptor pair CCL20-CCR6. Some recent 

published studies have demonstrated that CCL20 pro-

moted cancer progression by some pathways such as  

by activating p38 pathway in laryngeal cancer [80], 

through PI3K pathway in LC and via NF-kappa B 

pathway in thyroid cancer [81, 82]. GJB3 (Gap Junction 

Protein Beta 3) belonging to the connexin gene family, 

encodes the Connexin 31. The mutations of GJB3  

are mainly associated with non-syndromic deafness or 
erythrokeratodermia variabilis. To date, only a recent 

study was found to report that GJB3 as a predictor of a 

9-mRNA prognostic signature was associated with the 



www.aging-us.com 12352 AGING 

survival of LUAD patients and was identified as a 

protective factor [83]. What’s different was that our 

result showed that GJB3 was a risk gene in the 6-mRNA 

prognostic signature we identified. The reasons for the 

difference remain unclear, which forces us to explore 

more deeply the association of GJB3 with LUAD in the 

future. TPSB2 (Tryptase Beta 2) is the only protective 

factor in the prognostic signature established in this 

study. TPSB2 encoding the beta-tryptase, is mainly 

expressed in mast cells and is a common marker for mast 

cell. Several previous studies showed that TPSB2 was 

abnormally expressed or somatic genomic alterations 

occurred in some cancers including breast cancer and 

gastric cancer [84, 85]. A growing evidence now shows 

that TPSB2 expression is a potential prognostic marker 

in cancers including gastric cancer [85]. 

 

Notably, the gene expressions in the six-gene  

signature were significantly correlated with immune cell 

infiltration. Especially, the CPS1 expression was strongly 

negatively correlated with immune cell infiltration, while 

the TPSB2 expression was strongly positively correlated 

with immune cell infiltration. Furthermore, the risk  

score based on the six-gene signature was significantly 

correlated with immunological status of LUAD patients. 

It is well known that tumor immune microenvironment 

(TIME) plays important roles in cancer biology, and 

patients with differing TIME present differing immuno-

therapeutic responses and clinical outcomes [86–88]. 

Tumor immunophenotype has been gradually recognized 

as an independent prognostic factor to estimate the 

prognosis [89]. As a whole, tumor patients with higher 

immune infiltration levels had a higher OS rate [90, 91]. 

In this study, LUAD patients in the low-risk subgroup 

had lower risk scores and higher infiltration levels of 

some immune cell types including B cells memory, mast 

cells resting, dendritic cells resting, which was consistent 

with the results from previous published researches  

[90–92]. From the above researches, we speculate that 

the abnormal expression of six prognostic genes may 

have an influence on immune cell infiltration or immune 

infiltration affects their expression. However, we still  

do not know the potential causal relationship between 

them by reviewing a large amount of literature. Despite 

the important role of TIME in tumor biology, the 

potential correlations of immune cells infiltration with  

the prognosis remain ambiguous. Even the associations 

between the infiltration levels of some immune cells with 

the prognosis are paradoxical in different studies or sub-

populations. For example, the correlations of increased 

mast cells with either good or poor prognosis depended 

on some factors such as tumor type and stage [93].  

So, it is important to reveal the underlying prognostic 
mechanism of prognostic signature, which not only 

contributes to explaining the biological mechanism of 

cancer development and progression, but also offers a 

great help for evaluating the survival of tumor patients 

more accurately. In view of this, we summarized the 

results to delineate the underlying relationship between 

CRs, six-gene prognostic model, immunological features 

and the prognosis (Figure 14C). Now, it is clear that the 

epigenetics regulation and tumor microenvironment are 

two important factors affecting tumor formation and 

development, and there is a complex interactive relation-

ship among cancer, epigenetics and immunity. CRs as 

indispensable upstream regulatory factors of epigenetics, 

drive the epigenetics alterations by acting as “writers”, 

“readers”, “erasers” of histone and DNA, or “remodelers” 

of chromatin. CRs have been shown to play key roles in 

driving cancer by numerous studies [16–19]. In this 

study, we hypothesize that the expression dysregulation 

of 27 CRs causes the epigenetic alteration in LUAD 

patients, which results in the TME changes. Different 

TMEs led to the differences in the survival and the 

expression of six prognostic genes in LUAD patients.  

Of course, the underlying prognostic mechanism must  

be verified on the basis of the correlations of the 

expressions between these genes, and of their expressions 

with immune cell infiltration and the OS rate of LUAD 

patients in the future. 

 

In addition, a lot of signaling pathways were identified 

to have higher activities in LUAD patients with a poor 

prognosis by the GSAV and GSEA methods, including 

cell cycle and p53 signaling pathways. At present,  

a large number of studies have demonstrated that the 

dysregulated activity of many signaling pathways was 

closely associated with the occurrence and progression 

of tumor, and the landscape of pathway alterations in  

33 cancer types have been charted in detail, including 

LUAD [94]. As far as we know, the cell cycle plays 

critical role in the regulation of mitotic cell cycle 

progression [95], and its alterations were the most 

common in many tumors, except for rare alterations in 

uveal melanoma, thymoma, testicular cancer and acute 

myeloid leukemia [94]. Some genes in the cell cycle 

have been identified to be associated with LC, and serve 

as potential prognostic markers including BUB1B, 

ZWINT, CDC20, etc. [96–98]. The high expression of 

these genes was often associated with a poor prognosis 

in some cancers including LUAD [96, 99–102]. Like 

the cell cycle, the p53 signaling pathway is one of the 

most common oncogenic pathways across various 

cancers [94], and one of its key functions is to regulate 

the cell cycle [103]. In fact, the p53 signaling pathway 

is connected to its downstream pathway cell cycle 

(https://www.kegg.jp/kegg/pathway.html). The high 

activities of the cell cycle and p53 pathways were 

associated with a worse prognosis in LUAD patients, 
indicating that these two signaling pathways contribute 

to LUAD progression. In addition, some pathways 

involved in the replication and repair were identified to 

https://www.kegg.jp/kegg/pathway.html
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be negatively correlated with the survival of  

LUAD patients, showing that the upregulation of these 

pathways are identical to the upregulation of the  

cell cycle and p53 signaling pathways. Currently, some 

therapeutic approaches targeting signaling pathways 

have been investigating or have been approved for 

therapy, such as cell cycle, PI3K, WNT, RAS and p53 

signaling pathways [94]. And some therapeutic targets 

have been investigating and new drugs against these 

targets are being designed, such as cyclin-dependent 

kinases (CDKs) [104]. Understanding the alterations  

is critical for the development of new therapeutic 

approaches in the oncogenic signaling pathways, which 

will contribute to improve the care of LUAD patients. 

Meanwhile, the identification of oncogenic signaling 

pathways related to the survival will provide a valuable 

resource for LUAD precision medicine. 

 

Although a six-gene prognostic signature was established 

based on MPSs constructed by CRs and the validity of 

MPSs and the robustness of the prognostic model have 

been well evaluated using some other independent 

datasets, some limitations should be mentioned. First, 

the current study was a retrospective study and required 

further validation in prospective clinical studies. Second, 

the underlying mechanism by which CRs predict the 

survival of LUAD patients through six prognostic genes 

needs further investigation. 

 

CONCLUSIONS 
 

In conclusion, the current study developed two MPSs 

based on CRs and established a new six-gene prognostic 

signature based on MPSs in LUAD. The MPS and  

risk score were significantly correlated with the TIME. 

These findings provide novel insights into the biological 

mechanism of CRs in LUAD biology, which may offer a 

help for building a more accurate prognosis assessment 

system and personalized immunotherapy system. 

 

MATERIALS AND METHODS 
 

Collection of samples and clinical data 

 

The gene expression datasets and clinical data  

for LUAD were retrieved from the public databases 

The Cancer Genome Atlas (TCGA, https://portal. 

gdc.cancer.gov/) and Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/). The TCGA-

LUAD dataset was used to construct the MPS  

and prognostic signature. The GEO-LUAD datasets 

including GSE31210, GSE30219, GSE37745, 

GSE50081, GSE42127, GSE3141, GSE26939, 
GSE29016, GSE68465, GSE72094 and GSE19804 

were used to test the validity of MPS and the 

robustness of prognostic model. The main information 

for these datasets was listed in Table 2, including 

sample number, data platform, gender and survival 

status. All datasets have been approved by the 

Institutional Review Board of relevant participating 

institutions and no additional approval was required in 

this study. 

 

Production of transcriptome sequencing data 

 

The transcriptomes of LUAD and normal lung tissues 

from 10 LUAD patients (5 male and 5 female) of 35-50 

years old were sequenced using the Illumina sequencing 

platform with the paired-end method by Beijing 

Novogene Technology Co., Ltd. (China). All tissues 

were collected by The First People’s Hospital of 

Yunnan Province and informed consent was obtained 

from all LUAD patients. This study was approved by 

the Institutional Review Board of The First People’s 

Hospital of Yunnan Province (No. 2017YY227). The 

transcriptome sequencing data were used to evaluate  

the expression levels of prognostic genes between 

LUAD and normal lung tissues. 

 
Acquisition of gene set 

 

Totals of 870 CRs and 10 oncogenic signaling pathways 

(OSPs) were downloaded from the previous studies  

by Lu et al. [15] and by Sanchez-Vega et al. [94], 

respectively. 

 
Identification of differentially expressed gene and 

functional analysis 

 
Differentially expressed genes (DEGs) were identi-

fied using differentially expressed gene analysis  

(DEGA) based on the limma package (version  

3.52.2) in the Bioconductor project (version 3.15, 

http://www.bioconductor.org/) [105]. An empirical 

Bayes (eBayes) method was used to assess the gene 

expression change by a moderated t-test. The 

Benjamini-Hochberg correction was used to adjust  

p-value for multiple testing. 

 
Functional analysis based on KEGG pathway set was 

implemented using the gene set variation analysis 

(GSVA) method in the GSVA package (version 1.44.2) 

[106] and the gene set enrichment analysis (GSEA) 

method in the clusterProfiler package (version 3.14.3) 

[107], respectively. GSVA is a non-parametric and 

unsupervised gene set enrichment (GSE) method. 

GSVA estimates pathway activity variation over a 

sample population by characterizing pathways from a 

gene expression profiling. The non-parametric kernel 
estimation of the cumulative density function for  

each gene expression profile was performed using the 

Gaussian kernel. The enrichment score for each sample 

https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/
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Table 2. Main clinical information of datasets in this study. 

Datasets Platform Number 
Gender  Age  Stage  Survival status 

Application 
Female Male  <=60 >60  I and II III and IV  Alive Dead 

TCGA HT-seq 472 255 217  146 326  378 86(8?)  289 183 Model construction 

GSE31210 GPL570 226 121 105  108 118  226 0  191 35 Model evaluation 

GSE30219 GPL570 85 19 66  43 42  / /  40 45 Model evaluation 

GSE37745 GPL570 106 60 46  46 60  89 17  29 77 Model evaluation 

GSE50081 GPL570 129 62 67  19 110  62 67  76 53 Model evaluation 

GSE42127 GPL6884 133 65 68  38 95  111 22  90 43 Model evaluation 

GSE3141 GPL570 111 / /  / /  / /  52 59 Model evaluation 

GSE26939 GPL9503 116 51 65(16?)  40 76  71 45(30?)  49 66(1?) Model evaluation 

GSE29016 GPL6947 39 21 18  12 27  36 3(1?)  10 29 Model evaluation 

GSE68465 GPL96 443 220 223  147 296  / /  207 236 Model evaluation 

GSE72094 GPL15048 442 240 202  70 372(21?)  334 108(28?)  298 144(22?) Model evaluation 

GSE19804 GPL570 60 pairs 60 0  29 31  47 13  / / Expression analysis 

GEPIA database HT-seq 820 / /  / /  / /  / / Expression analysis 

Real sequencing data Hiseq2000 10 pairs 5 5  10 0  10 0  / / Expression analysis 

 

was calculated using GSVA method. The maximum and 

minimum number of genes was set at 100 and 10 in an 

output gene set, respectively. GSEA was performed using 

the default parameters. The maximum and minimum 

number of genes was set at 500 and 10, respectively. 

The permutation number was set at 1000 and multiple 

testing was corrected using the Benjamini-Hochberg 

method. The Wilcoxon’s test method was used to com-

pare the difference of enrichment pathways between 

differing subgroups. 

 
Construction of prognostic model 

 
A univariate Cox regression analysis (UCRA) was 

applied to identify genes associated with the prognosis 

using the R survival package (version 3.2.13). The least 

absolute shrinkage and selection operator (LASSO) Cox 

regression analysis was used to regularize the genes 

with significant UCRA prognostic value. The basic idea 

behind the LASSO algorithm is that an added L1-norm 

regularization term is used to penalize the weight of 

variables in a linear model. The LASSO regularization 

term is defined as: 

 

1
   

 

where 
1

  is the L1-norm of the coefficient vector and 

λ is a control parameter. The optimal λ value is set by 

the cross-validation and a 10-round cross-validation was 

performed to prevent the overfitting. The coefficients of 

some variables with minor contributions are forced to 

be 0 by the LASSO regularization, which enables the 

model to generate a sparse variable space. The parameter 

compression characteristic is vital for feature selection 

and was widely used to construct the low-complexity 

prognostic model for risk prediction in cancer patients. 

LASSO Cox regression analysis was performed using 

the R glmnet (version 4.1.4) package. A set of genes with 

the most important prognostic feature was identified by 

the LASSO method. To establish the optimal prognostic 

model, a multivariate Cox regression analysis (MCRA) 

by Akaike information criterion (AIC) was used to 

optimize the LASSO prognostic genes based on the R 

MASS package (version 7.3.55). The risk score for  

each patient was calculated according to the following 

formula: 

 

( ) ( )i i

i

Risk score Coe Gene Exp Gene=   

 

where Coe(Genei) is the MCRA Cox coefficient of the i 
gene and Exp(Genei) is the mRNA level of the i gene. 

On the basis of the median risk score, LUAD patients 

were divided into high-risk and low-risk subgroups. The 

Kaplan-Meier (KM) estimator and log-rank test were 

used to assess the OS rate of LUAD patients between 

two risk subgroups based on the R survival package 

(version 3.2.13). The receiver operating characteristic 

(ROC) analysis was used to evaluate the predictive 

capability for prognostic model using the R survivalROC 

package (version 1.0.3), and the area under curve (AUC) 

indicated the predictive accuracy of prognostic model in 

the ROC curve. 

 

Identification of MPSs based on prognostic CRs 

 

MPSs were identified based on the differentially 

expressed CRs (DECRs) with the UCRA prognostic 

value using an unsupervised consensus clustering 

algorithm. The consensus clustering method is one  

of the most commonly used methods for classifying  
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cancer subtypes by adopting resampling strategy of 

different omics data sets. In this study, the partitioning 

around medoid (PAM) algorithm with the Spearman 

correlation distance metric was applied to the consensus 

clustering based on the gene expression profiles of 27 

prognostic DECRs from 472 LUAD patients in the 

TCGA database, and performed 500 bootstraps each 

80% resampling of LUAD patients. The unsupervised 

consensus clustering was performed using the R 

ConsensusClusterPlus package (version 1.60.0) [108]. 

The maximum number of clusters (k) is set to 10, and 

the optimal k value was assessed on the basis of the 

cumulative distribution function and consensus matrix. 

 

TICs analysis 

 

First, the immune infiltrations of 22 types of TICs  

were estimated between differing MPSs and between 

differing risk subgroups using the CIBERSORT (cell-

type identification by estimating relative subsets of 

RNA transcript) method [109]. On the basis of gene 

expression profiles, the proportions of 22 types of  

TICs were quantified using the LM22 signature and 

100 permutations by the CIBERSORT algorithm. The 

relative abundances of 22 types of TICs between dif-

fering subgroups were compared using the Wilcoxon 

rank sum test. 

 

Second, the infiltration of immune and stromal  

cells between differing MPSs and between differing  

risk subgroups was assessed using the ESTIMATE 

(estimation of stromal and immune cells in malignant 

tumors) algorithm in the R estimate package (version 

1.0.13) [110]. The fraction of immune and stromal  

cells was inferred using the gene expression signatures 

in LUAD samples and compared using the Wilcoxon 

rank sum test. 

 

Last, tumor immune estimation resource (TIMER, 

http://cistrome.org/TIMER/) was used to assess the 

immune infiltrations of 6 types of TICs including 

dendritic cells, macrophages, neutrophils, CD8 T cells, 

CD4 T cells and B cells [111], and the correlations of 

TICs with risk genes were measured using the Pearson 

correlation coefficient. 

 

Prediction of therapeutic response 

 

The potential response of immune checkpoint blockade 

(ICB) therapy between differing subgroups was predicted 

using the Tumor Immune Dysfunction and Exclusion 

(TIDE) algorithm (http://tide.dfci.harvard.edu/) [112]. 

The TIDE score, interferon-gamma (IFNG) score, T  
cell dysfunction (Dysfunction) score, T cell exclusion 

(Exclusion) score, tumor-associated macrophages M2 

(TAM.M2) score and myeloid-derived suppressor cells 

(MDSC) score were used to evaluate potential 

therapeutic responses. To further investigate potential 

responses of ICB therapy, the correlations of 44 immune 

checkpoint genes (ICGs) with risk genes were measured 

using the Pearson correlation coefficient [113]. 

 

Potential clinical chemotherapeutic responses of LUAD 

patients to conventional chemotherapy agents were 

predicted using the R pRRophetic package (version  

0.5) [114]. The half-maximal inhibitory concentration 

(IC50) was used to evaluate the drug sensitivity. 

 

Activity assessment of 10 OSPs 

 

The activities of 10 OSPs including 335 genes between 

differing MPSs and between differing risk subgroups 

were assessed using the single sample gene set 

enrichment analysis (ssGSEA) in the R GSVA package 

(version 1.44.2) [106]. The 10 OSPs were separately 

cell cycle (15 genes), HIPPO (38 genes), MYC (13 

genes), NOTCH (71 genes), NRF1 (3 genes), PI3K (29 

genes), TGF-beta (7 genes), RAS (85 genes), TP53 (6 

genes) and WNT (68 genes). A list of 335 genes can be 

downloaded by referring to a published article [94]. 

 

ssGSEA 

 

The ssGSEA was used to assess the immune cell 

infiltration in LUAD tissues. A marker gene set for  

29 types of immune cells was obtained from a 

published article [115]. The relative abundances of  

29 types of immune cells were quantified using the 

ssGSEA method in the R GSVA package (version 

1.44.2) [106]. 

 

Statistical analysis 

 

All the statistical analyses of the data in this study  

were performed based on the open-source R software 

(version 4.1.3). The DEGA was performed to identify 

DEGs using a moderated t-test method, and a gene  

with an adjusted p < 0.05 and a |log2(FC)| > log2(1.5) 

was considered to significantly change in expression. 

The GSVA and GSEA were performed to investigate 

the function of DEGs using the Wilcoxon’s test  

method, and an adjusted p < 0.05 was considered to 

have significant functional change. An unsupervised 

consensus clustering algorithm was applied to identify 

MPSs. The UCRA was performed to identify genes 

associated with the prognosis, and a gene with a p < 

0.05 was considered to have significant association with 

the survival. The association of prognostic signature 

with the OS was evaluated using the KM method,  
and a p < 0.05 was considered to have a significant 

association. Immune cell infiltrations between diffe- 

ring MPSs and between differing risk subgroups were 

http://cistrome.org/TIMER/
http://tide.dfci.harvard.edu/
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compared using the Wilcoxon’s test method, and a p < 

0.05 was considered to have a significant difference. 

The correlations of MPS and risk score with clinical 

features were compared using a chi-square test method, 

and a p < 0.05 was considered to have a significant 

correlation. The expression levels of prognostic genes 

were validated by a paired t test method between LUAD 

and normal lung tissues using transcriptome sequencing 

data, and a p < 0.05 was considered to have a significant 

change. The accuracy of transcriptome sequencing data 

was evaluated using the qPCR method, and the relative 

expression levels of genes were compared using an 

unpaired t test method and a p < 0.05 was considered to 

have a significant change in expression. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Survival curves of 20 prognostic signatures. 
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Supplementary Figure 2. Receiver operating characteristic curves of 20 prognostic signatures by weighting aalen method. 
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Supplementary Figure 3. Receiver operating characteristic curves of 20 prognostic signatures by weighting marginal method. 
  



www.aging-us.com 12367 AGING 

Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–7. 

 

Supplementary Table 1. Differentially expressed genes between LUAD and normal lung tissues. 

 

Supplementary Table 2. Differentially expressed chromatin regulator genes between LUAD and normal lung 
tissues. 

 

Supplementary Table 3. Gene expression profiles of prognostic genes between LUAD and normal lung tissues. 

 

Supplementary Table 4. Differentially expressed genes between two molecular prognostic subtypes. 

 

Supplementary Table 5. Key differentially expressed genes between two molecular prognostic subtypes. 

 

Supplementary Table 6. Key differentially expressed genes with significant prognostic value. 

 

Supplementary Table 7. Dysregulated KEGG pathways associated with risk score. 
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Supplementary Table 8. KEGG pathways enriched by GSEA method. 

Description setSize E_Score NES p value p.adjust q value 

Upregulated 

pathways 
      

DNA Replication 35 0.736449729396368 2.03690969516193 0.0000151369217012898 0.00137745987481737 0.00117908653252152 

Homologous 

Recombination 
26 0.724404474641536 1.90935319570508 0.000513905955422847 0.0230609512890726 0.0197398541977024 

Mismatch Repair 22 0.721934747964346 1.82178519953093 0.00155816303419186 0.030426628602272 0.0260447717358951 

Cell Cycle 119 0.672607485893627 2.27660731776706 0.0000000001 0.0000000182 1.55789473684211E-08 

Proteasome 42 0.602774052010137 1.72675095759965 0.00183956842508467 0.030426628602272 0.0260447717358951 

P53 Signaling 

Pathway 
65 0.566574926625628 1.76199825945229 0.000633542617831664 0.0230609512890726 0.0197398541977024 

Oocyte Meiosis 91 0.548935448235104 1.79946064847862 0.000068003858822793 0.00412556743524944 0.00353142845816609 

Pyrimidine 

Metabolism 
89 0.492113129094618 1.60118875704439 0.00200615133641354 0.030426628602272 0.0260447717358951 

Cytokine 

Cytokine 

Receptor 

Interaction 

188 0.398099737708487 1.45859198111463 0.00448783412482144 0.0480462241598531 0.041126900958116 

Downregulated 

pathways 
      

Cell Adhesion 

Molecules Cams 
109 -0.489168465420973 -1.62245237410999 0.00144964281019493 0.030426628602272 0.0260447717358951 

Fc Epsilon Ri 

Signaling 

Pathway 

69 -0.55595778141551 -1.69713254845712 0.00149733080740598 0.030426628602272 0.0260447717358951 

Long Term 

Depression 
52 -0.576665210604918 -1.66761252448888 0.00220390715752221 0.0308547002053109 0.0264111950860961 

Viral Myocarditis 57 -0.588035222535862 -1.74220768693252 0.000986954262565194 0.0299376126311442 0.02562618085257 

Valine Leucine 

and Isoleucine 

Degradation 

43 -0.58869102821266 -1.65698112512393 0.00417156420719961 0.0474515428568956 0.0406178620174699 

Arachidonic Acid 

Metabolism 
41 -0.596886153027357 -1.66240044710594 0.00350612041001675 0.0455795653302178 0.0390154752392842 

Asthma 20 -0.718605219525618 -1.71889016635074 0.00395824541300939 0.0474515428568956 0.0406178620174699 

Alpha Linolenic 

Acid Metabolism 
15 -0.76076493050057 -1.71769231258579 0.00198981558384615 0.030426628602272 0.0260447717358951 

 


