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INTRODUCTION 
 

Breast cancer has surpassed lung cancer as the most 

common cancer diagnosed, with an estimated increase 

of 2.3 million cases [1]. Breast cancer accounts for  
25% of cancers in women worldwide [2], and it is also 

the number one cause of cancer-related deaths among 

women in the world [3, 4]. Compared with transitioned 
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ABSTRACT 
 

Background: Flavin containing dimethylaniline monoxygenase 2 (FMO2), is downexpressed in diverse tumors 
and displays vital roles in tumorigenesis. However, the prognostic value and potential mechanism of FMO2 in 
breast cancer remain unclear. 
Methods: The expression of FMO2 was analyzed and the relationship between FMO2 expression level and 
clinical indicators in breast cancer was analyzed. Then the prognostic value of FMO2 in breast cancer was 
assessed. The FMO2-correlated genes were obtained, and the highest-ranked gene was chosen. The expression, 
therapeutic responder analysis, and gene set enrichment analysis of the highest-ranked gene were conducted. 
Results: FMO2 was downregulated in breast cancer and was closely related to clinical indicators. Patients with 
decreased FMO2 expression showed poor overall survival, post-progression survival, relapse-free survival, and 
distant metastasis-free survival. FMO2 correlates with N/ER/PR subgroups in breast cancer and patients with 
high FMO2 levels were sensitive to anti-programmed cell death protein 1, anti-programmed death-ligand 1, and 
anti-cytotoxic T-lymphocyte antigen 4 immunotherapies. Mechanically, FMO2 was positively and highly 
correlated with secreted Frizzled-related protein 1 (SFRP1), which was downregulated in breast cancer due to 
hypermethylation. Moreover, SFRP1 was correlated to pathological complete response and relapse-free 
survival status at 5 years regardless of any chemotherapy, hormone therapy, and anti-HER2 therapy. Gene set 
enrichment analysis revealed enrichment of component and coagulation cascades, focal adhesion, protein 
export, and spliceosome. 
Conclusions: FMO2 was lower expressed in breast cancer than normal tissues and contributes to subtype 
classification and prognosis prediction with co-expressed SFRP1. 
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countries, the mortality rate of breast cancer in 

transitioning countries is much higher [1]. Although 

some studies have shown that clinical, pathological 

indicators and molecular indicators can predict the 

prognosis of breast cancer [5, 6], early detection, 

clinical staging, management decision-making and 

direct treatment of breast cancer are all crucial to the 

clinical prognosis [7]. 

 

Flavin containing dimethylaniline monoxygenase 2 

(FMO2), one of the FMO family, is an NADPH-

dependent enzyme that catalyzes the N-oxidation of 

some primary alkylamines through an N-hydroxylamine 

intermediate [8]. FMO2 prevents cardiac fibrosis  

via CYP2J3-SMURF2 axis [9], cancer-associated 

fibroblasts-derived FMO2 acts as a biomarker of 

macrophage infiltration and prognosis in epithelial 

ovarian cancer [10]. Although FMO2 is reported to  

be differentially expressed in tumors, such as early-

stage oral squamous cell carcinoma [11], the functional 

role of FMO2 in breast cancer is largely unknown. 

Therefore, in the present study, we evaluated the  

FMO2 expression and its prognostic potential and 

immunotherapeutic response in breast cancer by 

comprehensive bioinformatics analysis. In addition, we 

excavated secreted Frizzled-related protein 1 (SFRP1), 

a known negative regulator of the Wnt/β-catenin 

pathway [12], from the perspective of co-expression 

analysis to reveal the potential molecular mechanism  

of FMO2 in breast cancer. 

 

MATERIALS AND METHODS 
 

FMO2 expression in breast cancer 

 

The FMO2 mRNA expression level was analyzed across 

all tissues in all available normal and tumor RNA  

Seq data from Genotype-Tissue Expression (GTEx), The 

Cancer Genome Atlas (TCGA), and Therapeutically 

Applicable Research to Generate Effective Treatments 

(TARGET) through TNMplot [13]. Then the transcript 

per million of FMO2 was validated in breast invasive 

carcinoma through UALCAN [14]. 

 

FMO2 expression and different clinical indicators in 

breast cancer 

 

The expression of FMO2 in different subtypes of breast 

cancer according to the clinical indicators, including 

estrogen receptor (ER) status, progesterone receptor 

(PR) status, human epidermal growth factor receptor 2 

(HER2) status, histological types, pathological tumor 

stage, age status, PAM50 subtypes, triple-negative breast 

cancer, Ki67 status, Scarff Bloom and Richardson grade 

status, and Nottingham Prognostic Index status, was 

analyzed in TCGA (743 breast cancer patients and 92 

normal control) and Sweden Cancerome Analysis 

Network - Breast (SCAN-B) Initiative [15, 16] (3678 

breast cancer patients) through Breast Cancer Gene-

Expression Miner (bc-GenExMiner) [17]. 

 

Survival analysis 

 

The prognostic value of FMO2 in breast cancer was 

assessed according to overall survival (OS), post-

progression survival (PPS), relapse-free survival (RFS), 

progression-free survival (PFS), and distant metastasis-

free survival (DMFS) using Kaplan–Meier plotter  

[18], which includes gene chip [19], RNA-sequence 

[19], protein [20], and immunotherapy [21] from Gene 

Expression Omnibus, European Genome-Phenome 

Archive (EGA), and TCGA. Later, the prognostic value 

of FMO2 in breast cancer was assessed according to  

OS and DFS among node (N), ER, and PR subgroups  

in bc-GenExMiner [17] with the TCGA and SCAN-B 

data. According to FMO2 expression, all patients were 

divided into high- or low-expression groups, and hazard 

ratio (HR) with 95% confidence intervals and log-rank 

P were statistically calculated. 

 

Correlation analysis 

 

The genes that shared positive and negative correlations 

with FMO2 in breast cancer were obtained from 

TNMplot [13] with gene chip data and RNA-sequence 

data [19]. We then obtained the intersection genes of 

positive correlation and negative correlation with FMO2 

through the Venn diagram, as described previously  

[22–24], and selected the highest-ranked gene for sub-

sequent analysis. The expression correlation between 

FMO2 and the highest-ranked gene was verified by bc-

GenExMiner [17] with breast cancer DNA microarrays 

data and RNA-sequence data and UCSC Xena [25] with 

TCGA breast cancer data. Finally, a density plot was 

used to show the expression level of two genes in 

different tissues (normal, tumor, and metastatic tissues). 

 

SFRP1 expression in breast cancer 

 

The SFRP1 mRNA expression level was analyzed  

in pan-cancer through TNMplot [13]. And SFRP1 

expression in different tissues (normal, tumor, and 

metastatic tissues) was analyzed. Finally, the SFRP1 

mRNA and protein expression levels were validated 

through UALCAN [14]. The SFRP1 promoter methy-

lation profile was also calculated. 

 

Therapeutic responder analysis 

 
Subsequently, we used the transcriptomic data of 3104 

breast cancer patients to verify the predictive biomarker 

value of SFRP1 for chemotherapy, hormone therapy, and 
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anti-HER2 therapy through ROCplot [26]. Response  

to therapy was determined using either author-reported 

pathological complete response data or relapse-free 

survival status at 5 years. SFRP1 expression and therapy 

response are compared using receiver operating charac-

teristics and Mann-Whitney tests. 

 

Functional analysis 

 

We conducted gene set enrichment analysis (GSEA) 

with TCGA breast cancer data by LinkedOmics [27] to 

reduce redundant efforts and focus on the discovery and 

interpretation of attribute associations. 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this published article and its Supplementary 

Information Files. 

 

RESULTS 
 

FMO2 is downregulated in breast cancer 

 

The pan-cancer analysis indicated FMO2 is dysregulated 

in various cancers (Figure 1A), including breast cancer. 

Then TCGA database including 1097 breast invasive 

 

 
 

Figure 1. The expression of FMO2 in pan-cancer (A) and breast invasive carcinoma, (B) P<0.0001. 
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carcinoma patients and 114 normal patients showed 

FMO2 is indeed dysregulated (P < 0.0001) (Figure 1B). 

 

The relationship between FMO2 expression and 

clinical indicators in breast cancer 

 

We next compared FMO2 expression in different 

subtypes of breast cancer according to different 

clinical indicators. In the TCGA database, FMO2 was 

downregulated in breast cancer compared to healthy 

and tumor-adjacent (P < 0.0001) (Figure 2A and 

Supplementary Table 1). FMO2 was upregulated in  

ER- and PR- breast cancer compared to those positive  

(P < 0.0001 and = 0.0106, respectively) (Figure 2B, 2C 

and Supplementary Table 1). Similarly, FMO2 was 

upregulated in ER-/PR- breast cancer (P = 0.0002) 

(Figure 2D and Supplementary Table 1). FMO2 was 

downregulated in HER2+ breast cancer (P < 0.0001) 

(Figure 2E and Supplementary Table 1), mucinous 

histological type (P < 0.0001) (Figure 2F and 

Supplementary Table 1), and pathological tumor stage II 

(P = 0.0067) (Figure 2G and Supplementary Table 1). 

Patients with age less than 51 years old had higher 

FMO2 expression (P = 0.0005) (Figure 2H and 

Supplementary Table 1). FMO2 was also dysregulated 

in PAM50 subtypes (P < 0.0001) (Figure 2I and 

Supplementary Table 1). FMO2 was upregulated in 

basal-like (PAM50) (P < 0.0001) (Figure 2J and 

Supplementary Table 1), triple-negative breast cancer  

(P < 0.0001) (Figure 2K and Supplementary Table 1), 

and basal-like and triple-negative breast cancer (P < 

0.0001) (Figure 2L and Supplementary Table 1). 

 

In SCAN-B, FMO2 was upregulated in ER-, PR-,  

and ER-/PR- breast cancer (P < 0.0001, = 0.0006,  

and < 0.0001, respectively) (Supplementary Figure 1A–

1C and Supplementary Table 1), which was consistent 

with TCGA. In addition, the expression of FMO2  

in HER2 status, age status, PAM50 subtypes, and  

triple-negative breast cancer was also highly consistent 

with that in TCGA (all P < 0.001) (Supplementary 

Figure 1D–1I and Supplementary Table 1). FMO2  

was dysregulated in Ki67 status, Scarff Bloom and 

Richardson grade status, and Nottingham Prognostic 

Index status (all P < 0.0001) (Supplementary Figure 1J–

1L and Supplementary Table 1). 

 

Decreased expression of FMO2 correlates with poor 

outcomes in breast cancer 

 

We then analyzed the prognostic value of FMO2.  

There were three probe data of FMO2 (206263_at, 

211726_s_at, and 228268_at) in the gene chip data of 
Kaplan–Meier plotter. The results indicated that a lower 

level of FMO2 (206263_at) significantly correlated with 

poor OS (HR = 0.80 (0.65~0.99), P = 0.038) (Figure 3A) 

and RFS (HR = 0.69 (0.62~0.77), P < 0.0001)  

(Figure 3B), while significantly correlated with 

preferable DMFS (HR = 1.44 (1.21~1.71), P < 0.0001) 

(Figure 3C). A lower level of FMO2 (206263_at) 

correlated with poor PPS with no statistical difference 

(HR = 0.82 (0.62~1.10), P = 0.18) (Supplementary 

Figure 2A). A lower level of FMO2 (211726_s_at) 

significantly correlated with poor OS (HR = 0.67 

(0.55~0.82), P < 0.0001) (Figure 3D), PPS (HR = 0.75 

(0.59~0.94), P = 0.014) (Figure 3E), and RFS  

(HR = 0.89 (0.80~0.99), P = 0.031) (Figure 3F),  

while correlated with poor DMFS with no statistical 

difference (HR = 0.90 (0.77~1.05), P = 0.20) 

(Supplementary Figure 2B). A lower level of FMO2 

(228268_at) significantly correlated with poor OS (HR 

= 0.58 (0.44~0.76), P < 0.0001) (Figure 3G) and RFS 

(HR = 0.75 (0.63~0.88), P = 0.00043) (Figure 3H), 

while correlated with poor PPS (HR = 0.79 (0.55~1.13), 

P = 0.2) (Supplementary Figure 2C) and DMFS (HR = 

0.82 (0.63~1.07), P = 0.14) (Supplementary Figure  

2D) with no statistical difference. RNA-sequence in 

Kaplan–Meier plotter revealed that a lower level of 

FMO2 significantly correlated with worse OS (HR = 

0.71 (0.56~0.90), P = 0.0039) (Figure 3I). 

 

FMO2 correlates with N/ER/PR subgroups in breast 

cancer 

 

To further investigate the role of FMO2 in breast  

cancer OS and DFS, we verified that FMO2 was 

positively correlated with OS in N+/ER all/PR+ (HR = 

0.45 (0.22~0.93), P = 0.0302) (Supplementary Figure 

3A), N+/ER+/PR all (HR = 0.48 (0.24~0.96), P = 

0.0386) (Supplementary Figure 3B), and N+/ER+/ 

PR+ subgroups (HR = 0.47 (0.22~0.97), P = 0.0411) 

(Supplementary Figure 3C) and DFS in N+/ER all/PR+ 

(HR = 0.46 (0.26~0.84), P = 0.0118) (Supplementary 

Figure 3D), N+/ER+/PR+ (HR = 0.48 (0.26~0.87), P = 

0.0159) (Supplementary Figure 3E), N+/ER+/PR all 

(HR = 0.50 (0.29~0.88), P = 0.0169) (Supplementary 

Figure 3F), and N+/ER all/PR all subgroups (HR = 0.63 

(0.39~1.00), P = 0.0487) (Supplementary Figure 3G) in 

TCGA from bc-GenExMiner. Similarly, FMO2 was 

positively correlated with OS in N all/ER+/PR all (HR 

= 0.65 (0.51~0.84), P = 0.0009) (Supplementary Figure 

4A), N all/ER all/PR all (HR = 0.70 (0.57~0.87), P = 

0.0015) (Supplementary Figure 4B), N all/ER+/PR+ 

(HR = 0.67 (0.51~0.88), P = 0.0037) (Supplementary 

Figure 4C), N-/ER+/PR all (HR = 0.60 (0.43~0.85), P = 

0.0042) (Supplementary Figure 4D), N all/ER all/PR+ 

(HR = 0.70 (0.53~0.92), P = 0.0098) (Supplementary 

Figure 4E), N-/ER all/PR all (HR = 0.67 (0.50~0.92), P 

= 0.0115) (Supplementary Figure 4F), N-/ER+/PR+ 
(HR = 0.64 (0.44~0.92), P = 0.0171) (Supplementary 

Figure 4G), and N-/ER all/PR+ subgroups (HR = 0.67 

(0.46~0.96), P = 0.0287) (Supplementary Figure 4H) 
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Figure 2. Relationship between FMO2 and different clinical indicators in TCGA. (A) Nature of the tissue. (B) ER status. (C) PR status. 
(D) ER and PR status combinations. (E) HER2 status. (F) Histological types. (G) Pathological tumor stage. (H) Age status. (I) PAM50 subtypes. (J) 
Basal-like (PAM50). (K) Triple-negative breast cancer. (L) Basal-like (PAM50) and triple-negative breast cancer. 



www.aging-us.com 12656 AGING 

and DFS in N all/ER+/PR all (HR = 0.65 (0.51~0.84),  

P = 0.0009) (Supplementary Figure 4I), N all/ER all/PR 

all (HR = 0.70 (0.57~0.87), P = 0.0015) (Supplementary 

Figure 4J), N all/ER+/PR+ (HR = 0.67 (0.51~0.88), P = 

0.0037) (Supplementary Figure 4K), N-/ER+/PR all 

(HR = 0.60 (0.43~0.85), P = 0.0042) (Supplementary 

Figure 4L), N all/ER all/PR+ (HR = 0.70 (0.53~0.92),  

P = 0.0098) (Supplementary Figure 4M), N-/ER all/PR 

all (HR = 0.67 (0.50~0.92), P = 0.0115) (Supplementary 

Figure 4N), N-/ER+/PR+ (HR = 0.64 (0.44~0.92),  

P = 0.0171) (Supplementary Figure 4O), and N-/ER 

all/PR+ subgroups (HR = 0.67 (0.46~0.96), P = 0.0287) 

(Supplementary Figure 4P) in SCAN-B from bc-

GenExMiner. 

 

 
 

Figure 3. The survival analysis of FMO2 in the gene chip data and RNA-sequence data of Kaplan–Meier plotter. (A) FMO2 

(206263_at) in OS. (B) FMO2 (206263_at) in RFS. (C) FMO2 (206263_at) in DMFS. (D) FMO2 (211726_s_at) in OS. (E) FMO2 (211726_s_at) in 
PPS. (F) FMO2 (211726_s_at) in PPS. (G) FMO2 (228268_at) in OS. (H) FMO2 (228268_at) in RFS. (I) FMO2 in OS. 
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Breast cancer with high FMO2 levels was sensitive to 

immunotherapy 

 

Anti-programmed cell death protein 1 (PD-1), anti-

programmed death-ligand 1 (PD-L1), and anti-cytotoxic 

T-lymphocyte antigen 4 (CTLA-4) immunotherapies 

are commonly used in the treatment of various cancers 

[28, 29]. Here, we analyzed the sensitivity of FMO2 

expression to immunotherapy. Analysis of patients 

receiving anti-PD-1 immunotherapy suggested that 

patients with high FMO2 expression were more sensitive 

to anti-PD-1 immunotherapy in OS (HR = 0.62 (0.47~ 

0.81), P = 0.00045) (Figure 4A). Similarly, patients 

with high FMO2 expression were more sensitive to anti-

PD-L1 immunotherapy (HR = 0.45 (0.33~0.61), P < 

0.0001) (Figure 4B) and anti-CTLA-4 immunotherapy 

(HR = 0.30 (0.18~0.49), P < 0.0001) in OS (Figure  

4C). Subgroup analyses indicated that patients with high 

FMO2 expression were more sensitive to pembrolizumab 

immunotherapy (HR = 0.45 (0.31~0.65), P < 0.0001) 

(Figure 4D), nivolumab immunotherapy (HR = 0.64 

(0.40~1.02), P = 0.061) (Figure 4E), atezolizumab 

immunotherapy (HR = 0.45 (0.33~0.62), P < 0.0001) 

(Figure 4F), and ipilimumab immunotherapy (HR = 

0.30 (0.18~0.49), P < 0.0001) in OS (Figure 4G).  

The sample size of patients receiving durvalumab 

immunotherapy and tremelimumab immunotherapy was 

too small, so no analyses were conducted. 

Regarding PFS, patients with high FMO2 expression 

were more sensitive to anti-PD-1 immunotherapy (HR = 

0.49 (0.35~0.69), P < 0.0001) (Figure 5A), anti-PD-L1 

immunotherapy (HR = 0.24 (0.15~0.38), P < 0.0001) 

(Figure 5B), and anti-CTLA-4 immunotherapy (HR = 

0.28 (0.16~0.50), P < 0.0001) (Figure 5C). Subgroup 

analyses indicated that patients with high FMO2 

expression were more sensitive to pembrolizumab 

immunotherapy (HR = 0.52 (0.37~0.74), P < 0.0001) 

(Figure 5D), nivolumab immunotherapy (HR = 0.43 

(0.22~0.85), P = 0.012) (Figure 5E), atezolizumab 

immunotherapy (HR = 0.24 (0.14~0.40), P < 0.0001) 

(Figure 5F), durvalumab immunotherapy (HR = 0.38 

(0.14~1.02), P =0.047) (Figure 5G), and ipilimumab 

immunotherapy (HR = 0.28 (0.16~0.50), P < 0.0001) in 

OS (Figure 5H). The sample size of patients receiving 

tremelimumab immunotherapy was too small, so no 

analysis was conducted. 

 

SFRP1 was positively correlated with FMO2 in 

breast cancer 

 

Through TNMplot, we obtained 96 positive correlation 

genes and 10 negative correlation genes in gene  

chip data and 1149 positive correlation genes and  

1 negative correlation gene in RNA-sequence data,  

respectively. The top 10 correlation genes are shown in 

Supplementary Table 2. Then we identified that SFRP1 

 

 

 

Figure 4. High FMO2 expression was sensitive to immunotherapy in OS. (A) Anti-PD-1 immunotherapy. (B) Anti-PD-L1 
immunotherapy. (C) Anti-CTLA-4 immunotherapy. (D) Pembrolizumab immunotherapy. (E) Nivolumab immunotherapy. (F) Atezolizumab 
immunotherapy. (G) Ipilimumab immunotherapy. 
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was positively correlated with FMO2 in breast cancer 

through the Venn diagram (Figure 6A, 6B) and ranks 

(Supplementary Table 2). The scatter diagrams showed 

that SFRP1 was positively correlated with FMO2 in 

breast cancer in gene chip data (Figure 6C) and RNA-

sequence data (Figure 6D). Finally, we validated the  

co-expression profile of FMO2 and SFRP1 in 8246 

patients with breast cancer with DNA microarrays data 

(Figure 6E) and 4421 patients with breast cancer with 

RNA-sequence data (Figure 6F) from bc-GenExMiner 

and 1284 patients with breast cancer with TCGA breast 

cancer data from UCSC Xena (Figure 6G). The density 

plots indicated that the expression trend of FMO2 and 

SFRP1 in the normal, tumor, and metastatic tissues 

were consistent, regardless of gene chip data (Figure 

6H) and RNA-sequence data (Figure 6I). 

 

SFRP1 was downregulated in breast cancer 

 

The pan-cancer analysis indicated SFRP1 mRNA 

expression is downregulated in various cancers 

(Supplementary Figure 5A), including breast cancer. 

Furthermore, both gene chip data and RNA sequencing 

data showed that SFRP1 mRNA expression in breast 

cancer was significantly reduced, and the expression in 

metastatic breast cancer is lower (Supplementary Figure 

5B, 5C). Then TCGA database including 1097 breast 

invasive carcinoma patients and 114 normal patients 

showed SFRP1 mRNA expression was indeed 

downregulated (P < 0.0001) (Supplementary Figure 5D). 

The Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) database including 125 breast cancer  

patients and 18 normal patients showed that SFRP1 

protein expression was downregulated (P < 0.0001) 

(Supplementary Figure 5E). 

 

We next compared SFRP1 expression in different 

subtypes of breast cancer according to different 

clinical indicators. In the TCGA database, SFRP1 was 

downregulated in breast cancer compared to healthy 

regardless of individual cancer stages (Figure 7A), 

race (Figure 7B), nodal metastasis status (Figure 7C), 

tumor histology (Figure 7D), major subclasses (Figure 

7E), menopause status (Figure 7F), and TP53 mutation  

status (Figure 7G). Similarly, In the CPTAC data- 

base, SFRP1 was downregulated in breast cancer 

compared to healthy regardless of individual cancer 

stages (Figure 7H), race (Figure 7I), tumor histology  

(Figure 7J), and major subclasses (Figure 7K). 

 

SFRP1 was hypermethylation in breast cancer 

 

After confirming that SFRP1 was highly expressed  

in breast cancer, we further explored the SFRP1 

promoter methylation level, and the results showed  

that SFRP1 was hypermethylation in breast cancer 

 

 
 

Figure 5. High FMO2 expression was sensitive to immunotherapy in PFS. (A) Anti-PD-1 immunotherapy. (B) Anti-PD-L1 
immunotherapy. (C) Anti-CTLA-4 immunotherapy. (D) Pembrolizumab immunotherapy. (E) Nivolumab immunotherapy. (F) Atezolizumab 
immunotherapy. (G) Durvalumab immunotherapy. (H) Ipilimumab immunotherapy. 
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(Supplementary Figure 6A), regardless of individual 

cancer stages (Supplementary Figure 6B), race 

(Supplementary Figure 6C), nodal metastasis status 

(Supplementary Figure 6D), tumor histology 

(Supplementary Figure 6E), major subclasses 

(Supplementary Figure 6F), menopause status 

(Supplementary Figure 6G), and TP53 mutation  

status (Supplementary Figure 6H). 

 

SFRP1 could act as a predictive biomarker in breast 

cancer 

 

Through ROCplot, we found that SFRP1 (202037_s_at) 

was correlated to pathological complete response in 

breast cancer regardless of any chemotherapy (taxane, 

anthracycline, ixabepilone, CMF (cyclophosphamide, 

methotrexate, and fluorouracil), FAC (fluorouracil, 

Adriamycin, and cytoxan), or FEC (fluorouracil, 

epirubicin, and cyclophosphamide)) (AUC = 0.578,  

P < 0.0001) (Supplementary Figure 7A), hormone 

therapy (tamoxifen or aromatase inhibitor) (AUC = 

0.629, P = 0.048) (Supplementary Figure 7B), and  

anti-HER2 therapy (trastuzumab or lapatinib) (AUC = 

0.566, P = 0.047) (Supplementary Figure 7C). Regarding 

relapse-free survival status at 5 years, SFRP1 could  

act as a predictive biomarker to predict chemotherapy 

response (AUC = 0.530, P = 0.130) (Supplementary 

Figure 7D), hormone therapy response (tamoxifen or 

aromatase inhibitor) (AUC = 0.604, P < 0.0001) 

(Supplementary Figure 7E), and anti-HER2 therapy 

response (trastuzumab or lapatinib) (AUC = 0.516, P = 

0.430) (Supplementary Figure 7F). 

 

 

 

Figure 6. SFRP1 was positively correlated with FMO2 in breast cancer. (A) Venn diagram of positive correlation genes in TNMplot. 

(B) Venn diagram of negative correlation genes in TNMplot. (C) Scatter diagram in gene chip data of TNMplot. (D) Scatter diagram in RNA-
sequence data of TNMplot. (E) Heat map in DNA microarrays data of bc-GenExMiner. (F) Heat map in RNA-sequence data of bc-GenExMiner. 
(G) Heat map in TCGA breast cancer data of UCSC Xena. (H) Density plot in gene chip data of TNMplot. (I) Density plot in RNA-sequence data 
of TNMplot. 
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SFRP1 regulated breast cancer indecently of the 

Wnt signal pathway 

 

We conducted gene ontology (cellular component, 

molecular function, and biological process) and  

Kyoto Encyclopedia of Genes and Genomes pathway 

analyses. Enrichment results with weighted set cover 

redundancy reduction indicated that extracellular 

matrix, vesicle lumen, nuclear speck, and intrinsic 

component of endoplasmic reticulum membrane  

were enriched in cellular component (Figure 8A); 

extracellular matrix structural constituent, structural 

constituent of cytoskeleton, mRNA binding, and 

ribonucleoprotein complex binding were enriched in 

molecular function (Figure 8B); extracellular structure 

organization, regulation of inflammatory response, 

mRNA processing, and mitochondrial gene expression 

were enriched in biological process (Figure 8C); and 

 

 
 

Figure 7. Relationship between SFRP1 and different clinical indicators. (A) Individual cancer stages in TCGA. (B) Race in TCGA. 
(C) Nodal metastasis status in TCGA. (D) Tumor histology in TCGA. (E) Major subclasses in TCGA. (F) Menopause status in TCGA. (G) TP53 
mutation status in TCGA. (H) Individual cancer stages in CPTAC. (I) Race in CPTAC. (J) Tumor histology in CPTAC. (K) Major subclasses in 
CPTAC. 
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component and coagulation cascades, focal adhesion, 

protein export, and spliceosome were enriched in 

Kyoto Encyclopedia of Genes and Genomes pathway  

(Figure 8D–8G). In general, SFRP1 predicted the 

therapeutic response of breast cancer indecently of the 

Wnt signal pathway. 
 

DISCUSSION 
 

It is reported that breast cancer is related to  

abnormal expression of oncogenes [30]. Although the 

diagnosis, treatment, and prognosis of breast cancer have 

improved, it is still the most common malignant tumor 

with the highest incidence rate among women in the 

world. Identification of new biomarkers of breast cancer 

is crucial to its diagnosis, treatment, and prognosis. 

Here, we confirmed that FMO2 is downregulated  

in breast cancer and FMO2 expression was related  

to clinical indicators. We later found that decreased 

expression of FMO2 correlates with poor OS, RFS,  

PPS, and DMFS. Moreover, FMO2 correlates with 

N/ER/PR subgroups in OS and DFS. We also explored 

the reason why upregulated FMO2 expression can benefit 

breast cancer patients, and the results showed that the 

high expression of FMO2 may increase the sensitivity  

of patients to immunotherapy. In addition, correlation 

analysis showed that SFRP1 is the most potentially 

related (positively) gene, and more importantly, SFRP1 

expression was downregulated in breast cancer patients, 

which was consistent with FMO2 expression. Then we 

found that the downregulation of SFRP1 expression may 

be due to its hypermethylation. SFRP1 was correlated  

to pathological complete response and relapse-free  

survival status at 5 years in breast cancer regardless of  

any chemotherapy, hormone therapy, and anti-HER2 

therapy, therefore, SFRP1 could act as a predictive 

biomarker to predict response among patients with 

breast cancer. Finally, the functional analysis indicated 

 

 
 

Figure 8. SFRP1 regulated extracellular matrix in breast cancer. (A) Cellular component. (B) Molecular function. (C) Biological process. 
(D) Kyoto Encyclopedia of Genes and Genomes pathway. (E) Component and coagulation cascades. (F) Protein export. (G) Spliceosome. 
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that SFRP1 might regulate the extracellular matrix to 

influence component and coagulation cascades, focal 

adhesion, protein export, and spliceosome pathways in 

breast cancer. 

 

Up to now, there have been relatively few studies  

on FMO2 in breast cancer. A new high-throughput  

drug metabolizing enzymes and transporters microarray 

platform revealed that single nucleotide polymorphism  

in FMO2 was significantly associated with docetaxel-

induced febrile neutropenia in Lebanese breast cancer 

patients [31]. FMO2, located within the candidate gains 

on 1q and is known to be overexpressed in invasive 

lobular carcinoma relative to invasive ductal carcinoma, 

which was consistent with our results, with genetic 

subgroups differed with regard to histology, tumor 

grading, frequency of alterations, and ER expression 

[32]. SFRP1 contains a cysteine-rich domain homologous 

to the putative Wnt-binding site of Frizzled proteins  

[33, 34]. A previous study found that FMO2 and  

SFRP1 were under-expressed in ductal carcinoma [35],  

a common type of breast cancer. Here, we for the  

first time found SFRP1 positively correlates with FMO2. 

The promoter hypermethylation is the predominant 

mechanism of SFRP1 gene silencing in breast cancer  

[36, 37], importantly, our findings demonstrate this epi-

genetic mechanism again. Previous studies have shown 

that SFRP1 can be used as a prognostic marker in breast 

cancer [36–38] and SFRP1 might be used as a marker for 

chemotherapy and neoadjuvant chemotherapy response 

in triple-negative breast cancer [39, 40]. In addition  

to chemotherapy, we proved that SFRP1 can be used  

as a predictive marker of hormone therapy and anti-

HER2 therapy. SFRP1 interferences with Wnt signaling 

to block the ligand-receptor interaction [41] or co-

regulates with BDNF [42] to have a potential inhibitory 

effect on breast cancer. Interestingly, we found that 

SFRP1 affects breast cancer independently of the Wnt 

signal pathway. 

 

This study has many advantages. Firstly, we proposed 

for the first time that FMO2 can affect the effect  

of immunotherapy as a prognostic marker and SFRP1 

could be a predictive marker of chemotherapy, hormone 

therapy, and anti-HER2 therapy on breast cancer. 

Secondly, we found that FMO2 inhibits breast cancer 

through co-expression with SFRP1, and the latter plays 

a role through non-Wnt signal pathway, which is also 

not reported. Finally, all our research results are 

basically verified with different data, which makes our 

research results more robust. Our research also has 

many areas for improvement. Primally, we confuse all 

types of breast cancer to solve this huge problem.  
The prognosis and predictive role of FMO2 and SFRP1 

for different types of breast cancer still need further 

research. In addition, this study is mainly based on 

existing data and lacks extensive experimental and 

clinical validation. These markers need more validation 

before the widespread adoption of treatment decisions 

for breast cancer. 

 

In conclusion, this analysis revealed that FMO2 was 

lower expressed in breast cancer compared with normal 

tissues and contributes to subtype classification and 

prognosis prediction with co-expressed SFRP1, which 

could be considered as a predictive biomarker for breast 

cancer treatment indecently of the Wnt signal pathway 

by affecting the extracellular matrix. 

 

AUTHOR CONTRIBUTIONS 
 

Feng Lu conceived and designed the article. Lichun Wu 

and Jie Chu collected the data. Lichun Wu, Jie Chu, 

Lijuan Shangguan, Mingfei Cao, and Feng Lu analyzed 

the data. Lichun Wu, Jie Chu, and Feng Lu visualized 

the results. All authors interpreted the results. Lichun 

Wu and Jie Chu drafted the manuscript. Feng Lu 

revised the manuscript. All authors reviewed and 

approved the manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of interest. 

 

FUNDING 
 

This work was supported by the Chengdu Medical 

Research Project [grant number 2022417]. 

 

REFERENCES 
 
1. Sung H, Ferlay J, Siegel RL, Laversanne M, 

Soerjomataram I, Jemal A, Bray F. Global Cancer 
Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. 
CA Cancer J Clin. 2021; 71:209–49. 

 https://doi.org/10.3322/caac.21660 PMID:33538338 

2. Herzog SK, Fuqua SAW. ESR1 mutations and 
therapeutic resistance in metastatic breast cancer: 
progress and remaining challenges. Br J Cancer. 2022; 
126:174–86. 

 https://doi.org/10.1038/s41416-021-01564-x 
PMID:34621045 

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer 
statistics, 2022. CA Cancer J Clin. 2022; 72:7–33. 

 https://doi.org/10.3322/caac.21708 PMID:35020204 

4. Houghton SC, Hankinson SE. Cancer Progress and 
Priorities: Breast Cancer. Cancer Epidemiol Biomarkers 
Prev. 2021; 30:822–44. 

 https://doi.org/10.1158/1055-9965.EPI-20-1193 

https://doi.org/10.3322/caac.21660
https://pubmed.ncbi.nlm.nih.gov/33538338
https://doi.org/10.1038/s41416-021-01564-x
https://pubmed.ncbi.nlm.nih.gov/34621045
https://doi.org/10.3322/caac.21708
https://pubmed.ncbi.nlm.nih.gov/35020204
https://doi.org/10.1158/1055-9965.EPI-20-1193


www.aging-us.com 12663 AGING 

PMID:33947744 

5. Wang XF, Liang B, Chen C, Zeng DX, Zhao YX, Su N, Ning 
WW, Yang W, Huang JA, Gu N, Zhu YH. Long Intergenic 
Non-protein Coding RNA 511 in Cancers. Front Genet. 
2020; 11:667. 

 https://doi.org/10.3389/fgene.2020.00667 
PMID:32733536 

6. Zhang A, Wang X, Fan C, Mao X. The Role of Ki67 in 
Evaluating Neoadjuvant Endocrine Therapy of 
Hormone Receptor-Positive Breast Cancer. Front 
Endocrinol (Lausanne). 2021; 12:687244. 

 https://doi.org/10.3389/fendo.2021.687244 
PMID:34803903 

7. Wilkinson L, Gathani T. Understanding breast cancer  
as a global health concern. Br J Radiol. 2022; 
95:20211033. 

 https://doi.org/10.1259/bjr.20211033  
PMID:34905391 

8. Krueger SK, Yueh MF, Martin SR, Pereira CB, Williams 
DE. Characterization of expressed full-length and 
truncated FMO2 from rhesus monkey. Drug Metab 
Dispos. 2001; 29:693–700. 

 PMID:11302936 

9. Ni C, Chen Y, Xu Y, Zhao J, Li Q, Xiao C, Wu Y, Wang J, 
Wang Y, Zhong Z, Zhang L, Wu R, Liu Q, et al. Flavin 
Containing Monooxygenase 2 Prevents Cardiac Fibrosis 
via CYP2J3-SMURF2 Axis. Circ Res. 2022. [Epub ahead 
of print]. 

 https://doi.org/10.1161/CIRCRESAHA.122.320538 
PMID:35861735 

10. Yu S, Yang R, Xu T, Li X, Wu S, Zhang J. Cancer-
associated fibroblasts-derived FMO2 as a biomarker of 
macrophage infiltration and prognosis in epithelial 
ovarian cancer. Gynecol Oncol. 2022; 167:342–53. 

 https://doi.org/10.1016/j.ygyno.2022.09.003 
PMID:36114029 

11. Fialka F, Gruber RM, Hitt R, Opitz L, Brunner E, 
Schliephake H, Kramer FJ. CPA6, FMO2, LGI1, SIAT1 
and TNC are differentially expressed in early- and late-
stage oral squamous cell carcinoma--a pilot study. Oral 
Oncol. 2008; 44:941–8. 

 https://doi.org/10.1016/j.oraloncology.2007.10.011 
PMID:18234543 

12. Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, Hou N, 
Pan J, Zhou Z, Wang L, Huang D, Yang J, Liang Y, et al. 
MiR-454-3p-Mediated Wnt/β-catenin Signaling 
Antagonists Suppression Promotes Breast Cancer 
Metastasis. Theranostics. 2019; 9:449–65. 

 https://doi.org/10.7150/thno.29055  
PMID:30809286 

13. Bartha Á, Győrffy B. TNMplot.com: A Web Tool for the 
Comparison of Gene Expression in Normal, Tumor and 

Metastatic Tissues. Int J Mol Sci. 2021; 22:2622. 
 https://doi.org/10.3390/ijms22052622 

PMID:33807717 

14. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, 
Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne 
U, Creighton CJ, Varambally S. UALCAN: An update to 
the integrated cancer data analysis platform. 
Neoplasia. 2022; 25:18–27. 

 https://doi.org/10.1016/j.neo.2022.01.001 
PMID:35078134 

15. Saal LH, Vallon-Christersson J, Häkkinen J, Hegardt C, 
Grabau D, Winter C, Brueffer C, Tang MH, Reuterswärd 
C, Schulz R, Karlsson A, Ehinger A, Malina J, et al.  
The Sweden Cancerome Analysis Network - Breast 
(SCAN-B) Initiative: a large-scale multicenter 
infrastructure towards implementation of breast 
cancer genomic analyses in the clinical routine. 
Genome Med. 2015; 7:20. 

 https://doi.org/10.1186/s13073-015-0131-9 
PMID:25722745 

16. Brueffer C, Vallon-Christersson J, Grabau D, Ehinger A, 
Häkkinen J, Hegardt C, Malina J, Chen Y, Bendahl PO, 
Manjer J, Malmberg M, Larsson C, Loman N, et al. 
Clinical Value of RNA Sequencing-Based Classifiers for 
Prediction of the Five Conventional Breast Cancer 
Biomarkers: A Report From the Population-Based 
Multicenter Sweden Cancerome Analysis Network-
Breast Initiative. JCO Precis Oncol. 2018; 
2:PO.17.00135. 

 https://doi.org/10.1200/PO.17.00135 PMID:32913985 

17. Jézéquel P, Gouraud W, Ben Azzouz F, Guérin-
Charbonnel C, Juin PP, Lasla H, Campone M. bc-
GenExMiner 4.5: new mining module computes breast 
cancer differential gene expression analyses. Database 
(Oxford). 2021; 2021:baab007. 

 https://doi.org/10.1093/database/baab007 
PMID:33599248 

18. Lánczky A, Győrffy B. Web-Based Survival Analysis Tool 
Tailored for Medical Research (KMplot): Development 
and Implementation. J Med Internet Res. 2021; 
23:e27633. 

 https://doi.org/10.2196/27633 PMID:34309564 

19. Győrffy B. Survival analysis across the entire 
transcriptome identifies biomarkers with the highest 
prognostic power in breast cancer. Comput Struct 
Biotechnol J. 2021; 19:4101–9. 

 https://doi.org/10.1016/j.csbj.2021.07.014 
PMID:34527184 

20. Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast 
cancer using proteomic data from four independent 
datasets. Sci Rep. 2021; 11:16787. 

 https://doi.org/10.1038/s41598-021-96340-5 

https://pubmed.ncbi.nlm.nih.gov/33947744
https://doi.org/10.3389/fgene.2020.00667
https://pubmed.ncbi.nlm.nih.gov/32733536
https://doi.org/10.3389/fendo.2021.687244
https://pubmed.ncbi.nlm.nih.gov/34803903
https://doi.org/10.1259/bjr.20211033
https://pubmed.ncbi.nlm.nih.gov/34905391
https://pubmed.ncbi.nlm.nih.gov/11302936
https://doi.org/10.1161/CIRCRESAHA.122.320538
https://pubmed.ncbi.nlm.nih.gov/35861735
https://doi.org/10.1016/j.ygyno.2022.09.003
https://pubmed.ncbi.nlm.nih.gov/36114029
https://doi.org/10.1016/j.oraloncology.2007.10.011
https://pubmed.ncbi.nlm.nih.gov/18234543
https://doi.org/10.7150/thno.29055
https://pubmed.ncbi.nlm.nih.gov/30809286
https://doi.org/10.3390/ijms22052622
https://pubmed.ncbi.nlm.nih.gov/33807717
https://doi.org/10.1016/j.neo.2022.01.001
https://pubmed.ncbi.nlm.nih.gov/35078134
https://doi.org/10.1186/s13073-015-0131-9
https://pubmed.ncbi.nlm.nih.gov/25722745
https://doi.org/10.1200/PO.17.00135
https://pubmed.ncbi.nlm.nih.gov/32913985
https://doi.org/10.1093/database/baab007
https://pubmed.ncbi.nlm.nih.gov/33599248
https://doi.org/10.2196/27633
https://pubmed.ncbi.nlm.nih.gov/34309564
https://doi.org/10.1016/j.csbj.2021.07.014
https://pubmed.ncbi.nlm.nih.gov/34527184
https://doi.org/10.1038/s41598-021-96340-5


www.aging-us.com 12664 AGING 

PMID:34408238 

21. Kovács SA, Győrffy B. Transcriptomic datasets of 
cancer patients treated with immune-checkpoint 
inhibitors: a systematic review. J Transl Med. 2022; 
20:249. 

 https://doi.org/10.1186/s12967-022-03409-4 
PMID:35641998 

22. Liang B, Zhang XX, Gu N. Virtual screening and network 
pharmacology-based synergistic mechanism 
identification of multiple components contained in 
Guanxin V against coronary artery disease. BMC 
Complement Med Ther. 2020; 20:345. 

 https://doi.org/10.1186/s12906-020-03133-w 
PMID:33187508 

23. Liang B, Li R, Liang Y, Gu N. Guanxin V Acts as an 
Antioxidant in Ventricular Remodeling. Front 
Cardiovasc Med. 2022; 8:778005. 

 https://doi.org/10.3389/fcvm.2021.778005 
PMID:35059446 

24. Liang B, Liang Y, Li R, Zhang H, Gu N. Integrating 
systematic pharmacology-based strategy and 
experimental validation to explore the synergistic 
pharmacological mechanisms of Guanxin V in treating 
ventricular remodeling. Bioorg Chem. 2021; 
115:105187. 

 https://doi.org/10.1016/j.bioorg.2021.105187 
PMID:34303037 

25. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, 
Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu 
J, Haussler D. Visualizing and interpreting cancer 
genomics data via the Xena platform. Nat Biotechnol. 
2020; 38:675–8. 

 https://doi.org/10.1038/s41587-020-0546-8 
PMID:32444850 

26. Fekete JT, Győrffy B. ROCplot.org: Validating predictive 
biomarkers of chemotherapy/hormonal therapy/anti-
HER2 therapy using transcriptomic data of 3,104 breast 
cancer patients. Int J Cancer. 2019; 145:3140–51. 

 https://doi.org/10.1002/ijc.32369 PMID:31020993 

27. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: 
analyzing multi-omics data within and across 32 cancer 
types. Nucleic Acids Res. 2018; 46:D956–63. 

 https://doi.org/10.1093/nar/gkx1090 PMID:29136207 

28. Zhang M, Chen H, Liang B, Wang X, Gu N, Xue F, Yue Q, 
Zhang Q, Hong J. Prognostic Value of 
mRNAsi/Corrected mRNAsi Calculated by the One-
Class Logistic Regression Machine-Learning Algorithm 
in Glioblastoma Within Multiple Datasets. Front Mol 
Biosci. 2021; 8:777921. 

 https://doi.org/10.3389/fmolb.2021.777921 
PMID:34938774 

29. Zhou JG, Liang B, Liu JG, Jin SH, He SS, Frey B, Gu N, 
Fietkau R, Hecht M, Ma H, Gaipl US. Identification of 15 
lncRNAs Signature for Predicting Survival Benefit of 
Advanced Melanoma Patients Treated with Anti-PD-1 
Monotherapy. Cells. 2021; 10:977. 

 https://doi.org/10.3390/cells10050977 
PMID:33922038 

30. Zu C, Zhang M, Xue H, Cai X, Zhao L, He A, Qin G, Yang 
C, Zheng X. Emodin induces apoptosis of human breast 
cancer cells by modulating the expression of apoptosis-
related genes. Oncol Lett. 2015; 10:2919–24. 

 https://doi.org/10.3892/ol.2015.3646 PMID:26722264 

31. Awada Z, Haider S, Tfayli A, Bazarbachi A, El-Saghir NS, 
Salem Z, Shamseddine A, Taher A, Zgheib NK. 
Pharmacogenomics variation in drug metabolizing 
enzymes and transporters in relation to docetaxel 
toxicity in Lebanese breast cancer patients: paving the 
way for OMICs in low and middle income countries. 
OMICS. 2013; 17:353–67. 

 https://doi.org/10.1089/omi.2013.0019 
PMID:23758476 

32. Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, 
Toedt G, Mendrzyk F, Lehmann U, Eils R, Kreipe H, 
Lichter P. High-resolution genomic profiling reveals 
association of chromosomal aberrations on 1q and 16p 
with histologic and genetic subgroups of invasive 
breast cancer. Clin Cancer Res. 2006; 12:345–52. 

 https://doi.org/10.1158/1078-0432.CCR-05-1633 
PMID:16428471 

33. Chong JM, Uren A, Rubin JS, Speicher DW. Disulfide 
bond assignments of secreted Frizzled-related protein-
1 provide insights about Frizzled homology and netrin 
modules. J Biol Chem. 2002; 277:5134–44. 

 https://doi.org/10.1074/jbc.M108533200 
PMID:11741940 

34. Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, 
Bottaro DP, Cumberledge S, Rubin JS. Secreted frizzled-
related protein-1 binds directly to Wingless and is a 
biphasic modulator of Wnt signaling. J Biol Chem. 
2000; 275:4374–82. 

 https://doi.org/10.1074/jbc.275.6.4374 
PMID:10660608 

35. Sultan G, Zubair S, Tayubi IA, Dahms HU, Madar IH. 
Towards the early detection of ductal carcinoma (a 
common type of breast cancer) using biomarkers 
linked to the PPAR(γ) signaling pathway. 
Bioinformation. 2019; 15:799–805. 

 https://doi.org/10.6026/97320630015799 
PMID:31902979 

36. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, 
Betz B, Galm O, Camara O, Dürst M, Kristiansen G, 
Huszka C, Knüchel R, Dahl E. Aberrant methylation of 
the Wnt antagonist SFRP1 in breast cancer is 

https://pubmed.ncbi.nlm.nih.gov/34408238
https://doi.org/10.1186/s12967-022-03409-4
https://pubmed.ncbi.nlm.nih.gov/35641998
https://doi.org/10.1186/s12906-020-03133-w
https://pubmed.ncbi.nlm.nih.gov/33187508
https://doi.org/10.3389/fcvm.2021.778005
https://pubmed.ncbi.nlm.nih.gov/35059446
https://doi.org/10.1016/j.bioorg.2021.105187
https://pubmed.ncbi.nlm.nih.gov/34303037
https://doi.org/10.1038/s41587-020-0546-8
https://pubmed.ncbi.nlm.nih.gov/32444850
https://doi.org/10.1002/ijc.32369
https://pubmed.ncbi.nlm.nih.gov/31020993
https://doi.org/10.1093/nar/gkx1090
https://pubmed.ncbi.nlm.nih.gov/29136207
https://doi.org/10.3389/fmolb.2021.777921
https://pubmed.ncbi.nlm.nih.gov/34938774
https://doi.org/10.3390/cells10050977
https://pubmed.ncbi.nlm.nih.gov/33922038
https://doi.org/10.3892/ol.2015.3646
https://pubmed.ncbi.nlm.nih.gov/26722264
https://doi.org/10.1089/omi.2013.0019
https://pubmed.ncbi.nlm.nih.gov/23758476
https://doi.org/10.1158/1078-0432.CCR-05-1633
https://pubmed.ncbi.nlm.nih.gov/16428471
https://doi.org/10.1074/jbc.M108533200
https://pubmed.ncbi.nlm.nih.gov/11741940
https://doi.org/10.1074/jbc.275.6.4374
https://pubmed.ncbi.nlm.nih.gov/10660608
https://doi.org/10.6026/97320630015799
https://pubmed.ncbi.nlm.nih.gov/31902979


www.aging-us.com 12665 AGING 

associated with unfavourable prognosis. Oncogene. 
2006; 25:3479–88. 

 https://doi.org/10.1038/sj.onc.1209386 
PMID:16449975 

37. Lo PK, Mehrotra J, D’Costa A, Fackler MJ, Garrett-
Mayer E, Argani P, Sukumar S. Epigenetic suppression 
of secreted frizzled related protein 1 (SFRP1) 
expression in human breast cancer. Cancer Biol Ther. 
2006; 5:281–6. 

 https://doi.org/10.4161/cbt.5.3.2384 PMID:16410723 

38. Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-
Velez E, Singer G, Stöhr R, Simon R, Sauter G, Leibiger 
H, Essers L, Weber B, Hermann K, et al. Loss of SFRP1 is 
associated with breast cancer progression and poor 
prognosis in early stage tumors. Int J Oncol. 2004; 
25:641–9. 

 https://doi.org/10.3892/ijo.25.3.641 PMID:15289865 

39. Schäfer SA, Hülsewig C, Barth P, von Wahlde MK, Tio J, 
Kolberg HC, Bernemann C, Blohmer JU, Kiesel L, 
Kolberg-Liedtke C. Correlation between SFRP1 
expression and clinicopathological parameters in 
patients with triple-negative breast cancer. Future 
Oncol. 2019; 15:1921–38. 

 https://doi.org/10.2217/fon-2018-0564 
PMID:31140870 

40. Bernemann C, Hülsewig C, Ruckert C, Schäfer S, Blümel 
L, Hempel G, Götte M, Greve B, Barth PJ, Kiesel L, 
Liedtke C. Influence of secreted frizzled receptor 
protein 1 (SFRP1) on neoadjuvant chemotherapy in 
triple negative breast cancer does not rely on WNT 
signaling. Mol Cancer. 2014; 13:174. 

 https://doi.org/10.1186/1476-4598-13-174 
PMID:25033833 

41. Matsuda Y, Schlange T, Oakeley EJ, Boulay A, Hynes NE. 
WNT signaling enhances breast cancer cell motility and 
blockade of the WNT pathway by sFRP1 suppresses 
MDA-MB-231 xenograft growth. Breast Cancer Res. 
2009; 11:R32. 

 https://doi.org/10.1186/bcr2317  
PMID:19473496 

42. Huth L, Rose M, Kloubert V, Winkens W, Schlensog M, 
Hartmann A, Knüchel R, Dahl E. BDNF is associated 
with SFRP1 expression in luminal and basal-like breast 
cancer cell lines and primary breast cancer tissues: a 
novel role in tumor suppression? PLoS One. 2014; 
9:e102558. 

 https://doi.org/10.1371/journal.pone.0102558 
PMID:25036590 

 

  

https://doi.org/10.1038/sj.onc.1209386
https://pubmed.ncbi.nlm.nih.gov/16449975
https://doi.org/10.4161/cbt.5.3.2384
https://pubmed.ncbi.nlm.nih.gov/16410723
https://doi.org/10.3892/ijo.25.3.641
https://pubmed.ncbi.nlm.nih.gov/15289865
https://doi.org/10.2217/fon-2018-0564
https://pubmed.ncbi.nlm.nih.gov/31140870
https://doi.org/10.1186/1476-4598-13-174
https://pubmed.ncbi.nlm.nih.gov/25033833
https://doi.org/10.1186/bcr2317
https://pubmed.ncbi.nlm.nih.gov/19473496
https://doi.org/10.1371/journal.pone.0102558
https://pubmed.ncbi.nlm.nih.gov/25036590


www.aging-us.com 12666 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Relationship between FMO2 and different clinical indicators in SCAN-B. (A) ER status. (B) PR status. (C) 

ER and PR status combinations. (D) HER2 status. (E) Age status. (F) PAM50 subtypes. (G) Basal-like (PAM50). (H) Triple-negative breast cancer. 
(I) Basal-like (PAM50) and triple-negative breast cancer. (J) Ki67 status. (K) Scarff Bloom and Richardson grade status. (L) Nottingham 
Prognostic Index status. 



www.aging-us.com 12667 AGING 

 
 

Supplementary Figure 2. The survival analysis of FMO2 in the gene chip data of Kaplan–Meier plotter. (A) FMO2 (206263_at) in 

PPS. (B) FMO2 (211726_s_at) in DMFS. (C) FMO2 (228268_at) in PPS. (D) FMO2 (228268_at) in DMFS. 
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Supplementary Figure 3. The survival analysis of FMO2 in TCGA of bc-GenExMiner. (A) OS analysis of N+/ER all/PR+ subgroup. (B) 

OS analysis of N+/ER+/PR all subgroup. (C) OS analysis of N+/ER+/PR+ subgroup. (D) DFS analysis of N+/ER all/PR+ subgroup. (E) DFS analysis 
of N+/ER+/PR+ analysis. (F) DFS analysis of N+/ER+/PR all analysis. (G) DFS analysis of N+/ER all/PR analysis. 
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Supplementary Figure 4. The survival analysis of FMO2 in SCAN-B of bc-GenExMiner. (A) OS analysis of N all/ER+/PR all subgroup. 
(B) OS analysis of N all/ER all/PR all subgroup. (C) OS analysis of N all/ER+/PR+ subgroup. (D) OS analysis of N-/ER+/PR all subgroup. (E) OS 
analysis of N all/ER all/PR+ subgroup. (F) OS analysis of N-/ER all/PR all subgroup. (G) OS analysis of N-/ER+/PR+ subgroup. (H) OS analysis of 
N-/ER all/PR+ subgroup. (I) DFS analysis of N all/ER+/PR all subgroup. (J) DFS analysis of N all/ER all/PR all subgroup. (K) DFS analysis of N 
all/ER+/PR+ subgroup. (L) DFS analysis of N-/ER+/PR all subgroup. (M) DFS analysis of all/ER all/PR+ subgroup. (N) DFS analysis of N-/ER all/PR 
all subgroup. (O) DFS analysis of N-/ER+/PR+ subgroup. (P) DFS analysis of N-/ER all/PR+ subgroup. 
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Supplementary Figure 5. The expression of SFRP1. (A) SFRP1 mRNA expression in pan-cancer through TNMplot. (B) SFRP1 mRNA 

expression in different breast tissues from gene chip data through TNMplot. (C) SFRP1 mRNA expression in different breast tissues from RNA 
sequences data through TNMplot. (D) SFRP1 mRNA expression in breast cancer through UALCAN. (E) SFRP1 protein expression in breast 
cancer through UALCAN. 
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Supplementary Figure 6. SFRP1 was hypermethylation in breast cancer. (A) Sample types. (B) Individual cancer stages. (C) Race. (D) 

Nodal metastasis status. (E) Tumor histology. (F) Major subclasses. (G) Menopause status. (H) TP53 mutation status. 
 

 
 

Supplementary Figure 7. SFRP1 could act as a predictive biomarker to predict therapy response. (A) Chemotherapy in 

pathological complete response. (B) Hormone therapy in pathological complete response. (C) Anti-HER2 therapy in pathological complete 
response. (D) Chemotherapy in relapse-free survival status at 5 years. (E) Hormone therapy in relapse-free survival status at 5 years. (F) Anti-
HER2 therapy in relapse-free survival status at 5 years. 
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Supplementary Tables 
 

 

Supplementary Table 1. Relationship between FMO2 and clinical parameters of breast cancer. 

Variables 

TCGA SCAN-B 

Patient 

number 

FMO2 log2 

standardized 

expression 

P 
Patient 

number 

FMO2 log2 

standardized 

expression 

P 

Nature of the tissue   < 0.0001    

Healthy 92 6.8560/ 0.7884     

Tumor-adjacent 89 6.5792/ 0.7530     

Tumor 743 2.8594/ 1.5755     

ER status   < 0.0001   < 0.0001 

ER+ 530 0.6034/1.7245  3155 -0.0411/0.9834  

ER- 187 1.3099/1.9443  323 0.2857/1.0738  

PR status   0.0106   0.0006 

PR+ 470 0.6576/1.7180  2842 -0.0337/0.9786  

PR- 243 1.0391/1.9598  503 0.1435/1.0771  

ER and PR status combinations   0.0002   < 0.0001 

ER+/PR+ 456 0.6589/1.7154  2806 -0.0382/0.9787  

ER+/PR- 71 0.2465/1.7630  212 -0.0454/1.0285  

ER-/PR+ 14 0.6162/1.8678  31 0.2993/0.9009  

ER-/PR- 171 1.3649/1.9536  291 0.2812/1.0924  

HER2 status   < 0.0001   < 0.0001 

HER2- 396 1.0139/1.7922  3050 0.0203/1.0122  

HER2+ 109 0.2601/1.6170  506 -0.1702/0.9061  

Histological types   < 0.0001    

IDC 549 0.6718/1.7653     

ILC 116 1.6604/1.5374     

IDC & ILC 23 1.0332/1.7440     

Mucinous 13 0.8664/1.5635     

Pathological tumor stage   0.0067    

I 145 0.9529/1.7012     

II 440 0.6213/1.8253     

III 152 2.5408/1.8054     

Age status   0.0005   0.0004 

≤ 51 years old 267 1.0975/1.8517  754 0.1071/0.9819  

> 51 years old 476 0.6083/1.7544  2519 -0.0390/1.0031  

PAM50 subtypes   < 0.0001   < 0.0001 

Basal-like 136 1.6678/1.9598  616 0.3294/1.0238  

HER2-E 51 0.2343/1.5514  581 -0.3446/0.7821  

Luminal A 268 1.3893/1.5733  1088 0.0291/0.8487  

Luminal B 281 -0.1737/1.4615  825 -0.6875/0.8235  

Normal breast-like 0   539 0.9795/0.7175  

Basal-like (PAM50)   < 0.0001   < 0.0001 

Non-basal-like 605 0.5807/1.7072  3033 -0.0685/0.9841  

Basal-like 136 1.6678/1.9598  616 0.3294/1.0238  

Triple-negative breast cancer   < 0.0001   < 0.0001 

Non-TNBC 578 0.5983/1.7324  3309 -0.0392/0.9805  

TNBC 87 1.6091/1.9075  206 0.3626/1.1298  

TNBC & Basal-like (PAM50)   < 0.0001   < 0.0001 

Non-basal-like & non-TNBC 552 0.5724/1.7088  2951 -0.0759/0.9824  

Basal-like & TNBC 71 1.7482/1.9278  170 0.3937/1.1218  

Ki67 status      < 0.0001 

Ki67-low    798 0.2500/0.9643  

Ki67-high    1157 -0.1350/1.0077  
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Supplementary Table 2. The top 10 correlation genes with FMO2 in breast cancer. 

Gene chip data 

Positive correlations with FMO2 Negative correlations with FMO2 

Gene symbol 
Pearson’s correlation 

coefficient 
P 

Patient 

number 
Gene symbol 

Pearson’s correlation 

coefficient 
P 

Patient 

number 

SFRP1 0.556 < 0.0001 8245 FAM136BP -0.5519 < 0.0001 53 

SAA2-SAA4 0.542 < 0.0001 481 COX7BP1 -0.4607 2.00E-04 59 

KRT16P6 0.5272 < 0.0001 381 SNORD66 -0.4563 6.00E-04 53 

LINC02613 0.5268 < 0.0001 381 SNORA2C -0.4551 6.00E-04 53 

KRT17P1 0.512 < 0.0001 381 SNORD99 -0.454 6.00E-04 53 

CHL1-AS2 0.5093 < 0.0001 381 DHX40P1 -0.4536 6.00E-04 53 

KRT16P2 0.5071 < 0.0001 564 COMMD3-BMI1 -0.4369 < 0.0001 100 

CRYAB 0.5059 < 0.0001 8245 FAM138B -0.4124 < 0.0001 171 

SPECC1L-ADORA2A 0.5045 < 0.0001 139 SNORD3A -0.407 0.0025 53 

CHRDL1 0.503 < 0.0001 7950 ELOCP2 -0.4039 < 0.0001 100 

RNA-sequence data 

Positive correlations with FMO2 Negative correlations with FMO2 

Gene symbol 
Pearson’s correlation 

coefficient 
P 

Patient 

number 
Gene symbol 

Pearson’s correlation 

coefficient 
P 

Patient 

number 

CHRDL1 0.6938 < 0.0001 4421 PAFAH1B3 -0.4036 < 0.0001 4421 

SFRP1 0.6843 < 0.0001 4421     

IL33 0.6767 < 0.0001 4421     

TSHZ2 0.6742 < 0.0001 4421     

FREM1 0.6739 < 0.0001 4421     

ABCA6 0.6692 < 0.0001 4421     

BOC 0.6672 < 0.0001 4421     

LINC01140 0.6619 < 0.0001 4016     

ABCA8 0.6614 < 0.0001 4421     

ABCA9 0.6588 < 0.0001 4421     

 

Scarff Bloom & Richardson grade 

status 
     < 0.0001 

SBR1    544 0.3039/0.9245  

SBR2    1699 0.0600/0.9757  

SBR3    1374 -0.2030/1.0229  

Nottingham Prognostic Index status      < 0.0001 

NPI1    1173 0.1569/0.9412  

NPI2    1525 -0.0777/1.0473  

NPI3    416 -0.2154/0.9407  


