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INTRODUCTION 
 

Sepsis is a systemic inflammatory response syndrome 

caused by a major injury to the body, including burns, 

shock, severe infection, severe trauma, and surgery; the 

inflammatory response occurs rapidly and can quickly 

progress to severe sepsis and septic shock [1, 2]. Globally, 

there are estimated to be 31.5 million cases of sepsis 

annually, and in an estimated 17% and 26% of these 
cases, patients are hospitalized because of sepsis or severe 

sepsis, respectively [3]. The results of epidemiological 

studies indicate that more than half of all ICU deaths are 

caused by sepsis and its complications [4]. The number of 

deaths caused by sepsis and septic shock is estimated to 

be 1,400 worldwide each day [5]. Although sepsis, severe 

sepsis, and septic shock are now better understood and 

managed, the incidence of sepsis continues to increase [6]. 

Currently, a great deal of difficulty is faced when treating 

patients with severe sepsis and septic shock [7]. Hence, 

there remains an urgent need for better markers of sepsis 

and further investigation of the molecular mechanisms 

underlying sepsis. 

 
The endoplasmic reticulum (ER) plays an important 

role in cellular protein synthesis and processing, as well 

as maintaining intracellular stability [8, 9]. In ER stress 
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ABSTRACT 
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GABARAPL2, MAOA, MPO, PDZD8, QDPR, SCAP, TFRC, and TLR4) in the training set, which significantly divided 
patients with sepsis into high- and low-risk groups in terms of survival. This signature was validated using 
validation and external test sets. A nomogram based on the risk signature was constructed to quantitatively 
predict the prognosis of patients with sepsis. 
Conclusions: We constructed an ERS signature as a novel prognostic marker for predicting survival in sepsis 
patients, which could be used to develop novel biomarkers for the diagnosis, treatment, and prognosis of sepsis 
and to provide new ideas and prospects for future clinical research. 
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(ERS), as a result of disruption of ER homeostasis 

protein folding is compromised, which has been found 

to be associated with serious pathological processes, 

including hypoxia, starvation, and calcium imbalance 

[10, 11]. ER stress has also been confirmed in patients 

with sepsis. Recognizing the role of ER stress in the 

pathology of sepsis is important [12]. Lu et al. [13] 

found that inhibition of ER stress inhibits apoptosis and 

immune dysregulation in sepsis. Qian et al. [14] showed 

that ER-related proteins are significantly expressed in 

the liver of rats with sepsis, and inhibition of 

endoplasmic reticulum stress can reduce liver cell 

apoptosis. Recently, various diagnostic and prognostic 

models based on gene expression data have been 

developed for different diseases and have shown 

accurate disease risk prediction [15–17]. However, there 

has been little research on the role of endoplasmic 

reticulum stress-related genes in predicting the 

prognosis and diagnosis of sepsis. 

 

To bridge this knowledge gap, we focused on 

investigating the association between expression 

profiles of ERS-related genes (ERGs) and clinical 

outcomes in sepsis patients and constructed and 

validated ERGs risk score for predicting sepsis patient 

survival. This approach and tool are expected to 

improve the ability for predicting the survival of sepsis 

patients and guide comprehensive sepsis therapeutic 

strategies. Finally, a prognostic nomogram and 

visualization model were created using a web-based 

calculator integrating the signature, and clinical factors 

were developed in patients with sepsis. 

 

MATERIALS AND METHODS 
 

Data sources 

 

We retrospectively analyzed publicly available 

transcriptome profiling data (blood samples) and related 

clinical parameters from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). Two public 

datasets, GSE65682 (n=760, only 479 sepsis patients 

with complete data for survival status) and GSE95233 

(n=51), including data from 811 sepsis patients, were 

selected. Raw transcriptional expression profiles with 

clinical data were used as screening criteria, and the 

mean value was used when more than one probe was for 

a gene. 

 

The Biological Information Database of Sepsis (BIDOS, 

http://www.swmubidos.com/), a database of transcriptome 

profiling data of patients with sepsis, was used to explore 

the diagnostic and prognostic roles of individual ERGs in 

sepsis. ERGs were acquired from the GeneCards 

Database (https://www.genecards.org/) [18], and 1,116 

ERGs with a relevance score ≥ 7 were selected. 

Differentially expressed ERGs and functional 

analysis 

 

Differentially expressed ERGs were screened by 

comparing healthy control (n=42) and sepsis samples 

(n=760) and identified using the “limma” package in the 

R with adjusted P value < 0.05 and |log2-fold change 

(FC)|>0.5 as the selection criteria. A heatmap and 

volcano map were drawn using the R packages 

“pheatmap” and “ggpubr.”  

 

The “org.Hs.eg.db,” “clusterProfiler,” “enrichplot,” and 

“ggplot2” R packages were used to perform Gene 

ontology (GO) and KEGG pathway analysis for 

differentially expressed ERGs. Statistical significance 

was set at P < 0.05. 

 

Establishment and verification of the ERG signature 

 

The patients with sepsis in GSE65682 dataset (n=479, 

patients with complete survival data) were randomized 

divided into two groups at a 6:4 ratio: the training set 

(n=288) and validation set (n=191) using “caret” R 

package with proportionate-stratified random sampling 

(https://cran.r-project.org/web/packages/caret/index.html). 

A comparison of the baseline demographics and clinical 

profiles of the training and validation sets is presented 

in Table 1. The training set was used to establish the 

prognostic ERG signature. Univariate Cox regression 

analysis was conducted to select the survival-related 

ERGs by the “survival” package. LASSO regression 

was also used to screen for significant candidate genes 

to analyze survival profiles by the R package “glmnet”, 

which can display actively associated variables in 

higher dimensions. Subsequently, a multivariate Cox 

regression risk signature was built based on selected 

genes using LASSO regression to assess the prognosis 

of sepsis patients by calculating the risk score. A 

formula was developed using the gene signatures 

described above.  

 

Risk score = mRNA1×coefficient1+ 

mRNA2×coefficient2+……+ mRNA× coefficient i. 

 

Based on the median risk score, patients with sepsis 

were separated into low- and high-risk categories. The 

sensitivity and specificity of the prognostic signature 

were determined using Kaplan-Meier curve analysis and 

ROC curves. The predictive accuracy the ERG risk 

model was assessed by Kaplan-Meier curve and ROC 

analysis. 

 

The risk score was also calculated using the validation 
set. Based on the cutoff value from the training cohort, 

the cases in the validation set were separated into high- 

or low-risk groups. 

https://www.ncbi.nlm.nih.gov/geo/
http://www.swmubidos.com/
https://www.genecards.org/
https://cran.r-project.org/web/packages/caret/index.html
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Table 1. Baseline demographics and clinical characteristics of patients in training set and 
validation set. 

Characteristics Training set (n=288) Validation set (n=191) Total (n=479) P value 

Gender, n (%)    0.13 

  Male 172 (35.91%) 100 (20.88%) 272 (56.78%)  

  Female 116 (24.22%) 91 (19.00%) 207 (43.22%)  

Age, years 60.04±15.40 62.34±13.74 60.95±14.79 0.09 

Pneumonia diagnoses, n (%)    0.92 

  HAP 47 (9.81%) 30 (6.26%) 77 (16.08%)  

  CAP 62 (12.94%) 44 (9.19%) 106 (22.13%)  

  Unknown 179 (37.37%) 117 (24.43%) 296 (61.80%)  

ICU acquired infection, n (%)    0.61 

  No 161 (33.61%) 114 (23.80%) 275 (57.41%)  

  Yes 27 (5.64%) 19 (3.97%) 46 (9.60%)  

  Unknown 100 (20.88%) 58 (12.11%) 158 (32.99%)  

Diabetes, n (%)    0.26 

  No 178 (37.16%) 123 (25.68%) 301 (62.84%)  

  Yes 50 (10.44%) 39 (8.14%) 89 (18.58%)  

  Unknown 60 (12.53%) 29 (6.05%) 89 (18.58%)  

Outcome, n (%)    0.12 

  Dead 61 (12.73%) 53 (11.06%) 114 (23.80%)  

  Alive 227 (47.39%) 138 (28.81%) 365 (76.20%)  

HAP, hospital acquired pneumonia; CAP, community acquired pneumonia. 

 

Immune infiltration analysis 

 

To determine difference of immune infiltration between 

different risk groups, a violin plot was constructed to 

present the contribution of immune cell infiltration in 

the high- and low-risk groups using the CIBERSORT 

algorithm (https://cibersort.stanford.edu/) [19]. The 22 

types of immune cells were mapped using a landscape 

map to show how they differed between high- and low-

risk groups. 

 

Statistical analysis 
 

Our statistical analyses were conducted using R 

software (version 4.2.1) and GraphPad Prism 8.3.0. 

Result with P < 0.05 (two-sided) were considered 

statistically significant. 

 

RESULTS 
 

Identification of differentially expressed genes 
 

To obtain the differentially expressed genes between 

healthy subjects and sepsis, gene expression of 

GSE65682 datasets were enrolled as discovery dataset. 

A total of 3648 genes, including 1187 up-regulated and 

2461 down-regulated genes, were screened in 

GSE65682 dataset between healthy control and sepsis 

(Supplementary Table 1). Heatmap was used to indicate 

the top 100 differential genes in sepsis (Figure 1A). The 

volcano plot was generated for the differential genes 

(Figure 1B). To explore the function of this 

differentially expressed genes, the dysregulated genes 

were then used to perform GO and KEGG pathway 

enrichment analyses, separately (Figure 1C, 1D). 

 

Construction of ERG prognostic signature 

 

First, according to the expression levels of the 256 

differentially expressed ERGs (Supplementary Figure 

1A), duration of follow-up, and survival status acquired 

from GEO database, we got a total of 64 ERGs related 

to survival by using univariate analysis (Supplementary 

Table 2). Then, the 64 survival related ERGs were 

submitted to LASSO regression by 10-fold cross 

validation, and 16 ERGs were identified 

(Supplementary Figure 1B). Finally, the selected 16 

ERGs used for multivariate Cox regression analysis and 
10 ERGs were included in the risk signature, eventually 

(Supplementary Figure 1C). Based on the Cox 

regression, we established an ERGs signature as 

follows: risk score = (-0.66117 × mRNA value of 

https://cibersort.stanford.edu/
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ADRB2) + (0.23933 × mRNA value of DHCR7) + (-

1.08258 × mRNA value of GABARAPL2) + (0.30108 

× mRNA value of MAOA) + (0.12385 × mRNA value 

of MPO) + (0.92966 × mRNA value of PDZD8) + (-

0.53967 × mRNA value of QDPR) + (-0.63250 × 

mRNA value of SCAP) + (0.30857 × mRNA value of 

TFRC) + (-0.53252 × mRNA value of TLR4).  

 

Moreover, we investigated the correlations between the 

10 identified ERGs. The heat map of gene expression 

correlation is showed in Supplementary Figure 1D. 

 

Validation of the expression of the identified ERGs 

 

To verify the microarray gene expression data, the 10 

genes were selected for validation by BIDOS database 

by meta-analysis. By pooling the data of all eligible 

studies, the results revealed that ADRB2 mRNA were 

significantly decreased for the sepsis cases in 

comparison with normal cases (Supplementary Figure 

2A, SMD=0.67, 95% CI=[0.49,0.95]). By pooling the 

data of all eligible studies, the results revealed that 

DHCR7 mRNA were significantly increased for the 

sepsis cases in comparison with normal cases 

(Supplementary Figure 2B, SMD=-0.76, 95% CI = [-

0.99, -0.52]). By pooling the data of all eligible studies, 

the results revealed that GABARAPL2 mRNA were 

significantly increased for the sepsis cases in 

comparison with normal cases (Supplementary Figure 

2C, SMD=-0.74, 95% CI=[-0.98, -0.50]). By pooling 

the data of all eligible studies, the results revealed that 

MAOA mRNA were significantly increased for the 

sepsis cases in comparison with normal cases 

(Supplementary Figure 2D, SMD=-0.27, 95% CI = 

 

 
 

Figure 1. Identification of differently expressed genes associated with sepsis. (A) Heatmap of top 100 differently expressed genes. 

(B) Volcano plot of 3,648 differently expressed genes. (C) GO functional enrichment of differently expressed genes between normal control 
and sepsis. (D) KEGG functional enrichment of differently expressed genes between normal control and sepsis. 
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[-0.54,0.00]). By pooling the data of all eligible studies, 

the results revealed that MAOA mRNA were sig-

nificantly increased for the sepsis cases in comparison 

with normal cases (Supplementary Figure 2E, SMD=-

0.97, 95% CI=[-1.21, -0.73]). By pooling the data of all 

eligible studies, the results revealed that PDZD8 mRNA 

were significantly increased for the sepsis cases in 

comparison with normal cases (Supplementary Figure 

2F, SMD=-0.94, 95% CI=[-1.18,-0.70]). By pooling the 

data of all eligible studies, the results revealed that 

QDPR mRNA were significantly decreased for the 

sepsis cases in comparison with normal cases 

(Supplementary Figure 2G, SMD=0.54, 95% 

CI=[0.31,0.78]). By pooling the data of all eligible 

studies, the results revealed that SCAP mRNA were 

significantly decreased for the sepsis cases in 

comparison with normal cases (Supplementary Figure 

2H, SMD=0.91, 95% CI=[0.68,1.15]). By pooling the 

data of all eligible studies, the results revealed that 

TFRC mRNA were significantly increased for the 

sepsis cases in comparison with normal cases 

(Supplementary Figure 2I, SMD=-0.50, 95% CI=[-

0.72,-0.27]). By pooling the data of all eligible studies, 

the results revealed that TLR4 mRNA were 

significantly increased for the sepsis cases in 

comparison with normal cases (Supplementary Figure 

2J, SMD=-0.92, 95% CI=[-1.16,-0.67]).  

 

ERGs diagnostic value for sepsis 

 

In order to determine the diagnostic value of the 10 

selected ERGs in the risk signature, the ROC curve was 

employed based on GSE65682. Supplementary Figure 3 

showed the AUC value of ADRB2 (0.928 [95%CI: 

0.896-0.961]), DHCR7 (0.794 [95%CI: 0.750-0.839]), 

GABARAPL2 (0.898 [95%CI: 0.862-0.934]), MAOA 

(0.913 [95%CI: 0.876-0.951]), MPO (0.815[95%CI: 

0.759-0.871]), PDZD8 (0.893[95%CI: 0.857-0.928]), 

QDPR (0.956 [95% CI: 0.932-0.981]), SCAP (0.924 

[95% CI: 0.900-0.947]), TFRC (0.715 [95%CI: 0.674-

0.757]), and TLR4 (0.829 [95%CI: 0.786-0.872]).  

 

ERGs prognostic value for sepsis 

 

To verify the prognostic value of the selected ERGs, we 

performed the overall survival curves based on the data 

from BIDOS database. Survival analyses revealed that 

sepsis cases with low levels of mRNA of ADRB2, 

QDPR, SCAP, and TLR4 had worse overall survival 

(Figure 2). However, sepsis cases with increased levels 

of mRNA of DHCR7, GABARAPL2, MAOA, MPO, 

PDZD8, and TFRC had worse overall survival  

(Figure 2). 

 

Predictive power of the ERG signature 

 

According to the median of the ERG signature score, 

the training set was categorized into high- and low- risk 

groups. The distribution of risk scores, survival status of 

each case, and the heat map of ERGs expression in the 

training set are summarized in Figure 3A–3C. We 

further performed ROC analysis to evaluate the 

predictive power of the ERG based risk signature and 

drew ROC curve. The results showed that the AUC of 

the survival-related ERG signature was 0.800 for the 

training set (Figure 3D). The KM analysis confirmed 

that the survival curve for the low-risk cases was higher 

than that for the high-risk cases (Figure 3E). Figure 3F 

also showed the proportion of dead cases was increased 

in the high-risk group. 

 

 
 

Figure 2. The prognostic value of ERGs expression in sepsis. KM survival curves of (A) ADRB2, (B) DHCR7, (C) GABARAPL2, (D) MAOA, 
(E) MPO, (F) PDZD8, (G) QDPR, (H) SCAP, (I) TFRC, and (J) TLR4. 
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Validation of the prognostic role of the risk 

signature 

 

According to the identified cutoff value in the training 

set, the cases for validation set was categorized into 

high- and low- risk groups. The distribution of risk 

scores, survival status of each case, and the heat map of 

ERGs expression in the training set are showed in 

Figure 4A–4C. In addition, we carried out ROC analysis 

to evaluate the predictive power of the ERG based risk 

signature and drew ROC curve. The results showed that 

the AUC of our ERG signature was 0.802 in the 

validation set (Figure 4D). The KM analysis confirmed 

that the high-risk cases had a worse prognosis when 

compared with the low-risk cases (Figure 4E). Figure 

4F showed the proportion of dead cases were increased 

in the high-risk group. 

 

In addition, the GSE95233 dataset was used as an 

external dataset. We performed ROC analysis to evaluate 

the predictive power of the ERG based risk signature and 

drew ROC curve. The results showed that the AUC of 

our novel ERG signature was 0.660 for GSE95233 

(Figure 5A). Figure 5B also showed the proportion of 

dead cases was increased in the high-risk group. 

 

The patterns of immune cell infiltration 

 

Figure 6A revealed the patterns of 22 subpopulations of 

immune cells’ proportion in blood between sepsis and 

normal control. Violin plot of absolute CIBERSORT 

scores revealed that compared to low-risk groups, the 

high risk exhibited higher infiltration of plasma cells, 

M0 macrophages, Dendritic cells resting, and 

Eosinophils, and lower infiltration of B cells memory, T 

cells CD8, T cells gamma delta, and Macrophages M1 

(Figure 6B). 

 

ERGs signature acts as an independent prognostic 

predictor 

 

In order to find the independent prognostic factors for 

sepsis, we performed univariate and multivariate Cox 

regression analysis in the training set based on the 

following factors: gender, age, pneumonia, ICU 

acquired infection, diabetes, and ERG signature score. 

The results indicated that the ERG signature was  

an independent of risk factor for outcome of sepsis 

(Figure 7A, 7B). 

 

Construction of nomogram 

 

To better predict the survival probability of different time 

of sepsis patients, we established a nomogram based  

on the gender, age, pneumonia, and risk signature 

(Supplementary Figure 4A). With the median risk score 

as the cut-off value, the training set cases were divided 

into high risk and low risk. The KM analysis showed that 

the survival curve of the low-risk group was higher than 

that of the high-risk group (Supplementary Figure 4B). 

 

 
 

Figure 3. Assessment of the predictive power of the risk signature in the training set. (A) Distribution of risk scores. (B) Survival 

status of each case. (C) Heat map of ERG expression. (D) ROC analysis of the survival-related prognostic signature. (E) Kaplan–Meier (KM) 
survival curves for the overall survival of the risk score. (F) Comparison of survival rate between two groups. 
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Supplementary Figure 4C shows the Calibration 

curves of the nomogram for the probability of survival 

at 5-, 15-, and 25- days. We performed ROC analysis 

to assess the predictive power of the nomogram and 

drew ROC curve. The results revealed that the AUC 

of 5-, 15- and 25- days survival predictive power was 

0.871, 0.862, and 0.833, respectively (Supplementary 

Figure 4D). It is conceivable that the final combined 

prognostic model is more efficient than single risk 

signature. 

 

 
 

Figure 4. Validation of the predictive power of the risk signature in the validation set. (A) Distribution of risk scores. (B) Survival 

status of each case. (C) Heat map of ERG expression. (D) ROC analysis of the survival-related prognostic signature. (E) Kaplan–Meier (KM) 
survival curves for the overall survival of the risk score. (F) Comparison of survival rate between two groups. 

 

 
 

Figure 5. Validation of the predictive power of the risk signature in the external test set. (A) ROC analysis of the survival-related 

prognostic signature. (B) Comparison of survival rate between two groups. 
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Finally, we have also created an online predict tool for 

users to explore and visualize the predictive data 

(Figure 8) (https://predict2023.shinyapps.io/survival/). 

 

DISCUSSION 
 

Sepsis is the most common causes of death for critically 

ill patients [20, 21]. Early identification of diagnostic 

and prognostic biomarkers of sepsis can play a pivotal 

role in its treatment, and when appropriate treatment is 

promptly initiated, the mortality rate reduces [22, 23]. 

Recently, high-throughput sequencing and data 

processing, which can identify biomarkers for prognosis 

prediction, have gradually become significant tools in 

biomedical research [24, 25]. Accordingly, there is now 

a significant opportunity to develop biomarkers as 

 

 
 

Figure 6. Immune characteristics of patients in the high- and low-risk groups. (A) Relative proportion of immune cells between 

high- and low-risk groups. (B) Violin plot indicating relative proportions of immune cell expression distribution of sepsis patients stratified by 
the ten-gene signature into high- and low-risk groups. 

https://predict2023.shinyapps.io/survival/


www.aging-us.com 13442 AGING 

predictive indicators of sepsis and to use these 

biomarkers as the foundation for the development of 

effective therapies. 

 

In the present study, we got the mRNA expression data 

and survival data from the GEO database to screen the 

prognostic-related ERGs. Then, LASSO and multivariate 

Cox regression analyses were carried out based on the 

selected ERGs. Next, we identified a ten-gene signature 

(ADRB2, DHCR7, GABARAPL2, MAOA, MPO, 

PDZD8, QDPR, SCAP, TFRC, and TLR4), rather than a 

single gene, with prognostic value for cases of sepsis. 

The stability and efficiency of the prediction model were 

verified using independent GEO datasets. The results of 

Cox regression analyses found the ten-ERG risk score 

was an independent risk predictor for outcome of sepsis. 

Lastly, we established a nomogram to help us more 

intuitively predict the 5 -, 15-, and 25-day survival rates. 

To the best of our knowledge, our work is the first study 

which an effective prognostic ERG signature for sepsis 

has been developed and validated. 

In the current study, all these ERGs included in the risk 

signature have already been confirmed to be associated 

with endoplasmic reticulum stress. However, studies 

have been limited regarding their specific mechanisms 

of action in endoplasmic reticulum stress for sepsis. Our 

study mainly focused the prognostic value of ERGs, 

future researches are needed to clarify the specific role 

of these ERGs in regulating the survival of sepsis. 

ADRB2 (beta-2 adrenergic receptor gene) is an intron 

less gene located on chromosome 5q31.32. Researchers 

discovered that ADRB2 signaling synergizes with Toll 

receptors to promote rapid IL-10 release, but ADRB2 

deficiency results in inflammation in bacterial infections 

and inflammatory colitis [26]. The enzyme 7-

dehydrocholesterol reductase (DHCR7) is the ultimate 

enzyme in sterol biosynthesis, converting 7-dehydro-

cholesterol to cholesterol [27]. MAOA is a 

mitochondrial enzyme that catalyzes the oxidative 

deamination of dietary amines and monoamine 

neurotransmitters, such as serotonin, norepinephrine, 

and dopamine [28, 29]. Recent studies have shown that 

 

 
 

Figure 7. Risk score as an independent predictor of survival. (A) Univariate Cox regression analysis results. (B) Multivariate Cox 
regression analysis results.  

 

 
 

Figure 8. Web-based calculator for estimating the survival probability. (A) By entering the specifics of the sepsis into the web-based 
program, the participant’s survival probability can be determined (https://predict2023.shinyapps.io/survival/). (B) Numerical summary of the 
model. 

https://predict2023.shinyapps.io/survival/
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MAOA is correlated with sepsis-induced cardiac 

dysfunction [30]. Neutrophil myeloperoxidase (MPO)  

is a peroxidase enzyme abundant in neutrophil granulo-

cytes. MPO level in tissue is an indicator of neutrophil 

migration, which reflects inflammation [31]. 

Neutrophils are the initial responders in sepsis, and once 

activated, release their granule contents, especially 

MPO [32]. The cellular function of PDZ domain-

containing 8 protein (PDZD8) is uncertain, although 

There is evidence that PDZD8 is a moesin-interacting 

and microtubule stability regulating factor [33]. Toll-

like receptor 4 (TLR4) is associated with innate 

immunity, as well as mediating inflammatory responses 

when it recognizes lipopolysaccharides (LPS) and 

endotoxins produced by bacteria. TLR4 is believed to 

have opposing effects In different conditions [34]. 

However, related studies of other genes in sepsis are 

still lacking. 

 

Currently, there are no effective diagnostic biomarkers 

for sepsis [35]. Most biomarkers have been proposed as 

useful in the diagnosis of sepsis simply because their 

levels were found to be increased or decreased to a 

larger extent in sepsis patients than in non-sepsis 

patients or healthy individuals [36]. Due to these defects 

for the biomarkers, it is hard to applied to ICU clinical 

practice. In the present study, we assessed the 

diagnostic value of ERGs for sepsis. The results showed 

that most of these genes presented good diagnostic 

value for sepsis. However, these biomarkers require 

further validation and reliability studies. 

 

To date, many studies have focused on endoplasmic 

reticulum stress in sepsis [37–39]. However, the 

biological events influenced by endoplasmic reticulum 

stress, especially the turbulence of immune cell 

infiltration, have not been well elucidated [40]. In the 

present study, we found that the high-risk group 

exhibited higher infiltration of plasma cells, M0 

macrophages, resting dendritic cells, and eosinophils 

and lower infiltration of memory B cells, CD8 and 

gamma delta T cells, and M1 macrophages. This 

evidence for the association between ER stress and 

immunity highlights the importance of immunotherapy 

for sepsis patients with a high ERG risk score. 

 

Despite the novel findings reported in our study and the 

positive implications for patients with sepsis, out study 

has limitations that require further investigation. First, we 

investigated the prognostic value of ERGs in sepsis 

cases, but we ignored other key genes, such as apoptosis- 

and oxidative stress-related genes, which might also play 
key roles in the development and progression of sepsis. 

Second, we established the risk score by the data of high-

throughput sequencing, the critical mechanism of these 

ERGs play in sepsis should be explored intensively in the 

future study. Third, although the results from validation 

set showed our risk score had a good predictive power, 

the prognostic ability for patients in different countries 

and regions remains unclear.  

 

AUTHOR CONTRIBUTIONS 
 

LJ, WH, and XH performed the analysis. JL, YY, and 

CC performed the experiments. HL and LY designed 

this work. All authors contributed to the article and 

approved the submitted version. 

 

CONFLICTS OF INTEREST 
 

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that 

could be construed as a potential conflict of interest. 

 

ETHICAL STATEMENT 
 

All clinical data and related parameters were obtained 

from public databases, and therefore, approval from the 

ethics committee is not required for this study. 

 

FUNDING 
 

This work was supported by the Science and technology 

program of Jiangxi Provincial Administration of 

Traditional Chinese Medicine (no. 2022B1087), Science 

and Technology Research Project of Education 

Department of Jiangxi province (no. GJJ2200143), Key 

R&D plan of Jiangxi Province (no. 20202BBG73011), 

Science and Technology Program of Jiangxi Health 

Commission (no. 202210365), and Degree and 

postgraduate education teaching reform research project 

in Jiangxi Province (no. JXYJG-2022-005). 

 

REFERENCES 
 
1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli 

M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, 
Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, et 
al. Surviving Sepsis Campaign: International Guidelines 
for Management of Sepsis and Septic Shock: 2016. Crit 
Care Med. 2017; 45:486–552. 

 https://doi.org/10.1097/CCM.0000000000002255 
PMID:28098591 

2. Fleischmann C, Thomas-Rueddel DO, Hartmann M, 
Hartog CS, Welte T, Heublein S, Dennler U, Reinhart K. 
Hospital Incidence and Mortality Rates of Sepsis. Dtsch 
Arztebl Int. 2016; 113:159–66. 

 https://doi.org/10.3238/arztebl.2016.0159 
PMID:27010950 

3. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, 
Tsaganos T, Schlattmann P, Angus DC, Reinhart K, and 

https://doi.org/10.1097/CCM.0000000000002255
https://pubmed.ncbi.nlm.nih.gov/28098591/
https://doi.org/10.3238/arztebl.2016.0159
https://pubmed.ncbi.nlm.nih.gov/27010950


www.aging-us.com 13444 AGING 

International Forum of Acute Care Trialists. Assessment 
of Global Incidence and Mortality of Hospital-treated 
Sepsis. Current Estimates and Limitations. Am J Respir 
Crit Care Med. 2016; 193:259–72. 

 https://doi.org/10.1164/rccm.201504-0781OC 
PMID:26414292 

4. Zhang Z, Wang Y, Shan Y, Zhou R, Yin W. Oroxylin A 
alleviates immunoparalysis of CLP mice by degrading 
CHOP through interacting with FBXO15. Sci Rep. 2020; 
10:19272. 

 https://doi.org/10.1038/s41598-020-76285-x 
PMID:33159144 

5. Li D, Li X, Cui W, Shen H, Zhu H, Xia Y. Liberal versus 
conservative fluid therapy in adults and children with 
sepsis or septic shock. Cochrane Database Syst Rev. 
2018; 12:CD010593. 

 https://doi.org/10.1002/14651858.CD010593.pub2 
PMID:30536956 

6. Khatana J, Thavamani A, Umapathi KK, Sankararaman 
S, Roy A. Increasing incidence of acute kidney injury in 
pediatric severe sepsis and related adverse hospital 
outcomes. Pediatr Nephrol. 2023; 38:2809–15. 

 https://doi.org/10.1007/s00467-022-05866-x 
PMID:36622440 

7. Tabah A, Buetti N, Barbier F, Timsit JF. Current 
opinion in management of septic shock due to 
Gram-negative bacteria. Curr Opin Infect Dis. 2021; 
34:718–27. 

 https://doi.org/10.1097/QCO.0000000000000767 
PMID:34751185 

8. Schildberg FA, Schulz S, Dombrowski F, Minor T. Cyclic 
AMP alleviates endoplasmic stress and programmed 
cell death induced by lipopolysaccharides in human 
endothelial cells. Cell Tissue Res. 2005; 320:91–8. 

 https://doi.org/10.1007/s00441-004-1066-4 
PMID:15714276 

9. Kozlov AV, Duvigneau JC, Miller I, Nürnberger S, 
Gesslbauer B, Kungl A, Ohlinger W, Hartl RT, Gille L, 
Staniek K, Gregor W, Haindl S, Redl H. Endotoxin 
causes functional endoplasmic reticulum failure, 
possibly mediated by mitochondria. Biochim Biophys 
Acta. 2009; 1792:521–30. 

 https://doi.org/10.1016/j.bbadis.2009.03.004 
PMID:19327397 

10. Sandoval J, Orlicky DJ, Allawzi A, Butler B, Ju C, Phan 
CT, Toston R, De Dios R, Nguyen L, McKenna S, Nozik-
Grayck E, Wright CJ. Toxic Acetaminophen Exposure 
Induces Distal Lung ER Stress, Proinflammatory 
Signaling, and Emphysematous Changes in the Adult 
Murine Lung. Oxid Med Cell Longev. 2019; 
2019:7595126. 

 https://doi.org/10.1155/2019/7595126 
PMID:31885815 

11. Chen ZW, Huang CY, Cheng JF, Chen SY, Lin LY, Wu CK. 
Stress Echocardiography-Derived E/e’ Predicts 
Abnormal Exercise Hemodynamics in Heart Failure 
With Preserved Ejection Fraction. Front Physiol. 
2019;10:1470. 

 https://doi.org/10.3389/fphys.2019.01470 
PMID:31849715 

12. Thiessen SE, Van den Berghe G, Vanhorebeek I. 
Mitochondrial and endoplasmic reticulum dysfunction 
and related defense mechanisms in critical illness-
induced multiple organ failure. Biochim Biophys Acta 
Mol Basis Dis. 2017; 1863:2534–45. 

 https://doi.org/10.1016/j.bbadis.2017.02.015 
PMID:28219766 

13. Lu G, Li Q, Liu J, Jia Y, Tang J, Zhang X. Inhibition of 
endoplasmic reticulum stress and the downstream 
pathways protects CD4+ T cells against apoptosis and 
immune dysregulation in sepsis. IUBMB Life. 2022; 
74:1070–80. 

 https://doi.org/10.1002/iub.2666 PMID:35859520 

14. Qian WJ, Cheng QH. Endoplasmic reticulum stress-
mediated apoptosis signal pathway is involved in 
sepsis-induced liver injury. Int J Clin Exp Pathol. 2017; 
10:9990–7. 

 PMID:31966888 

15. Zeng Z, Zou K, Qing C, Wang J, Tang Y. Predicting 
mortality in acute kidney injury patients undergoing 
continuous renal replacement therapy using a 
visualization model: A retrospective study. Front 
Physiol. 2022; 13:964312. 

 https://doi.org/10.3389/fphys.2022.964312 
PMID:36425293 

16. Tang Y, Guo Y. A Ubiquitin-Proteasome Gene Signature 
for Predicting Prognosis in Patients With Lung 
Adenocarcinoma. Front Genet. 2022; 13:893511. 

 https://doi.org/10.3389/fgene.2022.893511 
PMID:35711913 

17. Liu X, Liu P, Chernock RD, Kuhs KAL, Lewis JS Jr, Luo J, 
Gay HA, Thorstad WL, Wang X. A prognostic gene 
expression signature for oropharyngeal squamous cell 
carcinoma. EBioMedicine. 2020; 61:102805. 

 https://doi.org/10.1016/j.ebiom.2020.102805 
PMID:33038770 

18. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, 
Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan 
S, Dahary D, Warshawsky D, et al. The GeneCards 
Suite: From Gene Data Mining to Disease Genome 
Sequence Analyses. Curr Protoc Bioinformatics. 2016; 
54:1.30.1–1.30.33. 

 https://doi.org/10.1002/cpbi.5 PMID:27322403 

19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 

https://doi.org/10.1164/rccm.201504-0781OC
https://pubmed.ncbi.nlm.nih.gov/26414292
https://doi.org/10.1038/s41598-020-76285-x
https://pubmed.ncbi.nlm.nih.gov/33159144
https://doi.org/10.1002/14651858.CD010593.pub2
https://pubmed.ncbi.nlm.nih.gov/30536956
https://doi.org/10.1007/s00467-022-05866-x
https://pubmed.ncbi.nlm.nih.gov/36622440
https://doi.org/10.1097/QCO.0000000000000767
https://pubmed.ncbi.nlm.nih.gov/34751185
https://doi.org/10.1007/s00441-004-1066-4
https://pubmed.ncbi.nlm.nih.gov/15714276
https://doi.org/10.1016/j.bbadis.2009.03.004
https://pubmed.ncbi.nlm.nih.gov/19327397
https://doi.org/10.1155/2019/7595126
https://pubmed.ncbi.nlm.nih.gov/31885815
https://doi.org/10.3389/fphys.2019.01470
https://pubmed.ncbi.nlm.nih.gov/31849715
https://doi.org/10.1016/j.bbadis.2017.02.015
https://pubmed.ncbi.nlm.nih.gov/28219766
https://doi.org/10.1002/iub.2666
https://pubmed.ncbi.nlm.nih.gov/35859520/
https://pubmed.ncbi.nlm.nih.gov/31966888
https://doi.org/10.3389/fphys.2022.964312
https://pubmed.ncbi.nlm.nih.gov/36425293
https://doi.org/10.3389/fgene.2022.893511
https://pubmed.ncbi.nlm.nih.gov/35711913
https://doi.org/10.1016/j.ebiom.2020.102805
https://pubmed.ncbi.nlm.nih.gov/33038770
https://doi.org/10.1002/cpbi.5
https://pubmed.ncbi.nlm.nih.gov/27322403


www.aging-us.com 13445 AGING 

enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–7. 

 https://doi.org/10.1038/nmeth.3337 PMID:25822800 

20. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd 
PL, Kahn KL, Parsonnet J, Panzer R, Orav EJ, Snydman 
DR, Black E, Schwartz JS, Moore R, et al, and Academic 
Medical Center Consortium Sepsis Project Working 
Group. Epidemiology of sepsis syndrome in 8 academic 
medical centers. JAMA. 1997; 278:234–40. 

 PMID:9218672 

21. Cuenca JA, Manjappachar NK, Ramírez CM, Hernandez 
M, Martin P, Gutierrez C, Rathi N, Sprung CL, Price KJ, 
Nates JL. Outcomes and Predictors of 28-Day Mortality 
in Patients With Solid Tumors and Septic Shock Defined 
by Third International Consensus Definitions for Sepsis 
and Septic Shock Criteria. Chest. 2022; 162:1063–73. 

 https://doi.org/10.1016/j.chest.2022.05.017 
PMID:35644244 

22. Finfer S. The Surviving Sepsis Campaign: robust 
evaluation and high-quality primary research is still 
needed. Intensive Care Med. 2010; 36:187–9. 

 https://doi.org/10.1007/s00134-009-1737-4 
PMID:20069276 

23. Hu J, Xie S, Li W, Zhang L. Diagnostic and prognostic 
value of serum S100B in sepsis-associated 
encephalopathy: A systematic review and meta-
analysis. Front Immunol. 2023; 14:1102126. 

 https://doi.org/10.3389/fimmu.2023.1102126 
PMID:36776893 

24. Chen J, Zhou C, Liu Y. Establishing a cancer driver gene 
signature-based risk model for predicting the 
prognoses of gastric cancer patients. Aging (Albany 
NY). 2022; 14:2383–99. 

 https://doi.org/10.18632/aging.203948 
PMID:35288483 

25. Wang J, He L, Tang Y, Li D, Yang Y, Zeng Z. 
Development and validation of a nomogram with an 
epigenetic signature for predicting survival in patients 
with lung adenocarcinoma. Aging (Albany NY). 2020; 
12:23200–16. 

 https://doi.org/10.18632/aging.104090 
PMID:33221751 

26. Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD. 
The β2-adrenergic receptor controls inflammation by 
driving rapid IL-10 secretion. Brain Behav Immun. 
2018; 74:176–185. 

 https://doi.org/10.1016/j.bbi.2018.09.004 
PMID:30195028 

27. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, 
Salen G. Defective cholesterol biosynthesis associated 
with the Smith-Lemli-Opitz syndrome. N Engl J Med. 
1994; 330:107–13. 

 https://doi.org/10.1056/NEJM199401133300205 
PMID:8259166 

28. Shih JC, Chen K, Ridd MJ. Monoamine oxidase:  
from genes to behavior. Annu Rev Neurosci. 1999; 
22:197–217. 

 https://doi.org/10.1146/annurev.neuro.22.1.197 
PMID:10202537 

29. Bortolato M, Chen K, Shih JC. Monoamine oxidase 
inactivation: from pathophysiology to therapeutics. 
Adv Drug Deliv Rev. 2008; 60:1527–33. 

 https://doi.org/10.1016/j.addr.2008.06.002 
PMID:18652859 

30. Mo G, Mo J, Tan X, Wang J, Yan Z, Liu Y. Yin Yang 1 
(YY1)-induced long intergenic non-protein coding RNA 
472 (LINC00472) aggravates sepsis-associated cardiac 
dysfunction via the micro-RNA-335-3p (miR-335-
3p)/Monoamine oxidase A (MAOA) cascade. 
Bioengineered. 2022; 13:1049–61. 

 https://doi.org/10.1080/21655979.2021.2017589 
PMID:35112970 

31. Bedirli N, Bagriacik EU, Yilmaz G, Ozkose Z, Kavutçu M, 
Cavunt Bayraktar A, Bedirli A. Sevoflurane exerts brain-
protective effects against sepsis-associated 
encephalopathy and memory impairment through 
caspase 3/9 and Bax/Bcl signaling pathway in a rat 
model of sepsis. J Int Med Res. 2018; 46:2828–42. 

 https://doi.org/10.1177/0300060518773265 
PMID:29756489 

32. Yu H, Liu Y, Wang M, Restrepo RJ, Wang D, Kalogeris TJ, 
Neumann WL, Ford DA, Korthuis RJ. Myeloperoxidase 
instigates proinflammatory responses in a cecal 
ligation and puncture rat model of sepsis. Am J Physiol 
Heart Circ Physiol. 2020; 319:H705–21. 

 https://doi.org/10.1152/ajpheart.00440.2020 
PMID:32762560 

33. Henning MS, Stiedl P, Barry DS, McMahon R, Morham 
SG, Walsh D, Naghavi MH. PDZD8 is a novel moesin-
interacting cytoskeletal regulatory protein that 
suppresses infection by herpes simplex virus type 1. 
Virology. 2011; 415:114–21. 

 https://doi.org/10.1016/j.virol.2011.04.006 
PMID:21549406 

34. Heine H, Zamyatina A. Therapeutic Targeting of TLR4 
for Inflammation, Infection, and Cancer: A Perspective 
for Disaccharide Lipid A Mimetics. Pharmaceuticals 
(Basel). 2022; 16:23. 

 https://doi.org/10.3390/ph16010023  
PMID:36678520 

35. Agnello L, Ciaccio M. Biomarkers of Sepsis. Diagnostics 
(Basel). 2023; 13:435. 

 https://doi.org/10.3390/diagnostics13030435 
PMID:36766539 

https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800
https://pubmed.ncbi.nlm.nih.gov/9218672
https://doi.org/10.1016/j.chest.2022.05.017
https://pubmed.ncbi.nlm.nih.gov/35644244
https://doi.org/10.1007/s00134-009-1737-4
https://pubmed.ncbi.nlm.nih.gov/20069276
https://doi.org/10.3389/fimmu.2023.1102126
https://pubmed.ncbi.nlm.nih.gov/36776893
https://doi.org/10.18632/aging.203948
https://pubmed.ncbi.nlm.nih.gov/35288483
https://doi.org/10.18632/aging.104090
https://pubmed.ncbi.nlm.nih.gov/33221751
https://doi.org/10.1016/j.bbi.2018.09.004
https://pubmed.ncbi.nlm.nih.gov/30195028
https://doi.org/10.1056/NEJM199401133300205
https://pubmed.ncbi.nlm.nih.gov/8259166
https://doi.org/10.1146/annurev.neuro.22.1.197
https://pubmed.ncbi.nlm.nih.gov/10202537
https://doi.org/10.1016/j.addr.2008.06.002
https://pubmed.ncbi.nlm.nih.gov/18652859
https://doi.org/10.1080/21655979.2021.2017589
https://pubmed.ncbi.nlm.nih.gov/35112970
https://doi.org/10.1177/0300060518773265
https://pubmed.ncbi.nlm.nih.gov/29756489
https://doi.org/10.1152/ajpheart.00440.2020
https://pubmed.ncbi.nlm.nih.gov/32762560
https://doi.org/10.1016/j.virol.2011.04.006
https://pubmed.ncbi.nlm.nih.gov/21549406
https://doi.org/10.3390/ph16010023
https://pubmed.ncbi.nlm.nih.gov/36678520
https://doi.org/10.3390/diagnostics13030435
https://pubmed.ncbi.nlm.nih.gov/36766539


www.aging-us.com 13446 AGING 

36. Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, 
Vincent JL. Biomarkers of sepsis: time for a reappraisal. 
Crit Care. 2020; 24:287. 

 https://doi.org/10.1186/s13054-020-02993-5 
PMID:32503670 

37. Zeng T, Zhou Y, Yu Y, Wang JW, Wu Y, Wang X,  
Zhu L, Zhou LM, Wan LH. rmMANF prevents sepsis-
associated lung injury via inhibiting endoplasmic 
reticulum stress-induced ferroptosis in mice. Int 
Immunopharmacol. 2023; 114:109608. 

 https://doi.org/10.1016/j.intimp.2022.109608 
PMID:36700778 

38. Luo N, Chen GB, Zhang T, Zhao J, Fu JN, Lu N, Ma T. 
Genipin Attenuates Sepsis-Induced Splenocyte 
Apoptosis via the Inhibition of Endoplasmic Reticulum 
Stress. Biol Pharm Bull. 2023; 46:187–93. 

 https://doi.org/10.1248/bpb.b22-00563 
PMID:36724947 

39. Wang H, Chen J, Bai G, Han W, Guo R, Cui N. mTOR 
Modulates the Endoplasmic Reticulum Stress-Induced 
CD4+ T Cell Apoptosis Mediated by ROS in Septic 
Immunosuppression. Mediators Inflamm. 2022; 
2022:6077570. 

 https://doi.org/10.1155/2022/6077570 PMID:35915740 

40. Gong T, Liu Y, Tian Z, Zhang M, Gao H, Peng Z, Yin S, 
Cheung CW, Liu Y. Identification of immune-related 
endoplasmic reticulum stress genes in sepsis using 
bioinformatics and machine learning. Front Immunol. 
2022; 13:995974. 

 https://doi.org/10.3389/fimmu.2022.995974 
PMID:36203606 

  

https://doi.org/10.1186/s13054-020-02993-5
https://pubmed.ncbi.nlm.nih.gov/32503670
https://doi.org/10.1016/j.intimp.2022.109608
https://pubmed.ncbi.nlm.nih.gov/36700778
https://doi.org/10.1248/bpb.b22-00563
https://pubmed.ncbi.nlm.nih.gov/36724947
https://doi.org/10.1155/2022/6077570
https://pubmed.ncbi.nlm.nih.gov/35915740/
https://doi.org/10.3389/fimmu.2022.995974
https://pubmed.ncbi.nlm.nih.gov/36203606


www.aging-us.com 13447 AGING 

SUPPLEMENTARY MATERIALS 

 

 

 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Construction of signature model for risk of endoplasmic reticulum stress. (A) Identification of 
differently expressed ERGs. (B) LASSO coefficient of the 64 survival ERGs, and the 100-fold cross-validation for variable screening and 
complexity adjustment in the Lasso Cox regression model. (C) Construction of the ER risk signature based on the multivariate Cox regression 
analysis. (D) Heatmap represents the correlation between the identified ERGs. 
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Supplementary Figure 2. Meta-analysis of the expression level (pooled results) of identified ERGs based on BIDOS database: (A) ADRB2, 

(B) DHCR7, (C) GABARAPL2, (D) MAOA, (E) MPO, (F) PDZD8, (G) QDPR, (H) SCAP, (I) TFRC, and (J) TLR4. 
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Supplementary Figure 3. Diagnostic value of identified ERGs in sepsis. ROC analyses of (A) ADRB2, (B) DHCR7, (C) GABARAPL2,  

(D) MAOA, (E) MPO, (F) PDZD8, (G) QDPR, (H) SCAP, (I) TFRC, and (J) TLR4. 

 

 
 

Supplementary Figure 4. Establishment of a nomogram for predicting the survival probability of patients with sepsis.  
(A) Nomogram for predicting OS developed in training dataset. (B) Kaplan–Meier (KM) survival curves for the survival of the nomogram.  
(C) Calibration curves of the nomogram for 5, 15, and 25 days. (D) Time-dependent ROC analysis of the survival-related nomogram. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Showed the different expressed genes between healthy control and sepsis. 

 

Supplementary Table 2. Selected of survival related 
ERGs by univariate analysis. 

Gene symbol HR 95% CI P-value 

ABCA1 0.805 0.680-0.952 0.012 

ABCG1 0.697 0.520-0.934 0.016 

ADRB2 0.558 0.392-0.795 0.001 

AKAP9 0.503 0.256-0.991 0.047 

AMFR 1.450 1.097-1.917 0.009 

ANK1 1.218 1.033-1.435 0.019 

ANXA2 0.578 0.406-0.823 0.002 

ATF6 0.521 0.330-0.821 0.005 

ATM 0.356 0.192-0.660 0.001 

ATR 0.378 0.158-0.903 0.029 

BCL2L1 1.262 1.012-1.573 0.039 

BSG 1.506 1.124-2.020 0.006 

CAPN2 0.634 0.405-0.993 0.046 

CASP4 0.553 0.394-0.777 0.001 

CD74 0.619 0.469-0.818 0.001 

CREB1 0.556 0.328-0.941 0.029 

DHCR7 1.408 1.097-1.805 0.007 

EIF2AK1 1.486 1.094-2.018 0.011 

ERP29 0.667 0.446-0.998 0.049 

FAM120A 0.441 0.243-0.799 0.007 

FKBP1B 1.477 1.179-1.849 0.001 

FOXO1 0.609 0.403-0.920 0.018 

FOXO3 1.405 1.076-1.835 0.012 

FURIN 1.682 1.102-2.567 0.016 

GABARAPL2 1.624 1.026-2.569 0.038 

GRAMD1A 0.669 0.482-0.929 0.016 

HERPUD2 0.605 0.407-0.898 0.013 

HLA-DRB1 0.688 0.552-0.857 0.001 

JAGN1 0.593 0.361-0.976 0.040 

KCNJ2 0.716 0.571-0.897 0.004 

LDLR 1.490 1.126-1.972 0.005 

MAOA 1.408 1.174-1.689 0.000 

MAPK14 0.709 0.509-0.988 0.042 

MIR21 0.557 0.413-0.750 0.000 

MPO 1.254 1.099-1.431 0.001 

NLRP1 0.663 0.466-0.945 0.023 

NLRP3 0.649 0.446-0.944 0.024 

PCSK6 1.482 1.079-2.036 0.015 

PDZD8 1.793 1.215-2.644 0.003 

PRKCD 0.555 0.365-0.844 0.006 

PTEN 0.646 0.449-0.928 0.018 

QDPR 0.497 0.266-0.930 0.029 

SCAP 0.380 0.203-0.712 0.003 

SELP 1.301 1.035-1.636 0.024 

SGK1 0.698 0.530-0.919 0.010 

SLC2A1 1.697 1.348-2.135 0.000 

SLC8A1 0.787 0.630-0.985 0.036 

STIM2 0.395 0.193-0.808 0.011 

SVIP 1.432 1.096-1.871 0.009 

TAP2 0.650 0.487-0.867 0.003 
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TAPBPL 0.582 0.372-0.908 0.017 

TARDBP 0.520 0.328-0.825 0.006 

TEX2 1.843 1.274-2.666 0.001 

TFRC 1.514 1.242-1.846 0.000 

TGM2 1.740 1.251-2.421 0.001 

THBS1 1.399 1.116-1.754 0.004 

TLR4 0.637 0.473-0.859 0.003 

TMEM43 0.582 0.431-0.784 0.000 

TMX2 0.576 0.336-0.987 0.045 

TNFRSF10B 0.729 0.549-0.967 0.028 

TRAPPC5 1.818 1.020-3.241 0.043 

UBXN2B 0.666 0.499-0.888 0.006 

VAPA 0.483 0.290-0.804 0.005 

ZDHHC2 1.451 1.019-2.065 0.039 

 


