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INTRODUCTION 
 

It is estimated that about 90% of human pre-mRNA 

undergo alternative splicing events [1, 2]. However, the 

abnormal regulation of RNA alternative splicing is a 

crucial process in carcinogenesis [3]. RNA alternative 

splicing regulators play essential roles in this process 

and can act as oncogenes, leading to cancer progression 

and metastasis by producing some RNA subtypes in key 

oncogenic pathways [4–6]. 

 

Serine/arginine-rich splicing factors (SRSFs) are 

important splicing regulators [7], usually consisting  

of 12 members (SRSF1-12), which play pivotal roles  

in mRNA’s turnover, output, and various post-

transcriptional regulation of other splices [8]. 

Dysregulation of SRSFs expression is closely related to 

carcinogenesis. It can lead to the change of alternative 

splicing patterns of essential genes [3, 9, 10]; On the 

other hand, it can also significantly disrupt genomic 

stability, resulting in abnormal biological function [11, 

12]. However, a global and comprehensive pattern to 

elaborate the molecular characteristics, mechanisms, 

and clinical links of SRSFs in multiple human cancer 

is still lacking. Here, we attempted to systematically 

uncover the molecular features and clinical impli-

cations of SRSFs from various levels, including 

genome (somatic mutation, copy number alteration), 

mRNA expression, transcriptional regulation (DNA 

methylation, N6-methyladenosine (m6A) modification, 
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ABSTRACT 
 

As critical splicing regulators, serine/arginine-rich splicing factors (SRSFs) play pivotal roles in 
carcinogenesis. As dysregulation of SRSFs may confer potential cancer risks, targeting SRSFs could provide 
important insights into cancer therapy. However, a global and comprehensive pattern to elaborate the 
molecular characteristics, mechanisms, and clinical links of SRSFs in a wide variety of human cancer is still 
lacking. In this study, a systematic analysis was conducted to reveal the molecular characteristics and 
clinical implications of SRSFs covering more than 10000 tumour samples of 33 human cancer types. We 
found that SRSFs experienced prevalent genomic alterations and expression perturbations in multiple 
cancer types. The DNA methylation, m6A modification, and miRNA regulation of SRSFs were all cancer 
context-dependent. Importantly, we found that SRSFs were strongly associated with cancer immunity, and 
were capable of predicting response to immunotherapy. And SRSFs had colossal potential for predicting 
survival in multiple cancer types, including those that have received immunotherapy. Moreover, we also 
found that SRSFs could indicate the drug sensitivity of targeted therapy and chemotherapy. Our research 
highlights the significance of SRSFs in cancer occurrence and development, and provides sufficient resources 
for understanding the biological characteristics of SRSFs, offering a new and unique perspective for 
developing cancer therapeutic strategies. 
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miRNA), immune links, survival prediction and drug 

sensitivity, in more than 10000 patients across 33 

cancer types. Our comprehensive analysis highlights 

the pivotal roles of SRSFs in cancer occurrence and 

development. This study provides rich resources for 

understanding the biological characteristics of SRSFs, 

offering a new and unique perspective for developing 

cancer therapeutic strategies based on RNA alternative 

splicing. The flowchart and important findings of this 

study were showed in Figure 1. 

 

MATERIALS AND METHODS 
 

Genomic, transcriptomic data acquisition and 

analysis 

 

Somatic mutation data and TCGA threshold SCNA 

scores from 33 human cancer types were obtained from 

the Genomic Data Commons (https://gdc.cancer.gov/) 

and processed as previously described [13–16]. Our 

study defined copy number variation (CNV) ampli-

fication and deletion in the same way, as described  

by Knijnenburg et al. [17]. The frequency of genomic 

alterations (including mutation and SCNA) of specific 

genes in pan-cancer were shown as heatmaps. We also 

obtained the relevant data for genomic instability 

scores, including the mutation burden, the aneuploidy 

score, the SCNA burden, loss of heterozygosity (LOH) 

score and homologous recombination deficiency (HRD) 

score from the study of Knijnenburg et al. [17], and 

defined these scores as previously described [15, 17]. 

Additionally, we obtained the batch effects-corrected 

TCGA mRNA data (FPKM-based gene expression) 

and clinical information (including the survival status 

and survival time) for patients across 33 cancer types 

from TCGA Genomic Data Commons. 

 

Differential expression analysis and unsupervised 

consensus clustering 

 

19 cancer types, with at least 3 matched  

tumours and normal samples, were selected out of  

33 cancer types for differential expression analysis.  

Differentially expressed genes (DEGs) were identified by  

Wilcox’s rank sum test, and the p-values were adjust- 

ted by BH method. We defined the DEGs as those  

whose expression differences were associated with  

adjusted p-values < 0.05. Additionally, unsupervised  

consensus clustering was performed to identify distinct  

patient clusters based on SRSFs mRNA expression  

in all tumor samples across 33 cancer types. The 

“ConsensuClusterPlus” R package [18] was used to 

carry out the steps above. To guarantee classification 

stability, 1000-time repetitions were conducted. 

 

DNA methylation, m6A modification and miRNA 

analysis 

 

DNA methylation data files across 33 cancer types 

were retrieved from the Genomic Data Commons. We 

 

 
 

Figure 1. Workflow chart of this study. 

https://gdc.cancer.gov/
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processed this data as previously described [15].  

We calculated median beta value of these 12 SRSFs  

in each sample for better assessment of their overall 

methylation levels. Subsequently, Pearson correlation 

analysis between DNA methylation beta values and 

mRNA expression values for each SRSF was conducted 

for deeper investigation of the regulation of SRSFs 

expression by DNA methylation (| Cor |> 0 and P-

value < 0.05 was set as the threshold). Also, 23  

m6A regulators (including 13 readers, 8 writers and  

2 erasers) were collected from previously published 

papers [19–21]. As the most common type of RNA 

modification, m6A plays an essential role in the occur-

rence and development of tumors [22]. We investigated 

the Pearson correlation coefficients between m6A 

regulators and SRSFs in 33 cancer types to further 

investigate the regulation of SRSFs expression by 

m6A methylation. Additionally, normalized miRNA 

expression data were downloaded from the Genomic 

Data Commons. We calculated the Pearson correlation 

coefficients between miRNAs and SRSFs in 33 cancer 

types to further investigate the regulation of SRSFs 

expression by miRNA. We also screened the preliminary 

results, as in the method of Luo et al. [15]. By setting 

the more stringent criteria, we further filtered the 

miRNAs acting with these SRSFs. The specific criteria 

were as follows: 1) |Pearson correlation coefficient| ≥ 

0.25 and p < 0.05; 2) In at least one-third of all cancer 

types (at least ten cancer types), this miRNA acts  

on the same SRSF. This miRNA-mRNA interaction 

network was displayed using Cytoscape v3.9.0. The 

interrelationship between miRNAs and SRSFs in 

specific cancer types was also shown in a heatmap. 

 
Biological pathway activity across cancer types 

 
FPKM-based gene expression was converted into  

Z-score using the “zFPKM” R package [23] for 

assessing the activity of 50 hallmark pathways. Gene 

Set Variation Analysis (GSVA) was performed [24]. 

In addition, Pearson correlation coefficients between 

mRNA expression of SRSFs and pathway activity 

were calculated to identify the SRSFs related to 

pathway activation or inhibition. And SRSF-pathway 

pairs were identified by the criterion we set (|Pearson 

correlation coefficient| ≥ 0.20 and p < 0.05). Genes  

do not function independently. To infer the overall 

SRSFs activity, “SRSFscore” was calculated based on 

12 SRSFs mRNA expression within each cancer type 

as previously described [15, 25, 26]. Identification of 

biological pathways associated with the SRSFscore 

was also performed in the same way as in Luo et al. 

[15]. Here, we reported only pathways that showed 

consistent significant correlations (q-value < 0.05) in 

at least 10 cancer types. 

Immune correlation analysis 

 
The Xcell algorithm [27] was used to quantify the 

infiltrating abundance of immune cell and tumor 

microenvironment scores for all tumor samples.  

We obtained a list of immunomodulators that are 

crucial in immunotherapy from previous publications 

[14]. To investigate the interconnection between cancer 

immunity and SRSFs, we examined the Pearson 

correlation coefficients between mRNA expression of 

immunomodulators or abundance of immune cells and 

the SRSFscore across 33 cancer types. Additionally,  

in order to explore the association between SRSFscore 

and the effect of immunotherapy as well as prog- 

nosis in patients receiving anti-PD-1 or anti-CTLA4 

treatment, we further obtained the transcriptome data 

before immunotherapy and clinical information from 

two cancer immunotherapy cohorts [28, 29]. In our 

study, responders to immunotherapy included the 

patients with complete and partial remission (CR/ 

PR), while non-responders included the patients with 

stable disease (SD) and progressive disease (PD). 

Wilcox’s rank sum test was applied to compare the 

SRSFscore between the two groups (responders and 

non-responders). 

 
Survival analysis 

 
TCGA pan-cancer clinical data were down- 

loaded from Genomic Data Commons. We used  

the “maxstat” R package to determine the best cut 

point for the SRSFscore, and divided the patients  

into high and low SRSFscore groups. Probability  

of overall survival was estimated by the Kaplan- 

Meier method, with differences between two  

groups tested using the log-rank test. Using the 

“survival” R package, we also performed Cox 

regression analysis to test the association between 

SRSFs expression and survival. Moreover, to validate 

the potential of SRSFscore in pan-cancer survival 

prediction, from the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/), we also down-

loaded gene expression data and corresponding clinical 

information for 9 gene chips (GSE14520 [30, 31], 

GSE15459 [32–34], GSE23554 [35], GSE30219 [36], 

GSE31210 [37, 38], GSE40967 [39], GSE50081 [40], 

GSE57303 [41], GSE72094 [42]) including 5 cancer 

types (OV, LUAD, LIHC, STAD and COAD) (Table 

1). According to the corresponding annotation files,  

we converted the probes to gene symbols. For genes 

with multiple probe set signals, their values were 

averaged to generate a single expression value. In each 

independent dataset, we calculated the SRSFscore  

for each sample in the same way and investigated  

its relationship with the prognosis. 

https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Information on the nine GEO datasets included 
in this study. 

Datasets Cancer types No. of patients Platforms 

GSE14520 LIHC N = 21 GPL571 

GSE15459 STAD N = 192 GPL570 

GSE23554 OV N = 28 GPL96 

GSE30219 LUAD N = 85 GPL570 

GSE31210 LUAD N = 226 GPL570 

GSE40967 COAD N = 556 GPL570 

GSE50081 LUAD N = 127 GPL570 

GSE57303 STAD N = 70 GPL570 

GSE72094 LUAD N = 398 GPL15048 

 

CellMiner analysis 

 

We downloaded the RNA data (RNA: RNA-seq)  

of 22379 genes identified in NCI-60 cell lines and  

the related data of 20503 compounds analyzed 

(compound activity: DTP NCI-60) from CellMiner 

(https://discover.nci.nih.gov/cellminer/home.do) [43]. 

We investigated the Pearson correlation coefficients 

between Z scores of clinical trials and FDA-approved 

drugs and mRNA expression values for each SRSF. 

We reported drug-SRSF pairs showing significant 

correlation (|Pearson correlation coefficient| ≥ 0.3 and 

P-value < 0.01). 

 

Statistical analysis 

 

All of the analyses were performed in the R 3.6.3 

software. A P-value < 0.05 was considered statistically 

different. 

 

Data availability 

 

The datasets generated and analysed during the current 

study are available in the TCGA GDC repository, 

(https://portal.gdc.cancer.gov), GEO repository, (https:// 

www.ncbi.nlm.nih.gov/geo/), and CellMiner repository, 

(https://discover.nci.nih.gov/cellminer/home.do). 

 

 

RESULTS 
 

SRSFs experienced prevalent genomic alterations and 

expression perturbations in multiple cancer types 

 

As previously described [44], genomic alteration was 

defined as somatic mutations and SCNA (amplification 

and deep deletion). We first determined the overall 

genomic alteration level of SRSFs in human cancer. 

The frequencies were very low, only between 1% and 

4% (Figure 2A). Among the 12 SRSFs, SRSF2 and 

SRSF6 displayed the highest alterations (4%), mostly 

from CNV amplification. While SRSF5, SRSF9 and 

SRSF10 were in the opposite situations (Figure 2A). 

SCNA counted for the majority of genomic alterations. 

Thus, we speculated that at the genomic level, it was 

SCNA, especially CNV amplification, but not mutation, 

which was the major cause of SRSFs dysregulation in 

cancer. 

 
From an in-depth exploration of the genomic alteration 

pattern across 33 cancer types, we observed a low 

overall average mutation frequency of SRSFs from  

0 - 7.53%. Uterine Corpus Endometrial Carcinoma 

(UCEC), with a higher global mutation burden [45], 

presented higher mutation frequencies in all 12  

SRSFs, while Testicular Germ Cell Tumors (TGCT) 

and Pheochromocytoma and Paraganglioma (PCPG) 

lacked any mutation (Figure 2B). SRSF10 was slightly 

mutated (0.75%) only in UCEC, but not in other 

cancer types. Analogously, in LAMA, only SRSF2 

experienced somatic mutation (2.14%). We noted that 

individual SRSF exhibited a cancer-type-dependent 

CNV amplification or deep deletion pattern (Figure 

2C, 2D). For example, SRSF1 and SRSF2 presented 

relatively higher CNV amplification in the vast majority 

of cancer types, with the lack of deep deletion. SRSF12 

showed higher deep deletion in DLBC (10.64%) and 

PRAD (13.96%) (Figure 2D). Interestingly, among 

these SRSFs, SRSF6 displayed higher amplification  

in digestive tract tumors, such as ESCA (5.52%), 

STAD (8.77%), COAD (12.15%) and READ (19.57%) 

(Figure 2C). 

 
A thought-provoking question is whether these  

DNA alterations influence the expression of SRSFs. 

Thus, we investigated the expression perturbations  

of 12 SRSFs across 19 selected cancer types (Figure 

3A). As expected, the SRSFs with CNV amplification 

displayed significantly higher expression in tumor 

tissues compared to normal ones (e.g., SRSF1, SRSF2, 

https://discover.nci.nih.gov/cellminer/home.do
https://portal.gdc.cancer.gov/
https://discover.nci.nih.gov/cellminer/home.do
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SRSF3, and SRSF6). In addition, we also noticed  

that despite CNV amplification or deep deletion in 

some SRSFs, there was no corresponding increase  

or decrease in mRNA expression level. For example, 

SRSF12 displayed CNV deep deletion in LIHC, LUAD, 

and PRAD; however, showing higher expression  

in cancer tissues. It is not unique, for example, the  

CNV alteration of SRSF10 in CHOL and its mRNA 

expression was also not synergistic (Figures 2D,  

3A). We admit that gene expression is profoundly 

affected by CNV amplification and deletion [46].  

Our findings suggested that specific to individual 

cancer types or genes, this relationship may not be 

fully established. We therefore believe that the CNV 

alterations are only one of the mechanisms, but not 

only, leading to expression perturbations of SRSFs. 

Taken together, the results demonstrate a picture of 

highly heterogeneous genetic and expression alteration 

of SRSFs across cancer types, suggesting that SRSFs 

dysregulation plays a significant role in different 

cancer contexts. 

 

Cluster analysis based on the pan-cancer SRSFs 

expression profiles identified two patient subgroups 

with significant genomic heterogeneity 

 

To gain an insight into the integrated landscape of 

SRSFs expression, an unsupervised consensus clustering 

of all tumor samples from TCGA was performed, with 

the global expression pattern of SRSFs as the basis. Two 

 

 

 

Figure 2. The genomic alterations of SRSFs in human cancer. (A) Genomic alterations [non-silent mutation and SCNA] landscape in 
the SRSFs in 33 cancer types. (B) Distribution of mutation frequencies across cancer types. (C, D) Distribution of SCNA (C: CNV amplification; 
D: CNV deep deletion) frequencies across cancer types. The darkness of color is proportional to the frequency. 
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Figure 3. Expression pattern of SRSFs and their association with genome instability in human cancer. (A) Heatmap 
demonstrating differential expression of SRSFs between tumor and normal tissue. (B) Unsupervised consensus clustering based on SRSFs 
mRNA expression identifies two distinct patient clusters. (C) Sample distribution across 33 cancer types in the two patient clusters. The values 
represent the proportion of the two clusters in the different cancer types. (D–H) Differences in five scores (D, mutation burden; E, SCNA 
burden; F, aneuploidy scores; G, LOH; H, HRD) representing genome instability between the two clusters. The differences between the two 
clusters were tested by Wilcox’s rank sum test. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 
0.0001). 
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distinct patient clusters were eventually identified, 

including 4079 cases in cluster A and 6248 cases in 

cluster B, with cluster B displaying a higher expression 

of all 12 SRSFs (Figure 3B). Further investigating the 

distribution of cancer types in the two clusters, we found 

that ACC, three hepatobiliary and pancreatic tumors 

(CHOL, LIHC and PAAD), two upper digestive tract 

tumors (ESCA, and STAD), HNSC, PCPG, and three 

kidney cancers (KICH, KIRC, KIRP) largely located in 

cluster A, whereas two lower digestive tract tumors 

(COAD, and READ), BLCA, BRCA, two lung cancers 

(LUAD and LUSC), three female reproductive system 

tumors (OV, UCEC, and UCS), TGCT, THYM and  

so on predominately resided in cluster B (Figure 3C). 

The results indicated there is a dysregulated expression 

profile of SRSFs in a cancer-type dependent manner. 

 

Previous studies [47–50] have reported that SRSFs not 

only regulated RNA splicing, but also played important 

roles in transcriptional regulation. The co-transcriptional 

complex of SRSFs contributed to genomic stability, 

while abnormal expression of SRSFs might impair  

DNA stability [51]. So, we further assessed the genomic 

instability in the two clusters. Mutation and SCNA 

levels were used to characterize the genomic instability 

as previously described [17]. We used some scores, 

including mutation burden, SCNA burden, aneuploidy, 

LOH and HRD, to display the global mutations and 

SCNA levels [15]. We observed that cluster B, with 

higher expression of SRSFs, presented higher levels of 

all these scores reflecting genome instability (Figure 

3D–3H). Genomic instability leads to abnormal expres-

sion of genes [52], which in turn contributes to genomic 

instability. Our finding indicated that this phenomenon 

might occur more in the cancer types of cluster B. 

 

DNA methylation, m6A modification and miRNAs 

regulate SRSFs expression in a cancer-type dependent 

manner 

 

DNA methylation has long been recognized as an 

epigenetic determinant of gene expression [53–55],  

and DNA hypermethylation in promoter regions can 

lead to the downregulation of gene expression and  

gene silencing [56–58]. However, this relationship  

is not universal, at least in some special cases [59, 60]. 

An interesting question is worth exploring: how does 

DNA methylation affect the mRNA expression of SRSFs 

in human pan-cancer? To evaluate the relationships 

between SRSFs mRNA expression and DNA methy-

lation levels, we investigated the correlation between 12 

SRSFs expression and overall methylation levels in 

each cancer type. Our findings suggested that DNA 
methylation levels of SRSFs were negatively correlated 

with gene expression in most cancer types. However, 

when specific to certain cancer types or genes, this 

negative correlation did not hold, such as SRSF1 in 

LUSC and KICH; SRSF4 in TGCT, and SRSF5 in 

LAML and MESO (p < 0.05, Figure 4A). 

 

m6A, as the most common internal modification of 

RNA, can affect various RNA biological processes [61, 

62]. Previous studies [63–67] have reported that m6A 

regulators were extensively involved in RNA splicing 

process and interacted with splicing factors involved in 

the regulation of the splicing process, thereby affecting 

the expression level of many RNAs. To obtain a global 

picture of the association between m6A regulators and 

SRSFs in different cancer contexts, we performed a 

Pearson correlation analysis across 33 cancer types 

(Supplementary Table 1). Surprisingly, we noticed that 

in any cancer type, m6A regulators belonging to three 

different functional classifications (readers, writers, and 

erasers) presented highly correlated expression patterns 

with SRSFs, and this correlation was dominated by 

positive regulation. Moreover, we found that these 23 

m6A regulators interacted with SRSFs frequently in 

protein-protein interaction networks (Figure 4B), which 

once again confirmed the close association of m6A 

modification with the expression of SRSFs. Our study 

further extended the perception of m6A-SRSF pairs.  

For example, a previous study [68] has confirmed that 

FTO controls mRNA splicing by modulating the RNA-

binding capacity of SRSF2. However, the direction  

of this regulation (positive or negative) has not been 

established in a wide range of cancer types. Our findings 

showed that FTO was somewhat linked, either positively 

or negatively associated with SRSF2 in 19 cancer types. 

The same m6A-SRSF pair displayed completely opposite 

regulation directions in different cancer types, suggesting 

that m6A modification of SRSFs was cancer-type-

dependent. 

 

Massive reports [69–71] have demonstrated that 

miRNA was involved in gene expression regulation. 

Previous studies [72, 73] have piecemeally reported 

expression regulation patterns between miRNAs  

and SRSFs. To gain a more comprehensive under-

standing of the miRNA regulatory network of SRSFs, 

we identified all miRNAs with the potential to bind  

to SRSFs through strict screening criteria. From  

the overall distribution, we found that the same 

miRNA-SRSF pair had completely opposite regulation 

directions in different cancer types. For example,  

miR-101-3p and SRSF10 were negatively correlated  

in ACC, DLBC, LGG, LIHC and STAD, while  

they showed positive correlations in COAD, HNSC, 

KIRC, LUSC, OV, PAAD, TGCT, and THCA 

(Supplementary Table 2). Moreover, as we expected, 
the same miRNA could act with multiple different 

SRSFs, while different miRNAs could also act on the 

same SRSF. This phenomenon also corroborated the 
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findings of Mahony et al. [74]. Through more stringent 

criteria (described in the Materials and Methods 

section) for further filtering miRNAs targeting SRSFs, 

we finally identified 11 miRNA-SRSF pairs (Figure 

4C). These miRNA-SRSF pairs also displayed different 

correlation strengths and directions in different cancer 

context (Supplementary Table 3). For example, the 

miR-107-SRSF1 pair showed positive correlations in 

female reproductive system cancers (OV, UCEC and 

UCS) and upper digestive tract cancers (ESCA and 

STAD), while presenting negative correlation in KIRP 

and LGG (Figure 4C). Taken together, these results 

indicated that miRNA could regulate the expression of 

SRSFs, and whether this regulation was positive or 

negative depended on the cancer context. 

 

SRSFs associated oncogenic pathways 

 

Given that previous studies [75, 76] have sporadic-

cally mentioned the involvement of SRSFs in cancer 

occurrence and progression, however lacking  

specific molecular mechanism to elucidate how SRSFs 

affect cancer from a global view, we investigated the 

relationship of individual SRSFs as well as overall 

SRSFs with the activity of 50 hallmark pathways 

across 33 cancer types. We noted that each SRSF was 

associated with multiple pathways, some with pathway 

activation and some with pathway inhibition (Figure 

5A and Supplementary Table 4). The expressions of 

SRSF2, SRSF7, SRSF1 and SRSF3 were correlated  

to more activated pathways, such as the E2F targets, 

G2M checkpoint, MYC targets V1 and Hedgehog 

signalling. In particular, we observed that the SRSF2 

was associated with most pathway activation (in  

10/50 pathways) or inhibition (in 17/50 pathways), 

while SRSF5 was the opposite (Figure 5B). Our above 

findings suggested that DNA methylation, m6A 

modification and miRNA regulation of SRSFs were 

cancer-type-dependent. Therefore, we further explored 

the association of SRSFs expression with oncogenic 

 

 
 

Figure 4. DNA methylation, m6A modification and miRNA regulations of SRSFs. (A) Heatmap demonstrating the correlation 

between DNA methylation level within promoters and SRSFs mRNA expression in each cancer type. (B) m6A-SRSFs protein-protein 
interaction network showing m6A regulators interacted with SRSFs frequently. (C) miRNA–SRSF interaction network and heatmap 
demonstrating miRNA-SRSF pairs displayed different correlation directions in different cancer contexts. Red represents a positive 
correlation, and green represents a negative correlation. 
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Figure 5. SRSFs associated oncogenic pathways and immune links. (A) SRSFs and hallmark pathways interaction network. Red and 

blue marks represent positive and negative correlation respectively. Node sizes correspond to the link numbers. (B) The count of hallmark 
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pathways is related to individual SRSFs. (C) Heatmap demonstrating normalized enrichment score of significant pathways. We reported 
pathways that showed consistent significant correlations (q-value < 0.05) in at least 10 cancer types. (D) Barplots presenting number of 
cancer types which are negative and positive correlations between SRSFs and significant pathways. (E) Heatmap demonstrating Pearson 
correlation coefficient between SRSFscore and immunomodulator mRNA expression in each cancer type. Unsupervised clustering identified 
three subgroups with different correlations, including positive-, intermediate-, and negative-groups. (F) Differences in SRSFscore between the 
responder (CR/PR) and non-responder (SD/PD) groups. Left, in metastatic urothelial carcinoma; Right, in advanced melanoma. The 
differences between the two groups were tested by Wilcox’s rank sum test. (G) Kaplan-Meier survival curves showing the differences in 
overall survival between high and low SRSFscore patients. Left, in metastatic urothelial carcinoma; Right, in advanced melanoma. Statistical 
significance was assessed by log-rank test. 

 

pathway activity in different cancer types. As ex- 

pected, we observed that whether SRSFs inhibited or 

activated the carcinogenic pathway was closely related 

to different cancer contexts (Supplementary Table 5).  

For example, SRSF2 expression was associated with 

pathway inhibition of DNA repair in MESO and SKCM, 

but the opposite was observed in LUAD, LUSC,  

as well as STAD. In addition, we also noted that  

SRSFs expression was correlated with the activation  

or inhibition of multiple immune-related pathways in 

different cancer types, such as interferon alpha response, 

interferon gamma response, Il-6/JAK/STST3 signaling 

and so on. 

 

Previous studies [77, 78] have pointed out that genes 

functioned in concert, not in isolation. SRSFs, as the 

same gene family, share the same or similar functional 

properties. They may function more in a genetically 

synergistic manner. This was indirectly confirmed by 

SRSFs expression correlation analysis (Supplementary 

Figure 1) and protein-protein interaction network 

(Figure 4B). Therefore, we took SRSFs expression as  

a whole and further evaluated the relationship between 

overall SRSFs expression and oncogenic pathway 

activity. Here, “SRSFscore” was used to represent  

the estimated level of overall SRSFs expression as 

previously described [15, 25, 26]. From the results  

of GSEA analysis, we observed that through strict 

screening criteria, SRSFs had positive or negative 

correlation pathways in different cancer types (Figure 

5C, 5D). We noted that E2F targets and G2M check-

points were associated with SRSFs in 32 cancer types, 

with positive associations appearing in 20 cancer types 

and negative associations in 12 cancer types. This 

suggested that SRSFs played critical roles in regulating 

cell cycle and proliferation. Moreover, in different 

cancer types, the correlation between SRSFs and  

the same pathway also showed completely opposite 

directions (Figure 5D). For example, DNA repair was 

negatively correlated with SRSFs in LAML, but 

positively correlated with SRSFs in other cancer types 

(ACC, BLCA, BRCA, COAD, ESCA, GBM, HNSC, 

KICH, LGG, LIHC, LUSC, OV, PAAD, SARC, STAD, 

TGCT and UCEC), which again indicated that whether 

SRSFs inhibited or activated the carcinogenic pathway 

depended on cancer contexts. 

SRSFs are associated with cancer immunity 

 

In recent years, the close relationship between cancer 

and immunity has gradually been deeply recognized 

[79–81]. Given the widespread genomic alterations  

and expression disturbances of SRSFs in various types 

of cancers and their close associations with multiple 

oncogenic pathways (especially immune-related path-

ways), we were interested in further investigating the 

potential links between SRSFs and cancer immunity. 

Xcell analysis revealed that SRSFs were significantly 

associated with the infiltration abundance of multiple 

immune or stromal cells in various cancer types 

(Supplementary Figure 2). We observed that CD8 + T 

cell infiltration abundance was negatively correlated 

with SRSFs expression in OV and UCEC, but positively 

correlated in BRCA, CHOL, COAD, KICH, KIRC, 

LIHC, LUSC, PAAD, PRAD, THYM, and UVM. A 

similar situation was also seen in most other cells (e.g., 

myeloid dendritic cell, endothelial cell, eosinophil, 

cancer associated fibroblast, etc.). This indicated a large 

heterogeneous association pattern between SRSFs and 

immunity in different cancer types. Additionally, we 

also examined the correlation between SRSFscore and 

some immunomodulators that are crucial in immuno-

therapy [14]. Our results suggested that SRSFs were 

negatively correlated with some common immune 

checkpoints (LAG3, CD274, CTLA4, TIGIT, PDCD1) 

in UCS, THYM, OV, CESC and BLCA, while positively 

correlated in UVM, STAD, PAAD, MESO, LUAD, 

LIHC, KIRC, KICH, HNSC, CHOL and BRCA (Figure 

5E). Based on the correlation pattern between SRSFscore 

and immunomodulators, we clustered cancer types  

into three subgroups with different correlations, 

including positive-, intermediate-, and negative- groups. 

Interestingly, three female reproductive system tumors 

(OV, UCS and UCEC) were in the negative group, 

while two renal carcinomas (KICH and KIRC) and 

three cancer types from the hepatobiliary and pancreatic 

system (LIHC, CHOL, PAAD) were in the positive 

group. Strikingly, HMGB1 was found consistently 

positively correlated with the SRSFscore in all cancer 

types (Figure 5E). 

 

Given that we identified the close link between SRSFs 

and cancer immunity, we therefore sought to further 
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explore the potential impact of SRSFs on cancer 

immunotherapy. We obtained pre-immunotherapy gene 

expression data and clinical information from two 

cancer immunotherapy cohorts [28, 29] with relatively 

large sample sizes. According to tumor responses  

to immunotherapy, we classified the patients into 

responder (CR/PR) and non-responder (SD/PD) groups, 

and compared the differences in SRSFscore between 

the two groups. We found that high SRSFscore was 

associated with better immunotherapy efficacy in 

metastatic urothelial carcinoma cohort. But in advanced 

melanoma, we did not observe this (Figure 5F). We 

believed that the predictive value of SRSFscore as a 

hint of immunotherapy response might be influenced 

by different cancer contexts, as described above. 

Additionally, whether SRSFscore could indicate the 

prognostic risk of patients receiving immunotherapy 

was also worth exploring. Our results showed that  

high SRSFscore was associated with better prognosis 

in the two immunotherapy cohorts (Figure 5G), which 

further suggested the close relationship between SRSFs 

and cancer immunity. 

 

SRSFs displays the potential to predict survival 

 

Above investigations identified the close association of 

SRSFs to cancer, so it was necessary to further deter-

mine the relationship between SRSFs and the survival  

of cancer patients. According to SRSFs expression  

level determined by rank statistics selected maximally, 

patients were divided into two groups to achieve a 

predictive value of SRSFs in survival [15]. Differences 

in survival between two groups were tested using  

the log-rank test. We observed that SRSFscore was 

significantly linked to patient survival in 21 cancer types 

(Figure 6A, 6B). Moreover, high SRSFscore could also 

indicate better survival in both metastatic urothelial 

carcinoma and advanced melanoma (Figure 5G). In 

 

 
 

Figure 6. SRSFscore displayed the potential to predict survival in 21 cancer types. (A) Kaplan-Meier survival curves showing high 
SRSFscore is associated with worse survival in eight cancer types. (B) Kaplan-Meier survival curves showing high SRSFscore is related to better 
survival in thirteen cancer types. Differences in survival between two groups were tested using the log-rank test. (C) Bubble diagram showing 
the Cox regression correlation of SRSFs and survival. The diagram only displayed significant dots with P-value <0.05. 
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ACC, HNSC, KICH, KIRC, LGG, LIHC, PRAD and 

SARC, high SRSFscore was associated with poor 

prognosis (Figure 6A), while SRSFscore was considered 

as a favorable prognostic factor in BLCA, CESC, 

COAD, LUAD, LUSC, MESO, PAAD, READ, SKCM, 

THYM, GBM, OV and STAD (Figure 6B). We also 

performed survival analysis on nine independent data 

cohorts from Gene Expression Omnibus involving five 

cancer types. The results again confirmed that high 

SRSFscore was associated with better survival of OV, 

LUAD, STAD and COAD, suggesting that SRSFs might 

be a key protective factor for OV, LUAD, STAD and 

COAD. Conversely, high SRSFscore was associated with 

poor prognosis of LIHC, suggesting that SRSF might be 

a risk factor in LIHC (Supplementary Figure 3). 

 
In order to further investigated the contribution of each 

SRSF to the survival prediction value of SRSFscore, 

Cox regression analysis was performed on all 12 SRSFs 

and combined SRSFscore (Figure 6C). We observed 

that in ACC, KICH, LIHC, PRAD, and SARC, most 

SRSFs and SRSFscore showed consistent tendency 

toward worse survival. In the same cancer type, these 

12 SRSFs did not all display direction-consistent prog-

nostic risk. For example, in KIRC, SRSF1, SRSF2, 

SRSF4, SRSF7, SRSF9, SRSF11 were prognostic risk 

factors, while SRSF3 and SRSF8 were prognostic 

friendly factors. Similar cases were also seen in BLAC, 

KIRP, LAML, LGG, LUAD, and UCEC. In particular, 

for ACC, 11 of 12 SRSFs and SRSFscore; For LIHC, 

10 of 12 SRSFs and SRSFscore; For SARC, 9 of  

12 SRSFs and SRSFscore were all predictive of worse 

survival. Collectively, these findings suggested that 

SRSFs or SRSFscore had the potential to predict 

survival in certain cancer contexts. 

 
CellMiner analysis reveals the association of SRSFs 

to drug sensitivity 

 

A growing number of studies [82–84] have suggested 

that genomic and expression alterations played essential 

roles in drug responsiveness. Our study observed wide-

spread genomic alterations and expression perturbations 

of SRSFs across cancer types. To further investigate  

the role of SRSFs on chemotherapy or targeted therapy, 

we performed drug sensitivity analysis, and calculated 

the Pearson correlation coefficients between Z scores  

of clinical trials and FDA-approved drugs and mRNA 

expression values for each SRSF. Through stringent 

screening criteria (|Pearson correlation coefficient| ≥  

0.3 and P-value < 0.01), we found 27 compounds, of 

which the sensitivity of 5 drugs (Dasatinib, Everolimus, 

Pazopanib, AP-26113 and Okadaic acid) was negatively 

correlated with gene expression and 22 drugs were 

positively correlated (Figure 7). Among these drugs, we 

found that 4 DNA synthesis inhibitors (Oxaliplatin, 

Nelarabine, Cytarabine and Hydroxyurea) were 

positively correlated with SRSFs expression, among 

which Nelarabine was positively correlated with 11 

individual SRSFs, suggesting that the high expression 

of SRSFs might inhibit the sensitivity of tumor cells  

to DNA synthesis inhibitors. In contrast, overexpression 

of SRSFs (SRSF5 and SRSF8) might enhance the 

sensitivity of tumor to Src/ABL, mTOR1, and protein 

phosphatase inhibitors. These results suggested that  

the abnormal expression of SRSFs might mediate the 

resistance of tumor tissues to chemotherapy or targeted 

drug therapy. 

 

DISCUSSION 
 

A growing number of studies [11, 12, 75, 76] have 

reported the important roles of SRSFs in tumorigenesis 

and progression. However, existing research on SRSFs 

mainly focus on single SRSFs or individual tumor 

types, which raises some interesting questions remained 

unsolved. For example, do SRSFs share common regu-

latory targets or molecular alteration characteristics in 

different cancer contexts? Is the regulatory mechanism 

similar for all these targets? Do diverse SRSFs share 

similar oncogenic pathways within the same cancer 

type? To clarify these doubts, it is particularly important 

to depict a global landscape of SRSFs in pan-cancer 

from multiple perspectives. 

 

In this study, we performed a systematic characterization 

of SRSFs in over 10000 samples across 33 cancer  

types. Our results not only revealed diverse molecular 

characteristics and potential mechanisms of SRSFs in 

different cancer contexts, but also uncovered common 

SRSFs related oncogenic pathways, thus depicting a 

global landscape of SRSFs regulation in human pan-

cancer. 

 

In the genomics analysis, we observed widespread 

genomic alterations of SRSFs in multiple cancer types. 

SCNA, especially CNV amplification, accounted for  

a very large proportion of DNA alterations. Thus, we 

speculated that at the genomic level, it was SCNA, 

especially CNV amplification, but not mutation, which 

was the major cause of SRSFs dysregulation in  

cancer. Unlike the previous description by Luo et al. 

[15] that gene CNV was significantly associated with 

expression, we found that not all SRSFs expression 

changed with CNV amplification or deletion. For 

example, SRSF12 presented CNV deep deletion in 

LIHC, LUAD, and PRAD, however showing higher 

expression in cancer tissues. The CNV alteration of 

SRSF10 in CHOL and its mRNA expression was also 

not synergistic. Previous studies [85–87] have reported 

that SRSFs expression was dysregulated in a variety  

of cancers, which was consistent with our findings. 
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Abnormal expression of SRSFs usually lead to changes 

in cancer-related pathways (e.g., epithelial mesenchymal 

transformation) [88] and alternative splicing [89]. 

Additionally, we found that SRSFs expression was 

closely related to the activation or inhibition of various 

carcinogenic pathways, such as E2F target, G2M 

checkpoint, DNA repair, mTORC1 signaling, etc. 

However, same SRSFs presented completely opposite 

regulatory directions with the same oncogenic pathway 

in different cancer types, suggesting that the effect  

of SRSFs on the specific pathway was dependent  

on cancer contexts. Similar findings were observed in 

Luo et al. [15]. Overall, SRSFs experienced widespread 

genomic alterations and expression dysregulation in 

multiple cancers, which in turn could affect key onco-

genic pathways and contribute to tumorigenesis and 

progression [90, 91]. 

In pathway analysis and cancer immune correlation 

analysis, we observed that SRSFs were associated with 

the activation or inhibition of multiple immune pathways, 

and were also closely related to the expression of 

multiple immune checkpoints (LAG3, CD274, CTLA4, 

TIGIT, PDCD1). Interestingly, we found that SRSFs 

displayed negative associations with more immuno-

regulators in female reproductive system tumors (OV, 

UCS and UCEC), while positive in two renal tumors 

(KICH and KIRC) and tumors derived from the 

hepatobiliary-pancreatic system (LIHC, CHOL, PAAD). 

This study is the first to discover this interesting 

phenomenon, which will provide a new perspective for 

the in-depth study of SRSFs in cancer immunotherapy. 

 

SRSFs experienced widespread genomic alterations and 

dysregulated expression in various types of cancers, and 

 

 
 

Figure 7. The correlation network showing the association of SRSFs to drug sensitivity. Red represents a positive correlation, and 
green represents a negative correlation. 
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were closely related to multiple immune pathways  

and immunomodulators. This may provide important 

insights for the development of clinical translational 

medicine. A previous study [92] has reported that in 

leukemia, mutant SRSF2 cells were more sensitive to 

E71079, a splicing-altering compound that binds to the 

SF3B complex, than wild-type SRSF2 cells [93, 94]. 

So, we believe that SRSFs may be key biomarkers  

for predicting cancer treatment response in the near 

future. Our study found that in metastatic urothelial 

carcinoma, SRSFs could predict response to PD-1 

blockade therapy, whereas in advanced melanoma, this 

predictive value was not accepted. We believed that 

SRSFs predicted response to immunotherapy depending 

on cancer contexts. In the following survival analysis, 

we found that both in metastatic urological carcinoma 

and in advanced melanoma, SRSFs could well predict 

patient prognosis, that is, higher SRSFscore was asso-

ciated with better survival. The potential mechanisms 

underlying the different predictive values of SRSFs in 

specific cancer types remained poorly defined. In the 

future, individualized development of immunotherapy 

still requires a lot of work to understand its detailed 

mechanisms. 

 
Chemical resistance is responsible for the failure of 

cancer treatment. Splicing disorders play a critical  

role in tumorigenesis [95], and the involvement of 

SRSFs in cancer resistance to chemotherapy remains 

elusive [96]. It has been reported that SRSF4 played 

important roles in the process of cisplatin affecting 

splicing, and that reduced SRSF4 expression inhibited 

multiple cisplatin-induced splicing alterations and cell 

death [97]. Fukuhara et al. [98] suggested that targeting 

kinases involved in alternative splicing by regulating 

the phosphorylation of SRSFs was a good option for 

splicing regulation. SRSFs could be phosphorylated by 

their kinases (SRPK1 and SRPK2), as well as by DNA 

topoisomerase. In addition, Pilch et al. [99] reported 

that NB-506, acting as a topoisomerase inhibitor,  

could regulate the phosphorylation and splicing pat-

terns of SRSF1 and thereby regulate gene expression.  

Consistent with this, our study also found that the 

sensitivity of two DNA topoisomerase inhibitors 

(Amonafide and Pyrazoloacridine) were positively 

correlated with SRSFs expression. In addition, we 

observed that the sensitivity of other chemotherapeutic 

drugs (e.g., DNA synthesis inhibitors) and targeted 

drugs (e.g., EGFR-TKI) were also associated with the 

expression of SRSFs. Therefore, we believe that 

targeting SRSFs may be a cancer therapy approach with 

great potential for clinical application in the future. The 

effects of these drugs on SRSFs expression and tumor 

growth, as well as the specific mechanisms by which 

SRSFs are involved in tumor resistance, are still worthy 

of further investigation. 

Importantly, we noted that the regulations associated 

with SRSFs were all cancer context-dependent, including 

genomic alterations, dysregulated expression, DNA 

methylation, m6A modification, miRNA, oncogenic 

pathways, etc. This property also determined the varying 

predictive potentials of SRSFs for drug response and 

survival in different cancer types. These findings 

substantiated once again the nature of intertumor 

diversity [100, 101], and highlighted the importance  

of individualized cancer treatment. 
 

To sum up, we systematically characterized the 

molecular characteristics and clinical relevance of 

SRSFs from multiple levels in over 10000 patients 

across 33 cancer types. However, in this study, a 

systematic characterization of SRSFs was performed 

using pan-cancer bulk data, but wet experiments  

are lacking. We will try to clarify the oncogenic 

patterns and mechanisms of specific SRSFs molecules 

in future studies and explore their potential anti- 

cancer strategies. The current study highlights the 

pivotal roles of SRSFs in cancer progression, provides 

rich resources for understanding the biological cha-

racteristics of SRSFs, which will contribute to the 

development of therapeutic strategies based on RNA 

alternative splicing. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Correlation among the SRSFs mRNA expression. 
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Supplementary Figure 2. Correlation between the SRSFscore and abundance of immune or stromal cells across 33 cancer 
types. The figure only displayed significant dots with P-value <0.05. 
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Supplementary Figure 3. Kaplan-Meier survival curves showing the association of SRSFscore to overall survival. Statistical 

significance was assessed by log-rank test.  
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

 

Supplementary Table 1. The association between m6A regulators and SRSFs in 33 cancer types. 

 

Supplementary Table 2. The association between miRNAs and SRSFs in 33 cancer types. 

 

Supplementary Table 3. The association between miRNAs and SRSFs in specific cancer types through more 
stringent criteria. 

 

Supplementary Table 4. The association between SRSFs and hallmark pathways in cancer. 

 

Supplementary Table 5. The correlation of SRSFs with hallmark pathways in specific cancer types. 


