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INTRODUCTION 
 
Long noncoding RNAs (lncRNAs) are a type of 
transcripts longer than 200 nucleotides without encoding 
any functional protein [1, 2]. LncRNAs widely regulate 
various physiological and pathological processes,  
such as embryonic development, cell differentiation,  
cell proliferation, apoptosis, tumorigenesis and drug 
resistance [3–5]. During the evolutionary process from 
lower to higher organisms, only a tiny fraction of 
lncRNA showed evolutionary conservation [6–8], and 
some of the conserved lncRNAs are known to play an 
essential role in tumor development, progression, and 
treatment [9–12]. For instance, lncRNA MALAT1 is 
conserved between humans and mice, and it is aberrantly 
expressed in a variety of tumors [13], such as lung 
cancer [14], breast cancer [15], glioma [16] and colon 
cancer [17]. It plays an oncogenic role [18], serves as a 

target for chemosensitization and radiosensitization of 
cancer cells [13]. Similarly, lncRNA ARA with a 
conserved sequence in primates [19] is known to 
significantly increase the sensitivity of cancer cells to 
drugs and inhibit the development of breast and 
hepatocellular carcinoma by activating MAPK signaling 
and metabolic pathways [20]. Similarly, lncRNA 
HOTAIR conserved between humans and mice can 
inhibit DNA damage repair and increases apoptosis 
through p53, thus suppressing tumor cell growth  
[21, 22].  
 
A large number of abnormally expressed lncRNAs  
have been found in gastric cancer (GC), and some may 
act as oncogenes or tumor suppressor [23–25]. 
However, there are few studies on conserved non-
coding RNAs in GC. The interspecies conserved 
lncRNA H19 promotes GC proliferation by inhibiting 
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ABSTRACT 
 
Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric 
cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and 
mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be 
transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, 
in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS 
directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to 
ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the 
upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with 
MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway. 
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p53 [26]. lncRNA HOTAIR also acts as a competitive 
endogenous RNA to promote proliferation and 
metastasis in gastric cancer [27, 28].  
 
In this study, we obtained conserved lncRNA 
information between humans and mice by homo-
logous sequence alignment. We selected a lncRNA 
encoded by the antisense strand of the PTCHD4 
genes; thus, we named it PTCHD4-AS. This lncRNA 
was naturally downregulated in the gastric cancer 
tissues and several GC cell lines. We demonstrated 
through in vitro and in vivo experiments that up-
regulation of PTCHD4-AS inhibited the proliferation 
of gastric cancer cells and increased CDDP-induced 
apoptosis via interacting with DNA mismatch repair 
proteins MSH2-MSH6 dimer and activating the ATM-
p53-p21 pathway. 

RESULTS 
 
PTCHD4-AS was downregulated and transcriptionally 
induced by DNA damage in GC 
 
To explore the role of highly conserved lncRNAs in GC, 
we obtained human and mouse non-coding RNA 
sequences from the NONCODE (V6) database [29], 
which contained 173,112 and 131,974 sequences, 
respectively. Homologous sequence alignment was 
conducted using the Basic Local Alignment Search Tool 
(BLAST) version 2.11.0 or higher [30] and selected the 
top 10 highly conserved lncRNAs for further analyses 
(Figure 1A and Supplementary Table 2). 
 
Using RT-qPCR, we analyzed the levels of expression 
of these non-coding RNA in GC cell lines 

 

 
 

Figure 1. Identification and characterization of PTCHD4-AS. (A) Diagram of the screening strategy for conserved lncRNAs.  
(B) Relative expression levels of PTCHD4-AS in normal gastric epithelial cell line (GES-1) and GC cell lines (AGS, SGC7901, MGC803, MKN45 
and NCI-N87). (C) Relative expression levels of PTCHD4-AS in paired GC tissues and adjacent normal gastric tissues. n=23. (D) Schematic 
diagram of the transcription of PTCHD4-AS. (E) Subcellular localization of PTCHD4-AS in SGC7901 and MGC803. DAPI labeled nuclei(blue); 
FISH probe labeled PTCHD4-AS (red), scale bar: 20 μm. (F) Relative expression of PTCHD4-AS after treatment of SGC7901 and MGC803 with 
the indicated concentrations of drugs for 48 h. Etop :20 μM, 5-FU :20 μM, CDDP: 10 μM, Dox:4 μM. All data are presented as mean ± SD, * P < 
0.05, ** P < 0.01, *** P < 0.001. 
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(Supplementary Figure 1A). We found that lncRNA 
NONHSAT207347, exhibited a notably low expression 
in many GC cell lines (AGS, SGC7901, MGC803, 
MKN45, and NCI-N87) as compared to the normal 
gastric epithelial cell line GES-1 (Figure 1B). 
Moreover, its expression was also reduced in GC tissues 
compared to paired normal tissues (Figure 1C). This 
lncRNA (NONHSAT207347) is a transcript located on 
chromosome 6 (48,068,268-48069522, GRCh38/hg38) 
and transcribed from the antisense strand of the protein-
coding gene PTCHD4. Therefore, it was named 
PTCHD4-AS (Figure 1D). RACE assay confirmed its 
length is about 500 nucleotides (Supplementary Figure 
1B), and CPAT [31] predicted that PTCHD4-AS does 
not encode a protein (Supplementary Figure 1C). Using 
FISH analysis and cytoplasmic and nuclear RNA 
fractionation assay, we observed that PTCHD4-AS is 
mainly localized in the nucleus (Figure 1E and 
Supplementary Figure 1D). Interestingly, we observed 
that the expression of PTCHD4-AS was significantly 
induced by various DNA-damaging agents (5-
fluorouracil, cisplatin, doxorubicin, and etoposide) in 
GC cells (Figure 1F). 
 
PTCHD4-AS as a tumor suppressor in GC in vitro 
 
In order to examine the impact of PTCHD4-AS on GC 
cell proliferation, we employed lentiviral transduction 
to overexpress PTCHD4-AS in SGC7901 and MGC803 
cells (Figure 2A), showing that the overexpression of 
PTCHD4-AS significantly proliferation (Figure 2B, 2C) 
and colony formation capabilities of SGC7901 and 
MGC803 cells (Supplementary Figure 2A). The results 
of the Western blot analysis demonstrated that the 
overexpression of PTCHD4-AS led to an elevation in 
the protein levels of p53 and p21, which are recognized 
as crucial regulators of cell cycle arrest (Figure 2D). 
The flow cytometry confirmed that the overexpression 
of PTCHD4-AS resulted in cell cycle arrest, specifically 
at the G2 phase (Figure 2E, 2F). These findings indicate 
that PTCHD4-AS exhibit tumor suppressive properties 
in GC. 
 
PTCHD4-AS interaction with MSH2-MSH6 dimer 
in GC 
 
To identify the proteins that interact with PTCHD4-AS, 
we performed RNA pull-down assay using biotin-
labeled PTCHD4-AS probes or control probes in GC 
cells (Figure 3A). Mass spectrometry analysis revealed 
that MSH2 and MSH6, two components of the DNA 
mismatch repair (MMR) pathway [32, 33], were 
potentially associated with PTCHD4-AS (Figure 3B and 
Supplementary Figure 2B). Western blot analysis 
confirmed that MSH2 and MSH6 were enriched in the 
PTCHD4-AS pull-down lysate (Figure 3C). 

In order to verify the interaction of PTCHD4-AS and 
MSH2-MSH6 dimer, we performed the coIP assay 
using anti-MSH2 and anti-MSH6 antibodies in GC 
cells. We found that PTCHD4-AS was co-precipitated 
with both MSH2 and MSH6, indicating that it binds to 
the MSH2-MSH6 dimer (Figure 3D, 3E). Since 
PTCHD4-AS was mainly localized in the nucleus, as 
shown in Figure 1E and Supplementary Figure 1D, 
suggesting possible interaction with nuclear proteins 
such as MSH2 and MSH6. The main localization of 
MSH2 and MSH6 was detected within the nucleus of 
GC cells [34], suggesting a possible co-localization with 
PTCHD4-AS. Indeed, FISH and immunofluorescence 
co-staining showed that PTCHD4-AS and MSH2 were 
co-localized in the nucleus of GC cells (Figure 3F). 
These findings demonstrate that PTCHD4-AS directly 
interacts with MSH2-MSH6 dimer in GC. 
 
PTCHD4-AS suppressed GC proliferation via 
MSH2-MSH6 dimer 
 
Previous studies observed that overexpression of MSH2 
or MSH6 in cancer cells led to MMR-dependent 
activation of DNA damage signaling and cell cycle 
G2/M arrest [35–37]. Moreover, it has been reported 
that the stability of MSH6 protein depends on its 
interaction with MSH2 [34]. Consequently, we 
postulated that the PTCHD4-AS influence the activity 
of the MSH2-MSH6 dimer in GC cells. Therefore, we 
employed small interfering RNAs (siRNAs) to suppress 
the production of MSH2 in GC cells. It was observed 
that the downregulation of MSH2 led to a considerable 
decline in the protein expression of MSH6 (Figure 4A). 
Furthermore, this downregulation of MSH2 
counteracted the inhibitory impact of PTCHD4-AS on 
the proliferation of GC cells (Figure 4B). Additionally, 
it was observed that the downregulation of MSH2 
resulted in the reversal of the G2/M phase arrest caused 
by the overexpression of PTCHD4-AS (Figure 4C, 4D), 
suggesting that the tumor suppressive impact of 
PTCHD4-AS is facilitated by its interaction with the 
MSH2-MSH6 dimer. 
 
PTCHD4-AS activates the ATM-p53-p21 pathway 
by promoting MSH2-MSH6 dimerization 
 
Our findings demonstrated that the PTCHD4-AS 
molecule effectively suppressed the proliferation of GC 
cells through its interaction with the MSH2-MSH6 
dimer. Nevertheless, the impact of PTCHD4-AS on the 
protein expression of MSH2 and MSH6 was not seen 
(Figure 4A), indicating that it might functionally regulate 
it. In light of the fact that the MSH2-MSH6 dimer is 
assembled through the ATPase domain of MSH2, we 
aimed to examine the potential interaction between 
PTCHD4-AS and this specific domain. The MSH2 
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protein encompasses three distinct domains in sequential 
order from its N-terminal to C-terminal regions. These 
domains include the N-terminal DNA mismatch repair 
binding domain (amino acids 1 to 300), the lever and 
clamp structural domain (amino acids 300 to 620), and 
the ATPase structural domain (amino acids 620 to 934) 

(54). We generated truncated MSH2 constructs according 
to these domains (Figure 5A) and performed flag-RIP 
assay using anti-flag antibody. We found that PTCHD4-
AS bound to the ATPase domain of MSH2 (Figure 5B, 
5C), indicating that it may facilitate the MSH2-MSH6 
dimerization. 

 

 
 

Figure 2. Upregulation of PTCHD4-AS suppressed GC cell proliferation in vitro. (A) Overexpression efficiencies of PTCHD4-AS was 
analyzed by qPCR in SGC7901 and MGC803. (B) Viability of SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS.  
(C) Representative images of EdU in SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS and statistical analysis of Edu-positive 
cells. (D) Expression of p53 and p21, key proteins of the cell cycle pathway, was detected in the indicated cells by western blotting. (E, F) Cell 
cycle analysis by FACS in SGC7901 and MGC803 cells stably expressing EV or PTCHD4-AS. (A–F) EV indicates cells transfected with blank vector 
and PTCHD4-AS indicates cells transfected with lncRNA PTCHD4-AS. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Previous studies have reported that the MSH2-MSH6 
dimer could bind to and phosphorylate ATM, a key 
kinase in the DNA damage response pathway [38]. 
Moreover, activated ATM could phosphorylate p53 and 
activate its downstream target p21, finally leading to 
cell cycle arrest [39, 40]. Hence, we hypothesized  
that PTCHD4-AS might enhance the MSH2-MSH6 
dimerization and promote its interaction with ATM, 
which in turn activates the ATM-p53-p21 pathway.  
To test this hypothesis, we performed a coIP assay 
using anti-MSH2 antibody in GC cells overexpressing 

PTCHD4-AS or empty vector. It was found that more 
MSH6 and ATM were co-precipitated with MSH2 in 
PTCHD4-AS overexpressing cells than in control cells 
(Figure 5D, 5E). Furthermore, it was found that 
PTCHD4-AS overexpression increased the expression 
of phosphorylated ATM, p53 and p21. These effects 
were reversed by MSH2 knockdown (Figure 5F, 5G). 
In addition, these results suggested that PTCHD4-AS 
possibly scaffold MSH2 and MSH6 and activated the 
ATM-p53-p21 pathway by enhancing the MSH2-
MSH6 dimerization. 

 

 
 

Figure 3. PTCHD4-AS interacted with MSH2-MSH6 dimer in GC. (A) SDS-PAGE of pull-down assay of whole cell lysates from SGC7901 
cells using a biotin-labeled control/PTCHD4-AS probe showing PTCHD4-AS binding proteins. (B) Protein characterization of highly unique 
peptides by mass spectrometry. (C) Western blot analysis of the biotin-labeled probe pull-down eluate in (A). (D) RIP assay of anti-MSH2 or 
anti-MSH6 antibodies in SGC7901 and MGC803 cells confirmed that PTCHD4-AS interacted with the MSH2-MSH6 dimer. The levels of PTCHD4-
AS in the precipitates were detected by RT-qPCR, and IgG was used as a negative control. (E) MSH2 and MSH6 protein levels in the precipitates 
were detected by Western blotting, and GAPDH was used as a loading control. (F) Representative confocal images and co-localization analysis 
of PTCHD4-AS (red) and MSH2 (green) in SGC7901 and MGC7901 cells. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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PTCHD4-AS enhanced the sensitivity of GC cells to 
cisplatin via MSH2-MSH6 dimer 
 
Cisplatin (CDDP) is one of the most commonly used 
first-line chemotherapy drugs for GC [41]. However, 
its efficacy is often limited by drug resistance, which 
has been associated with impaired MMR function  
[42, 43]. Hence, we assessed the potential effect  
of PTCHD4-AS on the cellular response of GC  
cells towards cisplatin. It was observed that the 

overexpression of PTCHD4-AS resulted in decreased 
IC50 of CDDP in both SGC7901 and MGC803 cells 
(Figure 6A, 6B). Furthermore, we determined that the 
overexpression of PTCHD4-AS alone did not 
substantially induce apoptosis in GC cells. However, it 
did improve the apoptotic effect of CDDP. The 
observed effect was reversed after MSH2 knockdown 
(Figure 6C, 6D). These findings suggest that 
PTCHD4-AS enhances the sensitivity to CDDP via the 
MSH2-MSH6 dimer. 

 

 
 

Figure 4. PTCHD4-AS suppressed GC proliferation via MSH2-MSH6 dimer. (A) Western blotting analysis of MSH2 and MSH6 protein 
levels in SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS after transduction with siCtrl or siMSH2 for 48 h. (B) Cell 
proliferation assays after transduction with siCtrl or siMSH2 for 72 h. (C, D) Cell cycle analysis after transduction with siCtrl or siMSH2 for 48 h. 
Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure 5. Upregulation of PTCHD4-AS promoted MSH2-MSH6 dimerization and activated the ATM-p53-p21 pathway.  
(A) Schematic diagram of truncated MSH2 used in pull-down assays. (B) After transfection of 3xFlag-MSH2 truncation in 293T cells for 48h, 
RIP was performed with anti-flag antibody. Western blot analyses of pull-down assays with truncated MSH2 fragments. (C) The relative 
expression level of PTCHD4-AS in the truncated MSH2 RIP was detected by RT-qPCR. IgG was used as a negative control. (D, E) Interaction 
analysis between MSH2, MSH6 and ATM in SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS. Co-IP experiments were 
performed with anti-MSH2 antibody, and Western blot was used to detect the expression of specific proteins in the precipitates. (F, G) 
Western blotting analysis of specific protein levels in SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS after transduction 
with siCtrl or siMSH2 for 48 h. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 



www.aging-us.com 13565 AGING 

PTCHD4-AS inhibited GC growth and increased 
cisplatin sensitivity in vivo 
 
In order to comprehensively determine the tumorigenic 
function of PTCHD4-AS and its impact on cisplatin 
therapy in vivo, we developed a xenograft model  
by introducing SGC7901 cells that were stably 
transfected with either PTCHD4-AS or an empty 
vector (Figure 7A). The tumor development was 
significantly suppressed in the overexpressed 
PTCHD4-AS group compared to the control group 
(Figure 7E). Immunohistochemical staining of tumor 

samples revealed that PTCHD4-AS overexpression 
inhibited Ki67 production, a standard assay for 
measuring cell proliferation. This effect was observed 
regardless of whether cisplatin therapy was 
administered or not. In contrast, the TUNEL assay 
demonstrated that the overexpression of PTCHD4-AS 
resulted in an elevated ratio of apoptotic cells within 
tumors that were subjected to cisplatin treatment 
(Figure 7F). The results suggested that PTCHD4-AS 
exerts inhibitory effects on the growth of and improves 
the sensitivity of GC cells to cisplatin treatment  
in vivo. 

 

 
 

Figure 6. PTCHD4-AS enhanced the sensitivity to CDDP by MSH2-MSH6 dimer in GC cells. (A, B) Viability of SGC7901 and MGC803 
cells stably overexpressing EV or PTCHD4-AS after treatment with the indicated concentrations of CDDP for 24 h. (C, D) Cell apoptosis was 
detected by FACS in SGC7901 and MGC803 cells stably overexpressing EV or PTCHD4-AS after transfection of siRNA for 48h, followed by 
treatment with CDDP or PBS for 24 h. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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DISCUSSION 
 
The evolutionary conservation is frequently utilized as 
a means to evaluate the regulatory significance of 
recently discovered genes [44–46]. For example,  
Oskar et al. identified Pint, a widely expressed  
mouse lncRNA, as a direct p53 transcriptional target. 

Additionally, it was shown that the p53 protein 
controlled the human counterpart of PINT. Furthermore, 
the expression of PINT was found to be reduced in 
cases of colorectal cancer, whereas increased expression 
of PINT was observed to hinder the proliferation of 
tumor cells [47]. Subsequent investigations have 
provided additional evidence indicating that long 

 

 
 

Figure 7. PTCHD4-AS inhibited GC growth and increased cisplatin sensitivity in vivo. (A) Schematic diagram of the xenograft tumor 
model of GC. (B) Images of xenograft tumors in different treatment groups at the end of the experiment. (C) Tumor growth curves of 
different treatment groups. (D) Tumor weights of different treatment groups at the end of the experiment. (E) Tumor inhibition rate of CDDP 
between EV and PTCHD4-AS groups. (F) Representative images and proportion of positive cells of Ki67 detected by IHC and apoptotic cells 
detected by TUNEL. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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non-coding RNA PINT has a regulatory influence on 
the proliferation of tumor cells and their sensitivity to 
radiochemotherapy across a range of malignancies [48], 
including gastric cancers [49], nasopharyngeal cancers 
[50], and skin cancers [51], and serves as a diagnostic/ 
prognostic marker of cancer [52, 53]. 
 
In this study, we found a novel lncRNA PTCHD4-AS 
were conserved between humans and mice, as well as 
low expressed in GC tissue and cell lines generally. 
Notably, the transcription of lncRNA PTCHD4-AS was 
increased in response to DNA damage induction. Some 
DNA damage responsive lncRNAs, including lncRNA 
RoR [54], PANDA [55], and Meg3 [56] interact with 
different proteins involved in the cell cycle and 
apoptosis. We speculated that PTCHD4-AS might play 
a tumor suppressor role by participating in the DNA 
damage response. The study revealed that the 
overexpression of PTCHD4-AS led to the suppression 
of growth in GC cells by causing cell cycle arrest in the 
G2/M phase. Consistent with this, overexpression of 
PTCHD4-AS resulted in elevated levels of p53 and p21, 
which are the key proteins involved the cell cycle. 
 
We further found that PTCHD4-AS binds with MSH2-
MSH6 dimer which are essential proteins in DNA 
mismatch repair (MMR) [57]. It was found that cancer 
cells with MMR activation can lead to cell cycle arrest 
in the G2 phase, while MMR deficiency leads to 
reduced G2/M cell cycle arrest and reduced activation 
of the p53 pathway [32, 58]. To investigate whether 
MSH2-MSH6 dimer is responsible for the effect of 
PTCHD4-AS, we interfered with the expression of 
MSH2 and MSH6 by siRNA and found that it reversed 
the inhibition of cell growth and the arrest of cell  
cycle caused by upregulation of PTCHD4-AS. These 
data supported that PTCHD4-AS suppressed GC 
proliferation via MSH2-MSH6 dimer. 
 
Then we investigated the effect of PTCHD4-AS on 
MSH2-MSH6 dimer and found that PTCHD4-AS did 
not directly affect the protein expression. Protein 
truncation experiments revealed that PTCHD4-AS 
binds to the ATPase structural domain of MSH2. Both 
MSH2 and MSH6 have a conserved ATPase structural 
domain, which also serves as a binding site for the 
dimer, and mutations in the binding site can inhibit 
MMR activation in vivo and in vitro [59, 60]. In other 
words, the ATP-binding domains are required to bind to 
each other to form an active dimer. In addition, MMR 
system acts as a molecular scaffold at DNA damage 
sites and promotes the activation of DNA damage 
pathway-associated kinases [32, 35], such as MSH2 can 
bind and activate ATM by phosphorylating it [38]. 
Therefore, we hypothesized that PTCHD4-AS regulates 
cell proliferation by affecting the activity of MSH2-

MSH6 dimer. We confirmed by coIP assay that 
PTCHD4-AS promotes MSH2-MSH6 complex 
formation and binding to ATM. Furthermore, we found 
that overexpression of PTCHD4-AS increased the 
expression of pATM, p53 and p21, which was reversed 
by disruption of MSH2. Thus, PTCHD4-AS may 
promote the formation of MSH2-MSH6 dimer through 
“scaffolding”, which activates the ATM-p53-p21 
pathway. 
 
CDDP is a first-line chemotherapeutic regimen that 
induces DNA damage and activates cell cycle 
checkpoints primarily through forming platinum-DNA 
polymers, leading to apoptosis of cancer cells [49, 61, 
62]. It has been known that the MSH2- MSH6 dimer 
recognizes cisplatin, and its functional defects can 
enhance resistance to cisplatin [63]. In bladder cancer, 
patients with low MSH2 protein levels have poor 
overall survival on CDDP-based therapy [64]. Whereas 
activation of MMR in ovarian and colon cancer cells 
increases the sensitivity to chemotherapeutic agents 
[65]. Since overexpression of PTCHD4-AS can activate 
MMR by promoting MSH2-MSH6 dimerization, it may 
enhance the cytotoxicity of cisplatin to GC cells, which 
was experimentally confirmed in this study. The cell 
cycle is a crucial factor affecting chemotherapy 
sensitivity [66, 67]. While PTCHD4-AS overexpression 
leads to cell cycle arrest, DNA damage caused by 
chemotherapy drugs can increase the transcription of 
PTCHD4-AS, further amplifying this effect, thereby 
increasing the therapeutic effect. The study also 
provides in vivo evidence of the anti-tumor effect of 
PTCHD4-AS using a mouse xenograft model.  
 
In summary, we found a novel conserved lncRNA 
PTCHD4-AS and its overexpression inhibits GC cell 
proliferation and enhances the sensitivity to cisplatin. 
Mechanistically, PTCHD4-AS overexpression activates 
ATM-p53-p21 pathway by binding to MSH2-MSH6 
dimer. Our study enriches the fact that conserved 
lncRNAs PTCHD4-AS plays a crucial role in GC 
development and may potentially be used as a 
chemotherapeutic target. 
 
MATERIALS AND METHODS 
 
Cell and tissue samples 
 
This work obtained human normal gastric epithelial cell 
line (GES-1) and GC cell lines (SGC7901, MGC803, 
MKN45, AGS and NCI-N87) from the National 
Collection of Authenticated Cell Cultures (Shanghai, 
China. All cell cultures were maintained in RPMI-1640 
medium (Gibco, USA), supplemented with 10% FBS 
(Biological Industries, USA) and 1% penicillin-
streptomycin (Gibco, USA). HEK 293T was purchased 
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from Procell company (Wuhan, China) and maintained 
in high-sugar DMEM (Gibco, USA), supplemented with 
10% FBS and 1% penicillin-streptomycin. All cells 
were cultured in a constant-temperature cell culture 
incubator at 37° C with constant supply of 5% CO2. 
 
Paired GC tissue samples and corresponding adjacent 
non-cancerous gastric tissue samples were obtained 
from the Fifth Affiliated Hospital of Zhengzhou 
University. All patients did not receive any treatment, 
including chemotherapy, radiotherapy, or any other 
medical intervention before surgery, and were 
diagnosed according to pathological evidence, and 
informed written consent was obtained for this study. 
Experimental procedures and sample collection were 
approved by the ethical committee of the Fifth 
Affiliated Hospital of Zhengzhou University 
(KY2022048). We strictly followed the guidelines of 
the Helsinki Declaration of 1964 and its latest 
amendments.  
 
RNA isolation and RT-qPCR 
 
Total RNA from tissues/cells was extracted and purified 
using TRIzol (Invitrogen, USA). RNA was reverse 
transcribed to cDNA using ReverTra Ace qPCR RT Kit 
(Toyobo, Japan). RT-qPCR was performed using the 
Roche Light cycler480II system (Rochel, Switzerland) 
and ChamQ Universal SYBR RT-qPCR Master Mix 
(vazyme, China). The relative expression level of the 
target genes was calculated by the 2−ΔΔCt method against 
GAPDH. Supplementary Table 1 displays the primer 
sequences. 
 
Rapid amplification of cDNA ends (RACE)  
 
RACE was conducted with SMARTer RACE 5/3’ Kit 
(Clontech, USA) according to the manufacturer’s 
instructions. Briefly, the first strand (cDNA) was 
reverse transcribed from total RNA using modified 
oligonucleotides (supplied in the kit). 3'- or 5'-RACE 
fragments were amplified using the first strand as the 
template using a gene-specific primer (GSP) 
synthesized according to a known sequence. PCR 
products of the RACE assay were separated using 2% 
agarose gels.  
 
RNA FISH 
 
Cy3-labeled PTCHD4-AS probes were synthesized by 
RiboBio company (China). Fluorescent in Situ 
Hybridization Kit (RiboBio, China) was applied to 
hybridize the probes to cells following the 
manufacturer’s instructions. Briefly, cells grown on 15 
mm round coverslips were sequentially fixed with 4% 
paraformaldehyde for 10 min, permeabilized with 5% 

TritonX-100 for 5 min, blocked with pre-hybridization 
Solution for 30 min at 37° C and co-incubated with 
hybridization solution containing FISH probes at 37° C 
overnight. Cells were then washed sequentially with 
hybridization Wash I, II and III. The coverslips are 
directly covered with DAPI-containing anti-
fluorescence quencher. Images were captured using a 
confocal laser scanning microscope (Carl Zeiss, 
Germany). 
 
Isolation of cytoplasmic and nuclear RNA 
 
The cytoplasm and nucleus components were isolated 
using a Nuclear and Cytoplasmic Protein Extraction Kit 
(Beyotime, China) and RNase Inhibitor (Beyotime, 
China). Briefly, after cell collection, 200 μL of 
Cytoplasmic Protein Extraction Reagent A and 10 μL of 
RNase Inhibitor per 20 μL of cell sediment were added 
and ice bathed for 15 min. Then, we added 10 μL of 
Cytoplasmic Protein Extraction Reagent B and 
incubated on ice for 1 min. Then centrifuged at 12,000g 
for 5 mins at 4º C and supernatant was separated and 
precipitated completely, then added Trizol to extract 
cytoplasmic and nuclear RNA. The expression of 
PTCHD4-AS was determined by RT-qPCR. GAPDH 
and U6 were used as markers in the cytoplasm and 
nucleus, respectively.  
 
Plasmid construction and transfection 
 
The entire length of PTCHD4-AS was cloned into 
pLenti6-puro vector. Lentiviral particles were prepared 
in HEK293T cells after transfecting with psPAX2, 
pMD2.G, and plasmids with a ratio of 4:3:1, and cell-
free culture supernatants were used to infect gastric 
cancer cells. Cells with stable expression of PTCHD4-
AS and negative control were selected with 4µg/ml of 
puromycin (Invitrogen).  
 
Truncated segments of MSH2 were amplified with 
primers and subcloned into c-Flag pcDNA3 (Addgene 
plasmid#20011). MSH2 RNAi were purchased from 
Genepharma company (Shanghai, China). Both 
truncated MSH2 and siRNA were transfected using 
Lipo2000 (Invitrogen, USA) according to the 
manufacturer’s instructions. Protein and RNA were 
harvested after transfection (48 h). 
 
Cell proliferation assay 
 
For CCK8 assays, ~2000 cells were seeded in a 96-well 
plate and incubated for indicated time, meanwhile 10 
µL of CCK8 reagents was added. Cell viability was 
determined by Cell Counting Kit-8 (Meilunbio, China), 
and the absorbance at 450 nm was measured by (Bio-
Rad, USA). 
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~500 cells were seeded in six-well plates for colony-
formation assays and incubated for 10-14 days. The 
colonies were fixed with 4% paraformaldehyde 
(Biosharp, China), stained with 0.5% crystal violet 
(Beyotime, China), and photographed. 
 
For the EdU assay, ~5x104 cells were seeded in a six-
well plate, incubated for 48 h, and then incubated with 
10 μM EdU for 2 h. Cell viability was detected by EdU 
Cell Proliferation Kit with Alexa Fluor 488 (Meilunbio, 
China) according to the manufacturer’s instructions.  
 
Cell apoptosis assays 
 
Cell apoptosis assays were carried out using the 
Annexin V-FITC/PI Apoptosis Detection Kit (KeyGEN, 
China). Cisplatin was dissolved in PBS. Cells were 
seeded into a six-well plate with/without cisplatin 
treatment. Apoptosis was measured and observed by 
flow cytometry using the BD FACS Aria™ III (BD 
Biosciences, USA). Data were analyzed by FlowJo 
software. 
 
Cell cycle assays 
 
Cell cycle assays were conducted using the Cell Cycle 
Staining Kit (Multi Science, China). The cell cycle was 
measured and observed by flow cytometry using the 
BDAccuriC6 (BD Biosciences, USA). Data were 
analyzed by Modfit LT software. 
 
Western blotting  
 
Whole cell lysates were made using RIPA buffer 
(Epizyme Biotech, China) containing protease inhibitor 
(Thermo Fisher, USA) and phosphatase inhibitor 
(Beyotime, China). The concentrations of protein were 
evaluated by BCA kit (Thermo Fisher, USA), mixed 
with SDS loading buffer, and boiled at 100° C for 10 
min. The protein samples were subjected to SDS PAGE 
and transferred to nitrocellulose membranes. The 
membranes were blocked using a 5% solution of non-fat 
milk in TBST for 1 hour at room temperature. 
Subsequently, the membranes were incubated overnight 
at 4° C with primary antibodies. The primary antibodies 
used were as follows: p53 anti-mouse (ab137797, 
Abcam, UK), p21(10355-1-AP, Proteintech, USA), 
MSH2 Polyclonal antibody (15520-1-AP, Proteintech, 
USA), MSH6 (18120-1-AP, Proteintech, USA), ATM 
(27156-1-AP, Proteintech, USA), Phospho-ATM 
(Ser1981) (5883, CST, USA), Flag (66008-4-Ig, 
Proteintech, USA), β-tubulin (10094-1-AP, Proteintech, 
USA) and GAPDH (60004-1-Ig, Proteintech, USA). 
After washing with TBST, the membranes were 
incubated with HRP-conjugated secondary goat anti-
mouse (ZB2305) or goat anti-rabbit (ZB-2301) 

antibodies (ZSGB-BIO, China) or HRP-goat anti-mouse 
IgG LCS (AMJ-AB2016, Abbkin, China) for 1 h at 
room temperature. Protein bands were visualized using 
enhanced chemiluminescence (Epizyme Biotech, China). 
 
RNA pull-down assay and RNA binding protein 
immunoprecipitation assay (RIP) 
 
For RNA pull-down, biotin-labeled lncRNA probes and 
control probes against PTCHD4-AS were synthesized by 
General Biotechnology (Anhui, China). All solutions 
were prepared in DEPC water. In short, the probes were 
incubated with the streptavidin Dynabeads (MCE, USA) 
at 4° C overnight. The next day, the fresh cells were 
collected and lysed with IP buffer (25 mM Tris-HCl 150 
mM NaCl 1 mM EDTA 1% NP-40) supplemented with 
RNase Inhibitor (MCE, USA) and protease inhibitor 
cocktail (PIC) on ice for 30 min, then centrifuged at 
12,000 rpm for 20 min and the supernatants were 
collected. The supernatants were incubated with the 
probe-beads complex at 4° C for 3 h. The beads were 
resuspended in SDS loading buffer (Epizyme Biotech, 
China) after being rinsed with IP solution 5 times. 
Boiling at 100° C for 10 min, eluted the proteins bound 
to the probes, which SDS-PAGE then separated. 
Nevertheless, the examination of the gel bands was 
conducted utilizing mass spectrometry. The sequences of 
the probes are available in Supplementary Table 1. 
 
For RIP, anti-MSH2, anti-MSH6 antibody, and IgG 
were incubated with protein A/G magnetic beads 
overnight at 4° C. Cells were lysed, centrifuged, 
incubated with magnetic beads, and eluted as described 
above. Finally, RNA was isolated and purified using 
phenol-chloroform extraction, and the relative enrich-
ment of PTCHD4-AS was analyzed by RT-qPCR. 
 
Co-immunoprecipitation (coIP) 
 
The specified antibodies or IgG control were 
incubated overnight at 4° C with protein A/G beads 
(MCE, USA). Fresh cells were lysed in IP buffer 
supplemented with protease inhibitor cocktail (PIC) 
for 20 min on ice. Cell lysates were incubated with 
different antibody-beads complexes for 6 h at 4° C 
before washing 5 times in IP buffer. The proteins 
attached to the antibodies were extracted by boiling at 
a temperature of 100° C for 10 min. Subsequently, 
these proteins were separated and visualized using 
SDS-PAGE. The protein levels were evaluated using 
the western blotting technique. 
 
Animal experiment 
 
Female BALB/c nude mice aged 3-4 weeks were 
purchased from Huafukang Biotechnology (Beijing, 
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China) and acclimatized in the SPF-grade standard 
animal house of the Fifth Affiliated Hospital of 
Zhengzhou University for one week. About 5×106 
SGC7901 cells stably expressing PTCHD4-AS and 
empty vector were injected subcutaneously into the 
back of the mice. Upon attaining a tumor volume of 
around 100 mm3, the mice were randomly allocated 
EV+PBS group, PTCHD4-AS+PBS group, EV+CDDP 
group, and PTCHD4-AS+CDDP group (n=5). CDDP (4 
mg/kg) or an equivalent volume of PBS was injected 
intraperitoneally every two days six times. The tumor 
length (a) and width (b) were measured twice a week 
using a caliper, and the tumor volume (V) was 
calculated as V(mm3) =1/2ab². On day 24, mice were 
euthanized using anesthesia, and tumors were excised, 
weighed, and fixed in 4% paraformaldehyde (Biosharp, 
China). 
 
HE, IHC and TUNEL 
 
Hematoxylin and eosin (HE) staining, Ki67 
immunohistochemistry (IHC), and terminal deoxy-
nucleotidyl transferase-mediated dUTP nick end 
labeling (TUNEL) test were performed on paraffin-
embedded tumor sections. Ki67 was evaluated by IHC 
using the SPlink Detection Kit (ZSGB-BIO, China) 
after sections were stained with HE-staining kit 
(Beyotime, China). To do this, we used Ki67 (ab15580; 
Abcam, UK) as our main antibody. The TUNEL test 
was performed using the In Situ Cell Death Detection 
Kit (Beyotime, China), while ImageJ was used to 
quantify how many cells stained positive for Ki67 or 
TUNEL. 
 
Statistical analysis 
 
All of the statistical analyses were performed using 
Prism 8 (GraphPad, USA). The non-parametric the 
Wilcoxon test was employed to compare the samples of 
human subjects to accommodate non-normally 
distributed data. Student’s t-test (unpaired, two-tailed) 
was used to assess differences between two groups. 
One-way analysis of variance (ANOVA) was used to 
assess differences between three or more groups.  
P < 0.05 was chosen as the level of statistical 
significance. Asterisks denote significant differences 
(*P < 0.05, **P < 0.01, ***P < 0.001). All tests were 
performed in triplicate, and the results are shown as the 
mean, standard deviation to show both the average and 
the range of results. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Identification and characterization of PTCHD4-AS. (A) Relative expression levels of screened conserved 
lncRNAs (top9) in normal gastric epithelial cell lines and GC cell lines. (B) Agarose gel electrophoresis showed that the PCR products of 5′ and 
3′ RACE of PTCHD4-AS. (C) The protein coding ability of PTCHD4-AS was predicted by CPAT; the protein coding gene GAPDH and the non-
coding gene Xist were used as positive control and negative control, respectively. (D) Western blots of total cell lysates (T), nucleus fraction 
(N) and cytoplasm fraction (C), β-tubulin and histone H3 as the marker of the nucleus and cytoplasm, respectively (upper). Relative 
expression of PTCHD4-AS in the nucleus and cytoplasm fractions by RT-qPCR. GAPDH and U6 were used as positive controls for cytoplasm 
and nucleus, respectively. Data are presented as mean ± SD, * P < 0.05, ** P < 0.01, *** P < 0.001.  
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Supplementary Figure 2. PTCHD4-AS suppress GC cell growth in vitro. (A) Representative images and statistical analysis of colony 
formation in SGC7901 and MGC803 cells stably expressing EV or PTCHD4-AS. (B) The secondary mass spectra of MSH2 and MSH6.  
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Supplementary Tables 
 
Supplementary Table 1. Sequence of primers and probes. 

Gene Primer Sequence (5′-3′) 
 Primers for qPCR 

NONHSAT122133 Forward TGCTGAAACTTGATAGAAATG 
Reverse TCCTCAATACTTTGAGTTGT 

NONHSAT173071 Forward CAGATGTTGGCTTTGTAATT 
Reverse TTGTCTACGCTTCACAGAG 

NONHSAT191165 Forward AATCTGTCAATCCTGTCCGT 
Reverse AAACTTAAAGGAATTGACGGA 

NONHSAT148367 Forward GAATTCTTCACCCAAAACTC 
Reverse TCATTTATGCCTCTGCTATT 

NONHSAT050207 Forward AACATGACATCGGGAAGTCC 
Reverse AGTGGGGTTATTCATTAGAG 

NONHSAT102470 Forward ACTGCTCGGGCTGAATAGCA 
Reverse CACAACTTCCGGGATAATGAGA 

NONHSAT184693 Forward CAGAACCACACACTATGTAA 
Reverse ATCACAGCCCATATTGAGAG 

NONHSAT217189 Forward ACTCTCTTAAGGTAGCCAAA 
Reverse TTTCGCTGGATAGTAGGT 

NONHSAT035250 Forward ATGCTGGCTCCCATTCAGC 
Reverse TGCGTCGCTTTTGGCTCC 

PTCHD4-AS Forward ACGTAAAGAGAGTATGGAGCTCGT 
Reverse TGTTCCAGAGGGTGCTTTCCA 

GAPDH Forward GTCTCCTCTGACTTCAACAGCG 
Reverse ACCACCCTGTTGCTGTAGCCAA 

U6 Forward 
Reverse 

 

GCTTGCTTCAGCAGCACATA 
AAAAACATGGAACTCTTCACG 

MSH2 Forward GTCACAGCACTCACCACTGAAG 
Reverse AAGCTCTGCAACATGAATCCCA 

MSH6 Forward TCCACCAGATACTCCTCAACAACT 
Reverse GCACTTCCAACGTACTCCTTGC 

 Primers for RACE 
 

3’RACE CACCTTGGGCAAGTTTTGCTCTCTG 
5’RACE CCTTGGGTCATCTCATTTGATTCCC 
 Primers for plasmid construction 
PTCHD4-AS 
 

Forward AGAAGACACCGACTCTAGAGGATCCCTCAGCCTGGAGCAAAATAT 
Reverse TCCAGAGGTTGATTATCGATCTCGAGAAGGTGTTGCGAGGAAATC 

MSH2 FL Forward CTTAAGCTTGGTACCGGATCCATGGCGGTGCAGCCGAAG 
Reverse ATCATCCTTGTAATCTCTAGACGTAGTAACTTTTATTCGTG 

MSH2 1-300aa Forward CTTAAGCTTGGTACCGGATCCATGGCGGTGCAGCCGAAG 
Reverse ATCATCCTTGTAATCTCTAGAATACTGGCTGAAGTCAAAAG 

MSH2 300-934aa Forward CTTAAGCTTGGTACCGGATCCATGAAATTGGATATTGCAGCA 
Reverse ATCATCCTTGTAATCTCTAGACGTAGTAACTTTTATTCGTG 

MSH2 1-620aa Forward CTTAAGCTTGGTACCGGATCCATGGCGGTGCAGCCGAAG 
Reverse ATCATCCTTGTAATCTCTAGAATATGGAACAGGTGCTCCAT 

MSH2 620-934aa Forward CTTAAGCTTGGTACCGGATCCATGGTACGACCAGCCATTTTGG 
Reverse ATCATCCTTGTAATCTCTAGACGTAGTAACTTTTATTCGTG 
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 Probes for RNA pull down 
 

Control probe 1 BIOTIN-CGCTGAGGCCGAAGGTGATTGTCAGG 
probe 2 BIOTIN-GACATGTGTAGGATGATGCTGCA 

PTCHD4-AS probe 1 BIOTIN-CCTGACAATCACCTTCGGCCTCAGCG 
probe 2 BIOTIN-TGCAGCATCATCCTACACATGTC 

 

Supplementary Table 2. Conservative top 10 lncRNAs. 

NONCODE 
TRANSCRIPT ID 

Identity  
(%) 

Alignment 
length(nt) Gap openings Start End e-value Bit score 

NONHSAT122133 99.583 480 0 48767 49246 0 876 
NONHSAT173071 99.475 381 0 4422 4802 0 693 
NONHSAT191165 99.35 923 0 4117 5039 0 1672 
NONHSAT148367 98.71 310 0 19097 19406 2.47E-153 551 
NONHSAT050207 98.621 290 0 7072 7361 2.72E-143 514 
NONHSAT102470 98.502 601 0 1840 2440 0 1061 
NONHSAT184693 98.305 354 0 58087 58440 1.24E-174 621 
NONHSAT217189 97.659 299 0 46526 46824 1.93E-142 514 
NONHSAT035250 97.583 331 0 44390 44720 1.43E-158 568 
NONHSAT207347 97.494 399 0 243923 244321 0 682 

Notes: 
1. identity (%): The percentage of agreement for sequence alignment.  
2. alignment length: The length of the alignment area that conforms to the alignment. 
3. Gap openings: The number of gaps in the comparison area.  
4. start: the starting site of the alignment region on the human genome. 
5. end: the end site of the alignment region on the human genome. 
6. e-value: The smaller the value, the higher the confidence. 7. bit score: The higher the value, the higher the credibility 
The code is as follows: 
grep “>” file.fa | wc -l    
makeblastdb -in outLncRNA.fa -dbtype nucl 
blastn -query mouse_lncrna.fasta -db outLncRNA.fa -outfmt 6 -out blastn2.out 
 

 
 


