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INTRODUCTION 
 

Neuroblastoma (NB) is a childhood cancer that originates 

from the neural crest during embryonic development and 

primarily occurs in the sympathetic nervous system  
[1]. Common symptoms include the presence of an 

abdominal mass, discomfort, and swelling, along with 

ocular changes, bone pain, fever, fatigue, and irritability. 
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ABSTRACT 
 

Background: Neuroblastoma (NB) is a childhood cancer originating from immature nerve cells in the 
sympathetic nervous system. Current clinical and molecular subtyping methods for NB have limitations in 
providing accurate prognostic information and guiding treatment decisions. 
Results: To overcome these challenges, we explored the microenvironment of NB based on the knowledge-
based functional gene expression signatures (Fges), which revealed heterogeneous subtypes. Consensus 
clustering of Fges activity scores identified three subtypes (Cluster 1, Cluster 2, and Cluster 3) that 
demonstrated significant differences in prognosis compared to mainstream subtypes. We assessed the immune 
infiltration, immunogenicity, CD8T cytotoxicity, and tumor purity of these subtypes, uncovering their distinct 
biological functions. Cluster 1 and Cluster 2 exhibited higher immunoreactivity, while Cluster 3 displayed higher 
tumor purity and poor prognosis. Gene ontology annotation and pathway analysis identified immune activation 
in Cluster 1, epithelial-mesenchymal transition (EMT) in Cluster 2, and cell cycle processes in Cluster 3. Notably, 
the impact of EMT activity on prognosis may vary across NB subtypes. A classification model using XGBoost 
accurately predicted subtypes in independent NB cohorts, with significant prognostic differences. GPR125, 
CDK4, and GREB1 emerged as potential therapeutic targets in Cluster 3. CD4K inhibitors showed subtype-
specific responses, suggesting tailored treatment strategies. Single-cell analysis highlighted unfavorable clinical 
features in Cluster 3, including high-risk classification and reduced cytotoxicity. Suppressed interactions 
between monocytes, macrophages, and regulatory T cells were observed, affecting immune regulation and 
patient prognosis. 
Conclusion: To summarize, we have identified a new independent prognostic factor in NB that underscores the 
significant correlation between tumor phenotype and immune contexture. These findings deepen our 
understanding of NB subtypes and immune cell interactions, paving the way for more effective treatment 
approaches. 
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Early diagnosis and treatment are crucial for 

improving the prognosis in children with this 

condition. Clinically, diagnosing NB involves both 

laboratory tests and imaging. Laboratory tests check 

for specific substances like Vanillylmandelic acid/ 

Homovanillic acid (VMA/HVA) in urine, blood, and 

bone marrow. Imaging techniques include ultrasound, 

computed tomography (CT) scans, magnetic resonance 

imaging (MRI), metaiodobenzyl-guanidine (MIBG) 

scans, bone scans, and positron emission tomography 

(PET)-CT scans. These tools are crucial for accurately 

diagnosing NB, determining its stage, and planning  

the appropriate treatment. In terms of the affected 

population, NB is most commonly diagnosed in young 

children, with a slight male predominance, affecting 

individuals of all racial backgrounds. Notably, Black 

and Native American patients with NB tend to have a 

higher incidence of high-risk disease, leading to poorer 

Event-Free Survival (EFS) outcomes compared to white 

patients [2, 3]. In particular, due to the variability in 

clinical presentation and disease progression, 5-year 

survival rates for NB show considerable diversity. 

Research studies indicate that the 5-year survival rate 

for NB is below 50% [4, 5]. 

 
Considering the heterogeneous nature of NB, patient-

specific staging to address different treatment strategies 

is clinically relevant. Currently, three primary approaches 

for staging and classifying NB are commonly employed: 

The International Neuroblastoma Staging System (INSS), 

the International Neuroblastoma Risk Group (INRG), and 

the Children’s Oncology Group (COG) risk stratification 

[6, 7]. The INSS classification categorizes tumors into 

four stages based on their size, depth, and aggressiveness 

to forecast patient prognosis and formulate treatment 

plans. INRG classifies patients into low, medium, and 

high-risk groups. Low-risk patients may not require 

immediate treatment, whereas medium-risk individuals 

often undergo a combination of chemotherapy, surgery, 

and radiation. High-risk cases, the most severe, demand 

intensive treatment, involving potent strong chemo-

therapy, surgery, radiation, immunotherapy, and stem 

cell transplants [8]. Conversely, COG risk stratification 

relies on the biological and molecular genetic traits of 

the tumor to devise treatment strategies and assess 

prognosis [6, 7, 9]. Additionally, there are supplementary 

molecular subtyping techniques applicable to NB, 

encompassing classifications related to chromosomal 

ploidy and groupings contingent on mutational condi-

tions [10–13]. In the context of high-risk NB patients, a 

significant frequency of genetic variances is observed 

within specific chromosomal regions, specifically 1p, 

11q, and 17q. Specifically, the presence of 11q deletion 

in NB cases without MYCN amplification, often indicates 

a highly malignant form with an unfavorable prognosis 

[14, 15]. Familial NB is associated with mutations in 

the PHOX2B and ALK genes, which can be inherited 

and are frequently accompanied by other syndromes 

related to neurocognitive development [16, 17]. High-

risk NB patients often exhibit elevated levels of BDNF 

and TrkB, correlating with the malignancy and poor 

prognosis [18]. Alterations in the RAS and p53 pathway 

genes are commonly observed in high-risk and recurrent 

NB cases. SETD8, a histone methyltransferase, may  

be associated with a poor prognosis in MYCN non-

amplified NB [19]. Additionally, the BARD1 gene and 

its isoform protein, BARD1β, are linked to high-risk NB 

and could potentially serve as therapeutic targets [20]. 

DDX1 and DDX4 have also been identified in specific 

NB cases, exhibiting associations with distinct disease 

characteristics [21]. Nevertheless, further research is 

essential for gaining a comprehensive understanding of 

their functions and clinical significance. Furthermore, 

mutations and deletions in ARID1A/B have been 

correlated with drug resistance and elevated mortality 

rates in NB, indicating the potential pivotal roles of 

these genes in NB development [22]. Notably, HVA 

and VMA are breakdown products of dopamine and are 

useful for diagnosing NB. Elevated ferritin, lactate de-

hydrogenase (LDH), and neuron-specific enolase (NSE) 

levels are associated with NB, helping in diagnosis, 

assessing disease extent, and predicting prognosis. When 

considered alongside clinical and imaging findings, 

these biomarkers offer valuable insights into NB’s 

status and progression. 

 
Although the acceptance of genomic analysis in 

clinical decision-making is on the rise, current 

classification systems and biomarkers also have 

limitations in accurately portraying the biological and 

molecular genetic characteristics of tumors, hindering 

the development of personalized treatment plans and 

precise prognostic assessments [23]. Therefore, the 

introduction of a new classification strategy for NB  

is highly anticipated. Recently, transcriptome analysis 

provides a deeper understanding of tumor complexity 

and heterogeneity, presenting an opportunity to discover 

new biomarkers for the development of innovative 

treatment strategies [24]. The tumor microenvironment 

(TME) plays a pivotal role in clinical outcomes and 

treatment response. Immune cells infiltrating the  

tumor can profoundly impact tumor progression  

and the success of cancer therapy by exerting both  

pro- and anti-cancer effects [25, 26]. Researches have  

been demonstrated that cancer-associated fibroblasts 

(CAFs) and vascular signaling of stromal cells can 

impact outcomes [24, 27]. Therefore, deciphering the 

tumor immune microenvironment profile can enhance 

individualized targeted and immunotherapy strategies. 

Notably, computational methodologies are particularly 

essential in oncology, enabling the discovery of novel 

diagnostic, prognostic, and treatment agents. These 
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techniques leverage complex biological data and 

extensive datasets to identify molecular signatures 

associated with various cancer types, improving  

early and precise cancer diagnostics. Furthermore,  

they assist in modeling cancer progression, predicting 

patient outcomes, and refining personalized treatment 

approaches through data-driven analyses and machine 

learning [28–31]. At present, the investigation of NB 

subtypes through immune microenvironment trans-

criptomic features is ongoing, the integration of 

computational methodologies and transcriptome data 

plays a crucial role in understanding the heterogeneity 

of the NB microenvironment. 

 
In our research, based on the knowledge-based 

functional gene expression signatures (Fges) provided 

by Bagaev et al. [24], which reflect the major functional 

components of TME, we systematically investigated 

the activity of these gene sets in NB patients and their 

association with prognosis based on the computational 

strategy. By utilizing the activity of Fges, we effectively 

identified NB patients into three distinct subtypes  

and explored the molecular features and functional 

heterogeneity in the microenvironment. To ensure 

generalization to other NB patient cohorts, we have 

developed a reliable classification model, and combined 

with drug sensitivity analysis, provides potential clinical 

guidance for treatment. Specifically, our study focused 

on utilizing single-cell expression profiles to uncover 

the key molecular mechanisms that contribute to the 

prognostic differences observed among NB subtypes. 

 
MATERIALS AND METHODS 

 
Data source and preprocessing 

 
In the present study, we obtained transcriptome 

sequencing expression data and clinical data for NB 

patients from “Therapeutically Applicable Research  

to Generate Effective Treatments” (TARGET) data- 

base (named TARGET-NB cohort, n = 151), with 

expression data normalized by FPKM (Fragments  

Per Kilobase of exon model per Million mapped 

fragments). TARGET-NB cohort data were mainly 

used to explore TME and as the training data for 

investigating the potential subtypes of NB. Also, 

GSE49710 (n = 357) [32–34] and GSE85047 (n = 266) 

[35] cohorts from the Gene Expression Omnibus 

(GEO) accessed using “GEOquery” (version 2.60.0) 

[36], and clinical data corresponding to these two 

datasets were also acquired. Background correction 

and quantile normalization were performed using rma 
function from “affy” package (version 1.70.0) [37]  

for expression data, and combined with clinical data  

to evaluate the prognosis performance of derived  

novel NB subtypes. More detailed information can be 

found in Supplementary Table 1. 

 

To investigate the intrinsic molecular mechanisms of 

heterogeneity in NB subtypes, we further obtained a 

single-cell dataset provided by Verhoeven et al. [5] 

from https://github.com/shenglinmei/NB.immune.atlas/. 

This dataset includes 46,134 cells from 17 NB patients 

and covers ten major immune cell types, including  

B cells, ILC3, Macrophages, mDC, Monocytes, NK 

cells, Plasma cells, Cytotoxic T cells (Tcyto), Helper T 

cells (Th), and Regulatory T (Treg) cells. 

 

Gene set activity score and signature score 

 

We used the GSVA package (version 1.40.1) [38]  

with the “method = gsva” to examine the activity score 

of given gene sets for NB patients. The signature 

scores of a list of gene sets were evaluated using the 

AddModuleScore function from the Seurat package. 

 

Consensus clustering for investigating potential 

subtypes of NB 

 

To investigate the potential molecular subtypes of  

NB, we obtained 29 cell types closely associated with 

the TME and their corresponding signature genes from 

https://github.com/BostonGene/MFP/blob/master/sign

atures/gene_signatures.gmt (Supplementary Table 2). 

We used the “ssgsea” method in the GSVA package to 

assess the activity of these cell types in NB patients, 

transforming the gene expression matrix into an activity 

score matrix for different cell types in the micro-

environment. In this matrix, rows represent cell types, 

columns represent samples, and each entry represents an 

activity score. Based on this activity matrix, we utilized 

unsupervised consensus clustering, implemented by 

the “ConsensusClusterPlus” R package (version 1.62.0) 

[39] with parameters “clusterAlg = pam, distance = 

pearson, pItem = 0.8”, to derive intrinsic subtypes  

of NB in the TARGET-NB cohort. In the present 

study, we determined the optimal number of clusters 

by varying the number from 2 to 6 and selecting  

the most stable consensus matrices and unambiguous 

cluster assignments across permuted clustering runs. 

 

Kaplan-Meier survival curve 

 

Kaplan-Meier (KM) survival analysis, along with  

the log-rank test, was used to determine if the sub-

types showed a significantly different overall survival 

(OS). For gene expression data, the optimal cutoff 

point for group stratification was determined using  
the surv_cutpoint function in the “survminer” package 

(version 0.4.9) [40]. Statistical significance was 

determined by a p-value less than 0.05. 

https://github.com/shenglinmei/NB.immune.atlas/
https://github.com/BostonGene/MFP/blob/master/signatures/gene_signatures.gmt
https://github.com/BostonGene/MFP/blob/master/signatures/gene_signatures.gmt
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Differentially expressed genes (DEGs) associated 

with the Fges-derived subtypes 

 

To identify DEGs across subtypes, we utilized the 

FindAllMarkers function from “Seurat” package (version 

4.3.0) [41]. Specifically, genes with adjusted p-values 

below 0.01 and an absolute log2FC greater than 1 were 

deemed significantly differentially expressed. 

 

Functional enrichment analysis 

 

To examine the distinct biological processes and path-

ways that exhibited significant differential expression 

among subtypes, we employed the “clusterProfiler” 

package (version 4.0.5) [42] to convert gene symbols 

into Entrez ids using the bitr function. Subsequently, 

gene ontology (GO) and KEGG pathway enrichment 

analysis was conducted using the enrichGO function 

with the “ont = BP” parameter and enrichKEGG 
function, respectively. GO and KEGG terms that  

had adjusted p-values below 0.01 were regarded as 

significantly enriched. 

 

Estimation of tumor purity, immune score, 

immunophenoscore, and cytotoxicity score 

 

The estimation of immune score, and tumor purity  

of NB patients was conducted by utilizing the 

“ESTIMATE” package (version 1.0.13) [43], as spe-

cified in the official manual. The Immunophenoscore 

(IPS) employs various markers of immune response or 

immune tolerance to measure the immune activity 

within an NB patient. A higher score of IPS indicates a 

greater level of immunogenicity [44]. The cytotoxicity 

score for each NB patient was determined by utilizing 

GSVA tool with GZMA and PRF1 markers [45]. 

 

Prediction of Cluster 1&2 and Cluster 3 subtypes for 

NB patients  
 

Given that the Cluster 3 identified by the TARGET-

NB cohort demonstrated the worst prognosis, we 

introduced the XGBoost model [30] to distinguish 

between Cluster 1&2 and Cluster 3 categories for 

individual NB patients. The following steps were 

taken: (1) The TARGET-NB cohort was randomly 

split into training and testing sets at a 3:1 ratio. We 

used the “FindAllMarkers” function from the Seurat 

package to identify genes that were significantly 

different in the Cluster 1&2 and Cluster 3 groups 

(adjusted p-value ≤ 0.01) as the features for the 

training set. (2) We applied the XGBoost model  

to the training set using 10-fold cross-validation,  
as implemented by the “xgb.cv” function from the 

“xgboost” R package (version 1.6.0.1). The parameters 

used were “nfold = 10, objective = multi:softprob, 

max.depth = 10, eval_metric = mlogloss” [46]. The 

model with the highest area under the curve (AUC) 

value was retained, and its performance was further 

evaluated using the testing set and two independent 

cohorts (GSE49710 [32–34] and GSE85047 [35]). 

 

Significance of novel NB subtypes in drug sensitivity 

 

To assess the drug sensitivity of the Cluster  

1&2 and Cluster 3, we utilized the “oncoPredict” 

package (version 0.2) [47] with the “batchCorrect  

= eb” parameter to determine the half-maximal 

inhibitory concentration (IC50) values of Palbociclib 

and Ribociclib anti-tumor drugs for the three cohorts 

of NB, respectively. This package employs a gene 

expression and drug sensitivity modeling algorithm  

for cell lines in the Cancer Genome Project, with the 

aim of predicting clinical chemotherapeutic response. 

 

Cell-cell interactions analysis 

 

We employed CellChat [48] (version 1.6.1)  

to determine cell-cell interactions based on the 

expression of known ligand-receptor (L-R) pairs in 

different cell types. Briefly, the input for CellChat 

consisted of gene expression data of cells along  

with their assigned cell types. Initially, we identified 

overexpressed ligands or receptors within specific cell 

groups and projected the gene expression data onto a 

protein-protein interaction network. Overexpressed L-

R interactions were identified when either the ligand or 

the receptor was overexpressed. Subsequently, CellChat 

facilitated the inference of biologically significant  

cell-cell communication by assigning a probability 

value to each interaction and conducting a permutation 

test. Finally, the resulting communication networks 

were visualized using a circle plot, and the signaling 

pathways were visualized using a bubble plot. 

 

Statistical analysis 

 

The study utilized standard statistical tests such as 

Student’s t-test, Wilcoxon rank-sum test, log-rank test, 

and Cox proportional hazards regression to analyze 

both clinical and expression data. These analyses were 

carried out using R4.2.2. 

 

Availability of data and material 

 

We collected gene expression data and corresponding 

clinical information for the NB cohorts from publicly 

available databases, as outlined in Supplementary Table 

1. Especially, for this study, we utilized R 4.2.2 for the 
analysis, and the relevant R packages are described in 

detail in the Materials and Methods section. All codes 

are available upon request to the corresponding author. 
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RESULTS 
 

Fges portray the heterogeneity of the TME in NB 

patients and the strong association with prognosis 

 

To investigate the TME of NB, we utilized a 

transcriptomic-based analytical platform and selected 

29 functional gene sets (Fges) that represented the 

major functional components of the tumor, as well  

as immune, stromal, and other cell populations from 

previous study [24] (Supplementary Tables 1 and 2). 

We then employed GSVA (method = “ssgsea”) to 

assess the activity score of Fges in TARGET-NB 

patients, and found that the distribution of scores varied 

across patients, indicating the heterogeneous TME  

in NB patients (Figure 1A; Supplementary Table 3;  

see Materials and Methods). Interestingly, patients 

within the blue dashed box, showed a high degree of 

homogeneity in the distribution of activity scores, 

suggesting the presence of distinct subtypes in the 

microenvironment of NB (Figure 1A). We raised the 

question of whether the mainstream classifications 

could explain the heterogeneity in the microenvironment 

of NB patients. To investigate this, we analyzed the 

Fges score in COG risk categories, and found that, 

except for Protumor_cytokines, Coactivation_molecules, 

B_cells, Effector_cells, T_cells, Th1_signature, and 

T_cell_traffic, most (22/29) of Fges were no significant 

differences among low, intermediate, and high-risk 

categories under p-value ≤ 0.01. This suggests that 

COG risk stratification may not fully reflect the changes 

in the microenvironment of NB (Figure 1B). Also, we 

examined differences in Fges score across INSS stages 

and box plots showed that, similar to COG risk 

subtypes, most Fges (26/29) did not show significant 

differences. However, nearly half (13/29) of the Fges 

exhibited significant differences in MYCN status 

(amplified or not amplified), suggesting that the subtypes 

portrayed by MYCN may be more closely linked to the 

TME of NB (Figure 1B). Notably, we observed no Fges 

that shared significant differences in COG, INNS and 

MYCN (Figure 1B). 

 

We also analyzed the interactions between Fges and 

their prognostic implications, showing that most Fges 

were synergistic in the NB microenvironment, such as 

MHC II and Macrophage_DC_traffic (Figure 1C; 

Supplementary Table 4; see Materials and Methods). 

The MHC II molecule is involved in promoting T- 

cell activation and clearance of tumor cells. In NB 

patients, higher levels of MHC II expression are 

associated with longer survival (Figure 1C). Similarly, 

increased expression of Macrophage_DC_traffic, a gene 

signature related to immune cell infiltration, is also  

a predictor of better prognosis in NB (Figure 1C). 

Typically, T_reg and T_reg_traffic hinder the immune 

response against tumors and their high levels are 

frequently linked to poor prognosis. However, our 

observations indicate that these two factors actually 

have a significant favorable impact on the prognosis of 

NB patients, suggesting the complexity and heterogeneity 

of NB patients. On the other hand, Proliferation_rate is 

a major risk factor, as a high proliferation rate suggests 

that the tumor has a greater growth capacity, faster 

growth rate, and higher malignancy level. 

 
To sum up, the activity of Fges is responsive to the 

microenvironment heterogeneity in NB patients and  

is closely associated with prognosis. These findings 

have the potential to improve our understanding of NB 

tumor mechanisms and to guide the development of 

new classification strategies. 

 

Derivation of novel subtypes associated with distinct 

microenvironmental characteristics of NB from the 

perspective of Fges 

 

To investigate if functional gene sets (Fges) can reveal 

molecular subtypes of NB, distinct from those identified 

previously based on clinical and molecular features,  

we conducted a consensus clustering analysis on the 

activity scores of Fges, resulting in the categorization of 

patients into three subtypes: Cluster 1, Cluster 2, and 

Cluster 3 (Figure 2A; Supplementary Table 3). We first 

examined the sample sizes of the three new subtypes, 

with Cluster 1 having the highest number of samples 

(n = 61) and Cluster 2 the lowest (n = 40), with a more 

evenly distributed overall distribution (Figure 2A; 

Supplementary Table 5; see Materials and Methods). 

Moreover, significant differences in the prognosis  

of these three subtypes were observed, with Cluster  

2 showing the best prognosis, followed by Cluster 1, 

and Cluster 3 having the worst (Figure 2B; see 

Materials and Methods). Furthermore, we analyzed the 

distribution of Fges activity scores in the three subtypes, 

and revealed significant differences in all functional 

gene sets. Interestingly, Cluster 3 showed the lowest 

overall activity scores, while EMT_signature, Matrix, 

and CAF showed higher activity scores in Cluster 2, 

suggesting that EMT may help to inhibit the growth  

and spread of NB tumors, leading to a better prognosis 

(Figure 2C). We also found that immune cells, such as 

T_cells and effector_cells exhibited high activity scores 

in Cluster 1, but their prognosis was slightly worse than 

that of Cluster 2, suggesting that high degree of immune 

infiltration in this subtype may indicate that the tumor 

or infection is suppressing the immune system, leading 

to a poorer prognosis for patients (Figure 2C). 

 
By comparing the associations between the three 

subtypes and other clinical features and classical 

staging, including gender, COG, survival status, and 
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Figure 1. Analysis of Fges activity scores reveals the heterogeneity of the neuroblastoma microenvironment and its 
significant impact on prognosis. (A) Circular stacked bar plot shows the distribution of activity scores of 29 Fges in TARGET-NB patients. 

Different colors represent different gene sets (Supplementary Tables 2 and 3). (B) Box plot shows the distribution of activity scores of Fges 
in TARGET-NB patients in different groups, with p-values obtained by Wilcoxon rank-sum test. Abbreviation: ns: not significant; *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001. (top panel) COG risk groups; (middle panel) INSS stages; (bottom panel) MYCN amplified or not. (C) 
Network plot displays the interaction of Fges within the microenvironment of NB and their influence on the prognosis of patients. Positive 
Pearson correlations between sets of genes are represented by red lines, while significant negative associations are denoted by blue lines. 
The significance of each gene set in predicting the prognosis of NB patients is depicted by the size of the corresponding circle. Gene sets 
that have a protective effect are shown in green, while those that pose a risk are represented in red; otherwise, they are shown in gray. 
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INSS stages, we found that Cluster 3 was more likely  

to occur in males and had higher mortality rates 

(Figure 2D). However, we also noticed that Cluster 1, 

Cluster 2, and Cluster 3 did not differ significantly in 

COG risk groups as well as INSS stages, suggesting 

inherent differences between the subtyping identified by 

 

 
 

Figure 2. Consensus clustering identified three novel subtypes based on Fges activity scores. (A) Heatmap shows the consensus 
clustering matrix of the TARGET-NB cohort based on the activity score of Fges. (B) KM curve shows that the three Fges-derived subtypes 
exhibit significant differences in prognosis. P-value was obtained by log-rank test. (C) Box plot shows the distribution of activity scores of 
Fges in three Fges-derived subtypes. P-value was obtained by Wilcoxon rank-sum test. ****p < 0.0001. (D) Sankey plot shows the 
associations between the Fges-derived subtypes and clinical features, including gender, COG risk groups, survival status, and INSS stages. 
(E) Forest plot shows the independent effect of Fges-derived subtypes, along with other clinical features as well as classical groupings, on 
the prognosis of patients with neuroblastoma. This was determined through multivariate Cox regression analysis. 
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Fges and COG as well as INNS (Figure 2D). 

Moreover, to determine whether Fges-derived sub-

typing could be used as an independent prognostic risk 

factor in clinical studies of NB, we employed multiple 

Cox regression with covariates including Fges-derived 

subtypes, Gender, Age, MYCN, Ploidy, COG, and 

INSS (Figure 2E). The results indicated that Cluster  

3 was a significant risk factor relative to Cluster 1  

and Cluster 2, and there was no significant effect  

on prognosis except for Ploidy, suggesting that Fges-

derived NB subtypes is an independent prognostic 

factor and has a good advantage in distinguishing 

prognosis significantly compared to other clinical 

characteristics and typing strategies (Figure 2E). 

 

Biological differences across Fges-derived NB 

subtypes 

 

Next, we investigated the activity score of cancer 

hallmark pathways collected from MSigDB in three 

Fges-derived subtypes using “ssGSEA” method, and 

hierarchical clustering clearly showed that these path-

ways could form two distinct categories (Figure 3A; see 

Materials and Methods). One category (i.e., H1) had a 

higher level of activity in Cluster 1 and Cluster 2, which 

are potential protective factors in NB patients, while the 

other category (i.e., H2) had a higher level of activity  

in Cluster 3, indicating risk factors (Figure 3A). To 

validate this finding, we selected two cancer hallmark 

pathways from each category, including HALLMARK_ 

ALLOGRAFT_REJECTION, HALLMARK_IL6_JAK_ 

STAT3_SIGNALING, HALLMARK_UV_RESPONSE_ 

UP, and HALLMARK_IL2_STAT5_SIGNALING, and 

observed their KM curves of OS. The results showed 

that high activity in Cluster 3 for HALLMARK_ 

ALLOGRAFT_REJECTION and HALLMARK_IL6_ 

JAK_STAT3_SIGNALING exhibited a significantly 

worse prognosis, while high activity in HALLMARK_ 

UV_RESPONSE_UP and a higher degree of activity  

in HALLMARK_IL2_STAT5_SIGNALING (Clusters 

1&2) predicted a better prognosis, consistent with our 

previous inference (Figure 3B). Overall, these analyses 

suggest that hallmark pathways highly relevant to tumor 

progression exhibit distinct roles and patterns in Fges-

derived subtypes. 

 

Moreover, we delved deeper into the biological 

diversity among the three Fges-derived subtypes, 

encompassing immune infiltration, tumor purity,  

IPS, and cytotoxicity. The findings revealed that 

Clusters 1&2 displayed substantially higher (t-test,  

p-value ≤ 0.01) immune infiltration, immunogenicity 

and cytotoxicity scores, while Cluster 3 exhibited 
significantly lower immune infiltration and the greatest 

level of tumor purity (Figure 3C; see Materials and 

Methods). To reinforce these results, we also evaluated 

the activity of 28 immune cell types (782  

marker genes) obtained from Charoentong P et al. [44] 

within the three subtypes and demonstrated that 

Clusters 1&2 had a greater degree of immunity in 

comparison to Cluster 3 (Figure 3D; see Materials  

and Methods). These analyses suggest that elevated 

immune infiltration is strongly linked to a favorable 

prognosis, indicating that NB is a “hot” tumor, 

consistent with prior investigations [49, 50]. 

 

To elucidate the biological functions and path- 

ways involved in the three Fges-derived subtypes,  

we conducted differential gene expression analysis. 

This revealed that T cell and B cell markers such  

as CD3D, CD3E, CD19, and CD79A were highly 

expressed in Cluster 1, while fibroblast-related genes 

such as DCN and CDH19 were highly expressed  

in Cluster 2 (Figure 3E; Supplementary Table 6). 

Additionally, genes associated with meiosis, including 

MND1, NCAPG, and BUB1, were significantly highly 

expressed in Cluster 3 (Figure 3E; Supplementary 

Table 6). Further functional enrichment analysis 

showed that Cluster 1 was associated with immune 

response processes and T-cell activation pathways, 

Cluster 2 was significantly associated with extracellular 

matrix organization and ECM-receptor interactions, 

and Cluster 3 was significantly associated with the  

cell cycle, indicated that the Fges-derived isoforms 

exhibit significant biological heterogeneity (Figure  

3F, 3G; Supplementary Table 7; see Materials and 

Methods). 

 

Predicting Fges-derived subtypes with XGBoost 

model 

 

Our objective was to develop a precise and sensitive 

method for predicting patient Fges-derived subtypes 

without relying on unsupervised clustering. To achieve 

this goal, we utilized the TARGET-NB cohort and 

trained our model using the XGBoost algorithm to 

predict Cluster 1&2 and Cluster 3 subtypes (Figure  

4A; see Materials and Methods). Using differential  

gene expression analysis, we identified a set of genes 

that were able to predict whether a sample belonged  

to Cluster 3 with high sensitivity and specificity 

(Supplementary Table 8). We then integrated these 

genes into our XGBoost model for training. Our model 

achieved an accuracy of 0.953 (0.906–0.981) in 

predicting subtypes (Figure 4B; see Materials and 

Methods). We observed that 93.6% of samples assigned 

to Clusters 1&2 by clustering were predicted to be  

1&2 by our model, while 85.7% of samples assigned  

to Cluster 3 through clustering were found in Cluster  
3 (Figure 4B). By applying our model to two other  

NB testing cohorts GSE49710 and GSE85047, and 

combining it with clinical information, we were able to 
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Figure 3. Biological heterogeneity across Fges-derived subtypes. (A) Heatmap displays the activity scores of cancer hallmark 

pathways for Cluster 1, Cluster 2, and Cluster 3 subtypes. These pathways were collected from MSigDB database, and can be classified into 
two categories, H1 and H2. (B) KM curves demonstrate the significant impact of high activity in the four cancer hallmark pathways on the 
prognosis of NB patients. The p-values were obtained through log-rank tests. (C) Violin plots show the distribution of different biological 
features in the three Fges-derived subtypes, including immune score, IPS, tumor purity, and cytotoxic score. P-values were obtained by a 
t-test. (D) Heatmap of activity scores of 28 immune cell gene sets provided by a previous study [44], among the Fges-derived subtypes. 
(E) Heatmap shows the expression of the top 20 highly expressed genes among three Fges-derived subtypes. (F) Bubble plot shows the 
biological processes significantly involved in the three Fges-derived subtypes of NB. (G) Bubble plot shows the pathways significantly 
involved in the three Fges-derived subtypes of NB. 
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Figure 4. Independent datasets validation of the reliability of Fges-derived subtypes. (A) Schematic of the XGBoost model for 

predicting Fges-derived subtypes (see Materials and Methods). (B) Heatmap shows whether a particular sample, predicted by XGBoost 
classifier from the training set, falls under Cluster 3 (light blue) or Cluster 1&2 (purple), out of the 151 total samples. (C, D) The association 
between predicted clusters and survival was tested using Kaplan-Meier survival curves for predicted Cluster 3 versus Cluster 1&2. P-values 
were from log-rank tests. (E) Bar plot shows the importance ranking of the top 35 feature genes (ordered by Gain index) filtered by 
XGBoost in the training set. (F) Bubble plots show the expression of the top 15 important feature genes in the three NB cohorts. The depth 
of the color indicates the average level of expression of one gene in a particular subtype, and the size of the circle indicates the percentage 
of that gene expressed in a particular subtype. (G) ROC curves depict how accurately the expression of three genes can predict subtypes 
Cluster 1&2 in comparison to Cluster 3 based on the TARGET-NB cohort. (top) GREB1; (middle) CDK4; (bottom) GPR125. (H) KM curves 
show the prognostic impact of high and low expression of GREB1, CDK4 and GPR125 genes in three NB cohorts. (top panel) TARGET-NB; 
(middle panel) GSE49710; and (bottom panel) GSE85047. 
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demonstrate significant differences in prognosis for 

Cluster 1&2 and Cluster 3 subtypes (Figure 4C, 4D). 

These results were consistent with our observations  

in the TARGET-NB cohort, which suggests that Fges-

derived subtypes are highly consistent across NB 

cohorts. In summary, our XGBoost model refined 

Cluster 3 and provided a single-sample predictor that 

can be used for every patient in the clinic. 

 
Next, we analyzed the importance of feature genes  

in our XGBoost prediction model and found that 

GPR125 had the highest importance (Figure 4E). 

Previous studies have confirmed that this gene plays a 

crucial role in the development of the nervous system 

and is involved in the migration and differentiation  

of neural stem cells, indicating that GPR125 is a vital 

biomarker for the clinical study of Cluster 3 [51–53]. 

Additionally, we observed the expression of these 

significant signature genes and found that GREB1, 

CDK4, and GPR125 showed highly consistent 

expression in Cluster 3 of the three NB cohorts, with 

CDK4 and GPR125 predicting an AUC of greater than 

0.7 for Cluster 1&2 and Cluster 3 in all three NB 

cohorts, implying good discriminatory ability (Figure 

4F, 4G). Interestingly, in combination with clinical 

information, we found that CDK4 performed best in 

predicting the prognosis of patients in three NB 

cohorts, which is an essential tumor driver gene and 

may be a crucial prognostic marker for the Cluster 3 

(Figure 4H) [54–56]. In conclusion, by analyzing 

multiple perspectives, we found that GREB1, CDK4, 

and GPR125 may be the critical markers of Cluster 3 

in NB, especially CDK4 and GPR125. Clinically, by 

suppressing the expression of these genes, it may have 

important to improve prognosis for NB patients. 

 
Drug sensitivity assessment for Fges-derived 

subtypes 

 

Considering the potential clinical application of CDK4 

in Fges-derived Cluster 3, we used GeneMANIA  

to construct a protein-protein interaction network and 

identify genes associated with CDK4. The results 

showed that CDK4 is involved in cell cycle as well as 

regulatory activities (Figure 5A). This finding further 

suggests that high expression of this gene promotes the 

proliferation of tumor cells. Currently, CDK4-targeted 

drug inhibitors are an emerging approach to cancer 

treatment, with several drugs already approved by the 

Food and Drug Administration (FDA) and showing 

good efficacy in clinical practice. For example, 

Palbociclib [57, 58] can halt tumor cell proliferation 

by inhibiting the G1/S phase transition of the cell 

cycle, while Ribociclib inhibitors prevent the binding 

of CDK4/6 to D-type cyclin, thereby blocking the 

G1/S phase transition [59–61]. 

To determine the sensitivity of NB subtypes Cluster1&2 

and Cluster 3 to Palbociclib and Ribociclib inhibitors, 

we used OncoPredict tool [47] to predict the distribution 

of IC50 values for NB patients. Our results showed that 

the IC50 values of Palbociclib were consistently lower 

and significantly different in Cluster 3 compared to 

Cluster 1&2 (Figure 5B; see Materials and Methods). In 

contrast, Ribociclib had consistently higher IC50 values 

in Cluster 1&2 than in Cluster 3 (Figure 5B). Therefore, 

Palbociclib could be a potentially promising drug target 

for the treatment of Cluster 3, while Ribociclib may 

have an important therapeutic role for Clusters 1&2. 

 
Expression suppression of MHC class II in myeloid 

cells drives poor prognosis in Cluster 3 subtype of NB 

 
Based on the study conducted by Verhoeven et al. 

(2022) [5], we obtained a comprehensive single-cell 

dataset comprising 46,134 cells from 17 neuroblastoma 

(NB) donors (Figure 6A; Supplementary Table 9). 

This dataset encompasses 10 crucial immune cell 

types, including B cells, ILC3, Macrophages, mDC, 

Monocytes, NK cells, Plasma cells, Tcyto, Th, and 

Treg cells. Employing a pre-trained XGBoost model, 

we successfully predicted the subtypes of the 17 

patients, namely Cluster 1&2 and Cluster 3. Out of 

these patients, 6 were classified as C1&2 subtype, 

while the remaining 11 were identified as Cluster 3 

subtype (Figure 6B; Supplementary Table 9). By 

integrating the clinical information associated with 

these NB patients, we observed a distinct pattern among 

the subtypes. Cluster 3 subtype patients were pre-

dominantly situated in the high-risk INRG category 

and exhibited the INRGSS M stage (Figure 6C). In 

contrast, Cluster 1&2 subtype NB patients displayed a 

higher prevalence in the low-risk INRG category and 

were predominantly in the INRGSS L1 and L2 stages 

(Figure 6C). To investigate the molecular characteristics 

specific to the C1&2 and C3 subtypes in the NB 

patients, we scrutinized the cell cycle distribution. 

Notably, Cluster 3 subtype cells exhibited a pronounced 

accumulation in the G1 phase (53.48%), indicating an 

elevated proliferative capacity (Figure 6D). Additionally, 

the cytotoxicity scores of Cluster 1&2 subtype were 

significantly higher compared to those of Cluster 3, 

aligning with the features observed in the NB-TARGET 

bulk classification (Figures 3C and 6E). In terms of 

gene expression, GREB1 emerged as the important 

distinctive gene feature in the C3 subtype, with the 

highest proportion of positive expression observed in 

Macrophages (Figure 6F). Abundance analysis across 

different cell types within the Cluster 1&2 and Cluster 

3 subtypes demonstrated a substantial enrichment of 

Macrophages and Monocytes in Cluster 3, while Th 

cells exhibited a significantly higher abundance in 

Cluster 1&2 (Figure 6G). 
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To investigate the variations in cell-to-cell signaling 

and interactions between the Cluster 1&2 and Cluster 

3 subtypes and gain insights into the unfavorable 

prognosis associated with the Cluster 3 subtype, we 

employed CellChat [48] for cell-cell interaction 

analysis. Our findings revealed significantly stronger 

interactions between Macrophages, Monocytes, and 

Treg cells in the Cluster 1&2 subtype compared to the 

Cluster 3 subtype (Figure 6H, 6I). Further analysis  

of receptor and ligand genes highlighted a notable 

 

 

 
Figure 5. Drug sensitivity analysis of CDK4 inhibitors. (A) Functional analysis of the protein-protein interaction network and CDK4, 
along with its neighboring genes. The edges of the network are color-coded to indicate the bioinformatics methods used, including physical 
interactions, co-expression, site prediction, co-localization, pathway and genetic interactions, and shared protein structural domains. The 
nodes of the network are also color-coded to reflect the enrichment results of the genome. The size of each circle corresponds to the rank 
of the gene associated with CDK4, while the width of each line represents the weight of the data source used in the composite network. (B) 
Box plots show the distribution of IC50 values for Palbociclib as well as Ribociclib in Fges-derived subtypes. P-values were obtained from 
t-tests. *p < 0.05; **p < 0.01; ****p < 0.0001. 
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Figure 6. Single-cell profiling of the NB immune microenvironment and subtype-specific interactions. (A) Global overview of 

NB immune cell atlas containing 46,134 cells, color coded by annotated cell type (n = 17). (B) Global overview of NB immune cell atlas, color 
coded by predicted NB subtypes. (C) Stacked bar plots showing the distribution of Cluster 1&2 and Cluster 3 subtypes of NB patients in the 
INRG (left panel) and INRGSS (right panel) classifications. (D) Pie plots showing the percentage of cells in different NB subtypes in the G1, 
G2M, and S phases. (E) Violin plots combined with boxplots show the distribution of cytotoxic scores of cells in Cluster 1&2 and Cluster 3 
subtypes. P-value was obtained from t-test. (F) Grouped bar plot showing the percentage of GREB1+ cells in different immune cell types of 
Cluster 1&2 and Cluster 3 patients. (G) Grouped boxplot showing the cellular proportion of Cluster 1&2 and Cluster 3 patients. P-values 
were obtained from t-tests. ns, not significant; *p < 0.05. (H) Interaction map depicting the ligand-receptor interactions within the NB 
immune microenvironment. Red indicates stronger interactions between ligands and receptors in Cluster 1&2 compared to Cluster 3, while 
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blue indicates weaker interactions in Cluster 1&2 compared to Cluster 3. The thickness of the lines represents the strength of the 
differences. (I) Heatmap showing the differences in ligand-receptor interactions between Cluster 1&2 and Cluster 3. Red indicates stronger 
interactions between ligands and receptors in Cluster 1&2 compared to Cluster 3, while blue indicates weaker interactions in Cluster 1&2 
compared to Cluster 3. (J) Bubble plot showing the significant interactions between receptor and ligand genes among Monocytes, 
Macrophages, and Treg cells in both Cluster 1&2 and Cluster 3 subtypes (p < 0.01). The color gradient ranging towards red indicates 
stronger interactions. (K) Bubble plot showing the expression of ligands MHC II molecules and CXCL16 in Monocytes and Macrophages of 
both Cluster 1&2 and Cluster 3 subtypes, as well as the expression of receptor genes CD4 and CXCR6 in Treg cells. (L) KM curve showing the 
stratification derived by the signature score of MHC Class II genes exhibiting significant differences in prognosis. P-value was obtained by 
log-rank test. (M) KM curve showing the stratification derived by the expression of CXCL16 exhibiting significant differences in prognosis. 
P-value was obtained by log-rank test. 

 
deficiency in the interaction between MHC Class  

II molecules and CD4 in Cluster 3, as well as  

the CXCL16-CXCR6 axis interaction (Figure 6J). 

Additionally, Monocytes and Macrophages within the 

Cluster 3 subtype exhibited suppressed expression  

of MHC Class II genes and CXCL16, indicating an 

unfavorable prognosis for NB patients (Figure 6K–

6M). In summary, our analysis emphasizes the down-

regulation of MHC Class II and CXCL16 expression in 

Monocytes and Macrophages within the Cluster 3 

subtype, leading to weakened interactions with Treg 

cells and ultimately contributing to a poorer prognosis 

for patients with the Cluster 3 subtype. 

 

DISCUSSION 
 

NB is a childhood cancer that develops from immature 

nerve cells in the sympathetic nervous system. However, 

current clinical and molecular subtyping methods for 

NB have limitations, and may not always provide 

accurate prognostic information or guide treatment 

decisions [12, 62, 63]. This leads to challenges in 

predicting clinical outcomes and selecting appropriate 

treatments, highlighting the need for new approaches to 

better classify NB and improve disease management.  

To address this challenge, we explored the micro-

environment of NB using Fges, which revealed some 

degree of heterogeneity that could potentially indicate 

subtypes. This speculation was supported when we 

performed consensus clustering of the Fges activity 

scores. Three subtypes (Cluster 1, Cluster 2, and Cluster 

3) derived by Fges demonstrated significant differences 

in prognosis compared to the current mainstream NB 

subtypes (i.e., COG, and INSS) [9], providing a new 

strategy for NB tying. 

 

By assessing the degree of immune infiltration, 

immunogenicity, CD8T cytotoxicity, and tumor purity 

of the Fges-derived three subtypes, we were able to 

shed light on their respective biological functions.  

Our analysis showed that Cluster 1 and Cluster 2 were 

more immunoreactive, while Cluster 3 demonstrated 

significantly higher tumor purity, which is consistent 

with its poor prognosis. Furthermore, gene ontology 

annotation and pathway analysis revealed that the  

three subtypes are associated with distinct biological 

processes. Specifically, Cluster 1 is involved in immune 

activation, Cluster 2 is strongly associated with EMT, 

while Cluster 3 is enriched in biological processes or 

pathways such as cell cycle processes. It is important  

to note that previous studies [64–66] have shown a 

correlation between EMT activity and the ability of  

NB tumors to infiltrate and metastasize, ultimately, 

leading to worse prognosis. However, it is important to 

recognize that NB is a complex tumor and that different 

subtypes of NB may exhibit distinct biological features 

and clinical manifestations. Therefore, the prognostic 

impact of EMT activity may differ for different sub-

types of NB. Additionally, further studies are necessary 

to investigate the role of EMT in the development and 

progression of NB. 

 

To better extend Fegs-derived subtypes in other NB 

cohorts, we developed a classification model using 

XGBoost to predict Cluster 1&2 versus Cluster 3. After 

evaluation, the model exhibited good performance in 

the training set (accuracy = 0.95). In the independent 

NB cohorts, the subtypes predicted by the classifier 

showed significant prognostic differences consistent with 

the expected pattern, which is crucial for investigating 

the Fges-derived subtypes in more extensive NB 

cohorts. Specifically, we found GPR125, CDK4, and 

GREB1 to be the most significant marker genes in the 

Cluster 3 subtype. Our study suggests that these genes 

may play a crucial role in NB and that their over-

expression or aberrant activation is closely associated 

with tumorigenesis, progression, and metastasis [54, 56, 

66], and may be viable therapeutic targets for NB. 

Furthermore, our findings potentially shed light on the 

underlying reasons for the poor prognosis of Cluster 3. 

Given the significant impact of the CD4K gene on 

prognosis, we conducted further research on the drug 

guidance of CD4K inhibitors on Fges-derived subtypes, 

and found that Palbociclib was more sensitive in the 

Cluster 3, while Ribociclib performed well in the 

Cluster 1&2. This suggests that subtyping of NB may 

help in selecting appropriate treatment strategies to 

achieve better therapeutic effects. 

 

In a separate single-cell analysis conducted on NB 

patients, we examined the characteristics and inter-

actions among different subtypes. The study unveiled 
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unfavorable clinical prognostic features associated with 

the Cluster 3 subtype, including high-risk classification, 

increased proliferative capacity, and lower cytotoxicity 

scores. Moreover, compared to Cluster 1&2, the 

expression of MHC-II and CXCL16 in monocytes and 

macrophages within Cluster 3 was suppressed, leading 

to weakened interactions with Treg cells, thus influen-

cing patient prognosis. Specifically, Tregs, known for 

their immune regulatory role, typically interact with 

monocytes to maintain immune balance. However, the 

diminished interaction between monocytes presenting 

MHC class II molecules and CD4 molecules in Tregs 

resulted in reduced suppressive effects by Tregs, 

leading to weakened immune regulation. Consequently, 

this could potentially trigger excessive or imbalanced 

immune responses, causing self-tissue damage or 

triggering a stronger immune response against tumor 

antigens. This could potentially result in excessive  

or imbalanced immune responses, causing damage to 

self-tissues or generating a stronger immune response 

against tumor antigens [67, 68]. These findings 

contribute significantly to our understanding of the 

differences between NB subtypes and the interactions 

among immune cells, offering valuable insights for  

the development of more effective treatment strategies. 
 

Despite the promising results, our study has some 

limitations. Firstly, the study was based on a relatively 

small sample size, and more extensive validation is 

needed. Secondly, we only investigated two drugs, and 

more drugs need to be examined in future studies. 

Thirdly, further investigation is needed to validate the 

clinical utility of our subtyping approach. Nonetheless, 

our study highlights the potential of using Fges  

to derive novel subtypes of NB with significant 

differences in prognosis and treatment response. In 

conclusion, as research in NB subtyping and treatment 

strategies continues to advance, a multidisciplinary 

approach involving clinicians, researchers, and patients 

will be pivotal in translating these findings into more 

effective, personalized, and less burdensome treatment 

options. The ultimate goal is to enhance patient out-

comes and the overall experience of those affected by 

NB. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3 and 5–7. 

 

Supplementary Table 1. Summary of NB Cohorts used in the present study. 

 

Supplementary Table 2. List of knowledge-based Functional Gene Expression Signatures (Fges). 

 

Supplementary Table 3. Activity score of Fges in TARGET-NB cohort. 

 

Supplementary Table 4. Prognostic effect of Fges activity scores in TARGET-NB cohort. 

 HR P-value 

MHCI 1.821275179 0.039615164 

MHCII 0.583836443 0.03041356 

Coactivation_molecules 1.860932833 0.043129543 

Effector_cells 0.636452651 0.13882156 

T_cell_traffic 0.69708204 0.122197637 

NK_cells 0.571949912 0.030198616 

T_cells 0.634409842 0.078006928 

B_cells 2.391219091 0.090508321 

M1_signatures 0.723246517 0.163329204 

Th1_signature 0.701370599 0.135638806 

Antitumor_cytokines 0.50783405 0.032018353 

Checkpoint_inhibition 0.51236251 0.024542153 

Treg 0.489392939 0.002301173 

T_reg_traffic 0.461730268 0.00401174 

Neutrophil_signature 0.558161447 0.064353074 

Granulocyte_traffic 0.664911796 0.085467705 

MDSC 0.539404379 0.01864849 

MDSC_traffic 0.556755849 0.028336472 

Macrophages 0.712436722 0.149556066 

Macrophage_DC_traffic 0.646581481 0.066628528 

Th2_signature 0.60954905 0.086528464 

Protumor_cytokines 1.761820619 0.015157943 

CAF 1.674823647 0.06215062 

Matrix 0.66364449 0.100221482 

Matrix_remodeling 2.429286849 0.009150648 

Angiogenesis 2.089288111 0.111961105 

Endothelium 0.793468888 0.369515344 

Proliferation_rate 2.803623103 0.000405439 

EMT_signature 2.229806924 0.083548746 
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Supplementary Table 5. Consensus clustering results of TARGET-NB cohort based on the FGES activity score. 

 

Supplementary Table 6. Differentially expressed genes among Fges-derived subtypes. 

 

Supplementary Table 7. Gene ontology analysis results of Fges-derived subtypes. 

 

Supplementary Table 8. List of features used for training XGBoost model. 

hgnc_symbol ensembl_gene_id 
chromosome_ 

name 

start_ 

position 

end_ 

position 
description 

GPR125 ENSG00000152990 4 22345071 22516066 
adhesion G protein-coupled receptor A3 

[Source:HGNC Symbol;Acc:HGNC:13839] 

AHR ENSG00000106546 7 16916359 17346152 
aryl hydrocarbon receptor [Source:HGNC 

Symbol;Acc:HGNC:348] 

CCL13 ENSG00000181374 17 34356480 34358610 
C-C motif chemokine ligand 13 [Source:HGNC 

Symbol;Acc:HGNC:10611] 

CCNB2 ENSG00000157456 15 59105126 59125045 cyclin B2 [Source:HGNC Symbol;Acc:HGNC:1580] 

CD2 ENSG00000116824 1 116754430 116769229 
CD2 molecule [Source:HGNC 

Symbol;Acc:HGNC:1639] 

CD22 ENSG00000012124 19 35319261 35347361 
CD22 molecule [Source:HGNC 

Symbol;Acc:HGNC:1643] 

CD3E ENSG00000198851 11 118304730 118316175 
CD3 epsilon subunit of T-cell receptor complex 

[Source:HGNC Symbol;Acc:HGNC:1674] 

CD52 ENSG00000169442 1 26317958 26320523 
CD52 molecule [Source:HGNC 

Symbol;Acc:HGNC:1804] 

CD79A ENSG00000105369 19 41877279 41881372 
CD79a molecule [Source:HGNC 

Symbol;Acc:HGNC:1698] 

CDK4 ENSG00000135446 12 57747727 57756013 
cyclin dependent kinase 4 [Source:HGNC 

Symbol;Acc:HGNC:1773] 

CEBPD ENSG00000221869 8 47736913 47738164 
CCAAT enhancer binding protein delta 

[Source:HGNC Symbol;Acc:HGNC:1835] 

CENPF ENSG00000117724 1 214603185 214664574 
centromere protein F [Source:HGNC 

Symbol;Acc:HGNC:1857] 

CKM ENSG00000104879 19 45306413 45322875 
creatine kinase, M-type [Source:HGNC 

Symbol;Acc:HGNC:1994] 

COL11A1 ENSG00000060718 1 102876467 103108872 
collagen type XI alpha 1 chain [Source:HGNC 

Symbol;Acc:HGNC:2186] 

CPNE7 ENSG00000178773 16 89575758 89597246 copine 7 [Source:HGNC Symbol;Acc:HGNC:2320] 

CXCL10 ENSG00000169245 4 76021118 76023497 
C-X-C motif chemokine ligand 10 [Source:HGNC 

Symbol;Acc:HGNC:10637] 

FCER2 ENSG00000104921 19 7688758 7702146 
Fc epsilon receptor II [Source:HGNC 

Symbol;Acc:HGNC:3612] 

FAIM3 ENSG00000162894 1 206903317 206923247 
Fc mu receptor [Source:HGNC 

Symbol;Acc:HGNC:14315] 

FN1 ENSG00000115414 2 215360440 215436073 
fibronectin 1 [Source:HGNC 

Symbol;Acc:HGNC:3778] 

FOSB ENSG00000125740 19 45467995 45475179 
FosB proto-oncogene, AP-1 transcription factor 

subunit [Source:HGNC Symbol;Acc:HGNC:3797] 

FOXD3 ENSG00000187140 1 63322567 63325128 
forkhead box D3 [Source:HGNC 

Symbol;Acc:HGNC:3804] 

GADD45B ENSG00000099860 19 2476122 2478259 
growth arrest and DNA damage inducible beta 

[Source:HGNC Symbol;Acc:HGNC:4096] 

GREB1 ENSG00000196208 2 11482341 11642788 
growth regulating estrogen receptor binding 1 

[Source:HGNC Symbol;Acc:HGNC:24885] 
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HMOX1 ENSG00000100292 22 35380361 35394214 
heme oxygenase 1 [Source:HGNC 

Symbol;Acc:HGNC:5013] 

HP ENSG00000257017 16 72054505 72061055 
haptoglobin [Source:HGNC 

Symbol;Acc:HGNC:5141] 

IGFBP1 ENSG00000146678 7 45888360 45893660 
insulin like growth factor binding protein 1 

(Source:HGNC Symbol;Acc:HGNC:5469 

ITGA8 ENSG00000077943 10 15513954 15719922 
integrin subunit alpha 8 [Source:HGNC 

Symbol;Acc:HGNC:6144] 

KLF4 ENSG00000136826 9 107484852 107490482 
KLF transcription factor 4 [Source:HGNC 

Symbol;Acc:HGNC:6348] 

LCK ENSG00000182866 1 32251244 32286165 
LCK proto-oncogene, Src family tyrosine kinase 

[Source:HGNC Symbol;Acc:HGNC:6524] 

LGI4 ENSG00000153902 19 35124513 35142451 
leucine rich repeat LGI family member 4 

[Source:HGNC Symbol;Acc:HGNC:18712] 

FAM60A ENSG00000139146 12 31280584 31327058 
SIN3-HDAC complex associated factor 

[Source:HGNC Symbol;Acc:HGNC:30702] 

C8orf4 ENSG00000176907 8 40153482 40155310 
transcriptional and immune response regulator 

[Source:HGNC Symbol;Acc:HGNC:1357] 

 

 

Supplementary Table 9. Clinical and subtyping information of 19 NB single-cell datasets. 

Sample. ID Age. at. sampling Risk. group. INRG. at. diagnosis Stage. INRGSS. Predict 

NB01 4 Low L1 C1&2 

NB02 18 Intermediate L2 C3 

NB09 82 High M C3 

NB11 138 Intermediate L2 C1&2 

NB12 101 High M C3 

NB13 48 High M C3 

NB15 76 High M C1&2 

NB16 23 High L2 C3 

NB17 63 High M C1&2 

NB18 111 High M C3 

NB19 6 Low L2 C3 

NB20 83 High M C3 

NB23 7 Intermediate M C3 

NB24 128 High M C3 

NB26 4 Low L1 C1&2 

NB34 100 High M C3 

NB37 60 Low L2 C1&2 

 


