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INTRODUCTION 
 

Cervical cancer (CC) is the most common family of 

tumors and one of the leading causes of cancer-related 

deaths in women worldwide [1]. With the popularization 

of HPV vaccination and early screening, the incidence 

of cervical cancer has declined significantly, and surgery, 

radiation, and chemotherapy have been commonly used 

for patients with cervical cancer [2]. However, the 

three-year and five-year survival rates for patients with 

advanced and metastatic cervical cancer remain sub-

optimal [1, 3]. It is generally believed that CC tumors 
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ABSTRACT 
 

Objective: Since scRNA-seq is an effective tool to study tumor heterogeneity, this paper intends to reveal the 
differences of cervical cancer in patients at the individual cell level by scRNA-seq, and focus on the biological 
functions of cancer-associated fibroblasts (CAFs) in cervical cancer, facilitating the provision of a new interpretation 
of the heterogeneity of the microenvironment of cervical cancer, and an in-depth exploration of the pathogenesis 
of cervical cancer as well as pursuit of effective means of treatment intake. 
Methods: 3 cervical cancer specimens were collected by clinical surgery for single-cell RNA sequencing. Cell 
suspensions of fresh cervical cancer tissues were prepared, and cDNA libraries were created and sequenced on 
the machine. Furthermore, the sequencing data were analyzed using bioinformatics, including descending 
clustering of cells, identification of cell populations, mimetic time series analysis, inferCNV, cell communication 
analysis, and identification of transcription factors. 
Results: A total of 9 cell types were identified, encompassing T cells, epithelial cells, smooth muscle cells, CAFs, 
endothelial cells, macrophages, B cells, lymphocytes, and plasma cells. CAFs were further divided into three cell 
subtypes, named type1 cells, type2 cells, and type3 cells. With key transcription factors for the three cells, 
TCF21, ZC3H11A, and MYEF2 obtained, this research revealed the communication relationship between CAFs 
and several other cells, and found an important role of CAFs in the MK signaling pathway. 
Conclusions: scRNA-seq technology contributed to exploring the tumor heterogeneity of cervical cancer more 
deeply, and also further gaining insight into the biological functions of CAFs in cervical cancer. 

mailto:qindongchun@zzu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 15341 AGING 

exhibit a high degree of heterogeneity in the 

intratumor and microenvironment, causing cancer 

progression in the course of disease development,  

thus leading to treatment failure [4]. 

 

One of the important sources of tumor heterogeneity  

is molecular variation within tumor subclones or  

even between individual cells. Cancer is a highly 

heterogeneous disease with phenotypic diversity, often 

influenced by abnormalities at epigenetic, transcrip-

tional, and protein levels that interact in the tumor 

microenvironment [4, 5]. Single-cell RNA sequencing 

allows for the precise and rapid determination of  

gene expression patterns in thousands of individual 

cells [6]. Analysis of individual cells provides more 

meaningful insights into cellular behavior than 

analysis of aggregates, helping to identify potential 

heterogeneity among cell populations and providing 

new perspectives on tumor heterogeneity. 

 

There are few reports on single-cell sequencing  

studies of cervical cancer. Despite the increasing 

adoption of single-cell sequencing technology, its 

application in oncology is still limited to a few  

types. This has led to the fact that the intratumoral 

transcriptional heterogeneity of cervical cancer, 

common cancer in women, is largely unknown. In this 

study, the scRNA-seq analysis of cervical cancer was 

performed by collecting cervical cancer tissues to 

reveal the characteristics of different cell populations 

in cervical cancer, providing new insights into the 

heterogeneity of cervical cancer at the single-cell 

level. Cancer-associated fibroblasts (CAFs) play an 

important role in tumors, and can suppress the func-

tion of immune cells by secreting various cytokines  

or metabolites, thus promoting tumor development, 

invasion, and metastasis [7]. As a result, the present 

study focused on the biological functions of CAFs in 

the development of cervical cancer. 

 

MATERIALS AND METHODS 
 

Selection of research subjects 

 

This research selected surgically resected tumor 

tissues from three patients with cervical cancer 

hospitalized at the First Affiliated Hospital of 

Zhengzhou University for single-cell sequencing. This 

study was approved by the Ethics Committee of the 

First Affiliated Hospital of Zhengzhou University 

(ethics number: 2018-KY-28), and informed consent 

was obtained from patients. Besides, single-cell 

sequencing data were attained from GSE168652  

in the Gene Expression Omnibus (GEO) database  

for one case of cervical cancer paracancer tissue 

(GSM5155197) [8]. 

Preparation of fresh single-cell suspensions 

 

After surgery, the excised tissues were placed in 

lyophilized tubes containing tissue protection solution 

pre-cooled at 4° C and washed with DPBS pre-cooled at 

4° C and repeated 2-3 times to remove the residual 

tissue protection solution. Then, with a small amount of 

digestion solution added, the tissue was cut into small 

pieces and placed in centrifuge tubes (50 ml) containing 

5 mL of digestion solution and digested by shaking  

in a constant temperature water bath at 37° C. After 

digestion, with the digest passed through a pre-wetted 

40 μm cell sieve, the filtrate was collected into a new  

50 mL centrifuge tube. 2 mL of pre-cooled erythrocyte 

lysate at 4° C was added to the cell sediment, gently 

blown and mixed, and incubated at room temperature 

for 3 min. Further, 10 μL of the blown cell suspension 

was taken and gently mixed with 10 μL of 0.4% Typan 

blue. Finally, 10μL of the obtained mixture was used  

to be quickly added to the Countess® II Cell Counting 

plate. 

 

Library construction and sequencing 

 

The prepared cell suspensions, together with 10×Barcode 

gel beads and oil, were added to Chromium Chip B 

microplates, and the beads and cells with Cell Barcode 

were encapsulated in droplets by microfluidic techniques. 

These cell-encapsulated droplets were collected and the 

cells in the droplets were lysed to form GelBeads-in-

emulsion (GEM) through a microfluidic “double-cross” 

crossover system. GEM was then reversely transcribed 

using a PCR instrument, and RNA in the cells was 

reversely transcribed into the first strand of cDNA  

with the barcode Unique Molecular Identifier (UMI) 

information using the reverse transcription primers  

on the gel beads. The first strand of cDNA was  

further purified utilizing magnetic beads for RT- 

PCR amplification (12 cycles of amplification). After  

cDNA amplification was completed, it was fragmented 

using enzymes and the optimal fragment was screened 

with magnetic beads to construct a cDNA library  

by sequencing primers by PCR. The labeled cDNA 

library mix was sequenced on the Illumina NovaSeq 

platform. The sequencing was performed by the end-

pairing procedure for double-end sequencing, and 

Illumina provided software to manipulate the sequencing 

process and to analyze the real-time data generated by 

sequencing. 

 

Quality control of sequencing data 

 

Sample quality control was conducted using Cell 
Ranger, the official software of 10x genomics, which 

integrates STAR software internally [9]. The reads were 

first compared to the reference genome to obtain quality 
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control results such as high-quality cell count, gene 

count, and genomic matching rate in the raw data. 

Subsequently, the quality of each sample was assessed. 

The Seurat (version 4.3.0) [10] software package was 

adopted to further QC the experimental data based on 

the initial QC of Cell Ranger to exclude data that were 

multicellular, bicellular, or unbound on cells. Cells with 

a total gene count of less than 7000 and more than 200 

and a mitochondrial UMI percentage of less than 10% 

were retained as high-quality cells. Double cells were 

removed for downstream analysis with the aid of the 

DoubletFinder (version 2.0.3) [11] software. Eventually, 

three cases of cervical cancer sequencing data and one 

case of single-cell sequencing data from paracancerous 

tissue were merged, with Harmony (version 0.1.1) [12] 

employed to remove batch effects during the merging 

process. 

 

Data downscaling and clustering 

 

The first 50 principal components were selected as 

statistically significant components for subsequent 

analysis, and the dimensionality reduction results were 

visualized in two dimensions using t-distributed random 

neighborhood embedding (t-SNE) plots [13, 14]. The 

research utilized the single-cell sequencing cell type 

annotation software Single R [15] which annotates  

cell types by calculating the correlation between the 

single-cell reference expression profile dataset and the 

cell expression profile to be identified and annotates  

the cell to be identified as a cell type with the highest 

correlation with the reference dataset. Further, the cell 

types were artificially annotated based on Marker genes, 

in combination with results from published literature 

(Supplementary File 1). 

 
Detection of copy number variation in tumor cells 

 

InferCNV [16] can be used to identify large-scale 

chromosomal copy number variations (CNV) in tumor 

single-cell RNA-Seq data, including amplifications  

and deletions of whole or large segments of chromo- 

somes. This approach determines the intensity of gene 

expression by comparing the gene expression of each 

tumor cell with that of a reference cell (normal cells). 

Therefore, this study adopted the InferCNV (version 

1.10.1) software package to detect CNVs in epithelial 

cells, identifying real tumor cells. The control group was 

1 cluster of epithelial cells derived from normal tissue. 

 
Cellchat analysis of intercellular communication 

 

CellChat refers to an open-source R package 

(https://github.com/sqjin/CellChat), which can be applied 

for the analysis and visualization of scRNA-seq data 

intercellular communication (version1.6.1) [17]. CellChat 

is capable of characterizing different intercellular com-

munication by a variety of learning methods including 

pattern recognition methods [18] and can combine  

the interaction between gene expression and signaling 

ligands and receptors to construct a probabilistic model 

of cell-to-cell communication. Such an analytical model 

can accurately elaborate on specific signals played by 

each cell population. Consequently, CellChat was used 

in this paper to analyze the communication between the 

nine cell types that were identified. 

 

Proposed time series analysis of CAFs subtypes 

 

The clustering of CAFs was downscaled and time  

series analysis of their subpopulations was proposed to 

visualize cell movement trajectories and map kinetic 

expression heat maps. 

 

Transcription factor analysis of CAFs subtypes 

 

PySCENIC [19] is an implementation for SCENIC  

[20] (Single Cell Regulatory Network Inference and 

Clustering) on python, which can infer transcription 

factors, gene regulatory networks, and cell types from 

single-cell RNA-seq data. Compared to SCENIC (which 

is based on the R language), pySCENIC offers a dramatic 

increase in computational speed. Since pySCENIC 

scales easily to multicore clusters when running on  

a computer, tens of thousands of cells can be analyzed 

in a relatively short period. This computing process  

is mainly achieved through the Dask framework of 

distributed computing. Hence, pySCENIC was utilized 

for transcription factor analysis of CAFs subsets in this 

study. Additionally, to distinguish cell subtypes more 

efficiently, the Ag20 (Average per 20 cells) [21] method 

was chosen for single-cell data and repeated three times 

to eliminate the error caused by random sampling. 

 

Availability of data and materials 

 

The dataset supporting the conclusions of this article is 

included within the article. The relevant codes can be 

found in Supplementary File 2. 

 

RESULTS 
 

Patient information 

 

Basic information collected from 3 patients with 

cervical cancer is as follows (Table 1). 

 

Results of dimensionality reduction clustering for 

single-cell data 

 

Visualization of the clustering results by t-SNE revealed 

that all cells from 3 tumor samples and 1 normal sample 

https://github.com/sqjin/CellChat
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Table 1. Basic patient information. 

 Patient 1 Patient 2 Patient 3 

Age 27 47 35 

Gender Female Female Female 

Tumor Type Cervical squamous carcinoma Cervical squamous carcinoma Cervical squamous carcinoma 

HPV infection 16 (+) 16 (+) 16 (+) 

Chemotherapy Yes Yes Yes 

Clinical Staging Ⅱa Ⅱa IIb 

Drug resistance None None None 

 

from the database were clustered into 12 cell 

populations (Figure 1A). To clarify the type of each cell 

population, the marker gene was obtained for each cell 

population. Each cell subpopulation based on the above-

identified marker genes was then annotated using Single 

R. The annotation results were based on marker genes 

from the Cell Marker database, combined with cell 

marker genes from the published literature for more 

detailed identification of each cell subpopulation.  

The results demonstrated that 12 cell subpopulations 

were annotated into 9 cell types: T cells, epithelial  

cells, smooth muscle cells, CAFs, endothelial cells, 

macrophage cells, B cells, lymphocytes, and plasma 

cells (Figure 1B). In the t-SNE plots according to  

tissue type, it was observed that immune cells (T cells, 

B cells, and plasma cells) occupied a large part of the 

cells in the tumor tissue (Figure 1C). The proportion of 

different cells in each sample was statistically analyzed 

and plotted as a histogram. It was found that the 

proportion of T cells was significantly higher in tumor 

samples than that in normal samples; while in normal 

samples, smooth muscle cells and endothelial cells  

were more predominant (Figure 1D). Marker genes of 

various cells were well distinguished for cell types,  

and each marker gene was abundantly expressed in its 

corresponding cell type (Figure 1E). Specifically, CD8A 

was highly expressed in T cells; KRT19 was highly 

expressed in epithelial cells; ACTA2 was highly 

expressed in smooth muscle cells; PDGFRA, FAP,  

and COL1A1 were highly expressed in CAFs; CD74 

was highly expressed in macrophage cells; CD37 was 

highly expressed in B cells; KIT was highly expressed 

in lymphocytes; JCHAIN was highly expressed in 

plasma cells (Figure 1F). 

 
GSEA pathway enrichment analysis for each cell type 

 
ALL_OGRAFT_REJECTION, PIK_AKT_mTOR 

signaling pathway, α interferon response, γ inter- 

feron response were enriched in T cells; The 

IL6_JAK_STAT3 signaling pathway, complement, 

inflammatory response, and upregulation of KRAS 

signaling pathway, and TNFa/NF_kb signaling pathway 

were enriched in macrophages; The pathways of 

epithelial and mesenchymal transition and coagulation 

were significantly enriched in CAFs; Wnt/beta-catenin 

signaling pathway was significantly enriched in endo-

thelial cells (Figure 2). 

 

CNV profile in tumor 

 

Heterogeneity among tumors is often caused by copy 

number variation [22]. Cervical squamous carcinoma, 

the most common type of cervical cancer, is a squamous 

cell carcinoma of epithelial origin. This study used the 

gene copy number of normal epithelial cells as control 

and analyzed the degree of malignancy of epithelial-

derived cells by the inferCNV algorithm. Epithelial cell 

clusters were selected from the cell population and 

separated according to tumor and normal tissues. As 

observed from the figure, a significantly higher copy 

number level occurred in the tumor group than in the 

normal group (Figure 3). 

 
Intercellular communication network 

 

Intercellular receptor ligands and signaling pathways 

were calculated using CellChat to analyze intercellular 

interactions. For analysis, the cells were separated into 

two groups according to normal and tumor tissues and 

the associations between different cell types in the two 

subgroups were calculated separately. In normal tissues, 

CAFs and other cells presented more interactions and 

stronger effects (Figure 4A); while in tumor tissues, 

endothelial cells, CAFs, smooth muscle cells, and other 

cells had more interactions and stronger effects (Figure 

4B). This means that there was more than one cell 

involved in the development of a tumour. 

 

Changes in intercellular communication in the 

tumor group relative to the normal group 

 

After differential analysis of cellular communication 

between the tumor and normal groups, it was found 

that, relative to the normal group, endothelial cells, 

smooth muscle cells, CAFs, and macrophages were 
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Figure 1. Visualization of tSNE for cell descending clustering. (A) tSNE plot of 12 cell clusters; (B) tSNE plot of 9 cell types; (C) tSNE plot 
of normal and tumor cells; (D) Proportion of each cell type in different samples; (E) Heat map of marker gene expression for 9 types of cells; 
(F) Bubble map of marker gene expression for 9 types of cells. 
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Figure 2. Enrichment pathways in each cell type. The colours represent the enrichment of the pathways, with the pathway enrichment 
increasing from blue to red. 

 

 
 

Figure 3. InferCNV heat map. The colours represent the copy number, which gradually increases from green to purple. 
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enhanced in the number of interactions with other cells 

in the tumor group, while the intensities of the effects of 

endothelial cells, smooth muscle cells, and other cells 

were improved, along with largely positive correlations 

(Figure 5). 

 

Communication between CAFs and other cells 

 

From the obtained ligand-receptor pairs and signaling 

pathways, the MK (Midkine) pathway was chosen as 

the object of analysis. In both tumor and normal groups, 

CAFs could be the main source of MK action on several 

other cells in the MK pathway. This suggested that CAFs 

were the main mediators in the MK pathway, acting  

as gatekeepers for cell-cell communication. (Figure  

6A, 6B). 

 

Role of CAFs in the Midkine signaling pathway 

 

Cellchat takes the centrality metric previously used in 

graph theory for social network analysis to identify  

the major sources, targets, key mediators, and key 

 

 
 

Figure 4. Cellular communication networks. (A) Number of interactions and intensity of action of different cell types in the normal 
group; (B) Number of interactions and intensity of action of different cell types in the tumor group. The thickness of the line refers to the 
number of interactions and the strength of the effects. 
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influencers in cellular communication [17]. In contrast 

to other cells, CAFs acted as important signal sources, 

targets, mediators, and influencers in the MK signaling 

pathway in both normal and tumor groups (Figure 7A, 

7B). 

 

Defining new subtypes of CAFs 

 

To further investigate the biological functions  

of CAFs in cervical cancer, CAFs were re-clustered  

to distinguish different subgroups. CAFs were re-

clustered into 11 clusters (Figure 8A), with cells 

identified according to the marker gene of each 

cluster. Three of these clusters, 4, 5, and 6, with  

high expression of C7 and CNN1, were named type1 

cells; two clusters, 0 and 8, with high expression  

of SELENOM and RACK, were named type2 cells; 

and several clusters, 1, 2, 3, 7, 9 and 10, with high 

expression of CTGF and TNXB, were named type3 

cells (Figure 8B). 

Analysis of the cell developmental trajectories of 

each subpopulation of CAFs  

 

It could be seen from Figure 9A that the three 

subpopulations were divided into three developmental 

states. Figure 9B showed the timeline of cell dif-

ferentiation, with the shades of color representing early 

and late developmental stages. Figure 9C introduces the 

developmental stages in which different subpopulations 

of CAFs were located. As could be seen from Figure 

9C, most type2 cells were at the early developmental 

stage of CAFs, most type3 cells were at the middle 

developmental stage of CAFs, and most type1 cells 

were at middle and late developmental stages of CAFs. 

The expression heat map of genes was drawn according 

to the developmental trajectory, and these genes were 

clustered into 5 modules (Figure 9D). From the heat 

map, it was observed that cluster1, cluster5, and cluster3 

represented the early, middle, and late stages of CAFs 

development, respectively. 

 

 
 

Figure 5. Changes in the number of interactions and intensity of the effects of different cell types in the tumor versus normal 
group, with blue representing weakening and red representing intensification. 
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KEGG pathway enrichment analysis of genes in 

cluster 1, cluster 5, and cluster 3 

 

The proteoglycans in cancer, axon guidance, and 

lysosome were significantly enriched in CAFs at  

early developmental stages (cluster 1) (Figure 10A); 

The pathways in cancer, IL-17 signaling pathway, and 

cytokine-cytokine receptor interactions were significantly 

enriched in CAFs at mid-developmental stages (cluster 

5) (Figure 10B); The cell cycle, DNA replication and 

mismatch repair pathways were significantly enriched 

in CAFs at the late developmental stage (cluster 3) 

(Figure 10C). 

Transcription factor prediction of CAFs subtypes 

 

A comprehensive network analysis of pySCENIC 

results was performed to systematically identify key 

transcription factors of the cells. The activity of each 

transcription factor associated with three fibroblast 

subtypes was evaluated, leading to the definition of  

a transcription factor specificity score (RSS) based  

on the Jensen-Shannon scatter [23]. The positively 

regulated transcription factors with the highest  

RSS values were then selected and their functional 

properties were further examined. Therefore, TCF21, 

TFF3, and FOXN3 were identified as type1 cell-specific 

 

 

 

Figure 6. Communication of CAFs with other cells in the MK signaling pathway. (A) Hierarchical diagram of the MK signaling 
pathway in the communication network of the normal group of cells; (B) Hierarchical diagram of the MK signaling pathway in the 
communication network of the tumor group of cells. This diagram consists of two parts: the left and right parts highlight the autocrine and 
paracrine signals of CAFs and several other cells, respectively. The solid and hollow circles represent the source and target, respectively. 
Different colors of the circles represent different cells, and the width of the connecting lines represents the communication probability. The 
color of the connecting lines is consistent with the source of the signal. 
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transcription factors (Figure 11A) and their specificity 

was validated using tSNE plots (Figure 11B, 11C); 

TAF1, ZC3H11A, MEIS2, RREB1, and ZNF471 were 

identified as type2 cell-specific transcription factors 

(Figure 11D) and their specificity was validated using 

tSNE plots (Figure 11E, 11F); FOSL2, MYEF2, 

GADD45, IES6, ZNF1 were identified as type3 cell-

specific transcription factors (Figure 11G), and their 

specificity was also validated utilizing tSNE plots 

(Figure 11H, 11I). Furthermore, the accuracy of these 

transcription factor predictions was systematically 

evaluated using two methods, namely SEEK [24] and 

CoCiter [25]. SEEK is a method based on mining public 

datasets and CoCiter is an approach for mining the 

literature. Notably, SEEK should be employed first  

to filter a dataset in which a transcription factor and  

its target gene present co-expression. Usually, the 

functions of these co-expressed genes tend to reflect  

the functions of that class of cells. Consequently, it is 

effective to search the headings of the dataset to obtain 

the functions of the cells being studied. Secondly,  

since descriptions related to functionally relevant  

genes tend to appear in abstracts in the literature, this  

research identified the functions of these genes and 

corresponding cell types in the literature abstracts by 

CoCiter analysis. 

 

For type1 cells, SEEK was used to search for GEO 

datasets where TCF21 and its target genes were 

significantly co-expressed. Among the more than 3000 

datasets detected, those associated with type1 cells were 

ranked high (Figure 11J, p<0.05). The two terms of 

“Breast” and “immune” from the descriptions of the 

datasets were extracted as a description of the function 

of type1 cells. For type2 cells, in the dataset of more 

than 3000 ZC3H11A detections showing co-expression 

with their target genes, most of those associated with 

type2 cells were ranked high (Figure 11K, p < 0.05). 

The two terms of “Lung” and “cervical” from the 

descriptions associated with the dataset were extracted. 

For type3 cells, SEEK was adopted to search the GEO 

dataset for significant co-expression of MYEF2 and  

its target genes. The higher-ranked ones were asso-

ciated with type3 cells (Figure 11L, p < 0.05). The  

two terms of “CIN” and “Colon” were extracted from 

the descriptions of the dataset as the most frequently 

occurring terms for type3 cells. 

 

Modularization of transcription factors 

 

Transcription factors usually interact with each other  

to regulate gene expression. To describe this mode  

of action more systematically, this research compared 

transcription factor activity scores (RAS) based on  

the Connection Specificity Index (CSI) [26], allowing 

transcription factors with similarities to cluster into one 

category. The results indicated that these transcription 

factors were mainly distinguished into six modules. The 

 

 
 

Figure 7. The role of CAFs in the MK signaling pathway in the normal group (A) and the tumor group (B). 
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Figure 8. Distinguishing new subtypes of CAFs. (A) tSNE plot of CAFs with reduced dimensional clustering; (B) tSNE plot of maker genes 

for 3 cell subpopulations. 
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binding sequences of transcription factors were 

subsequently mapped by selecting representative 

transcription factors in each module based on their 

average activity scores. The representative transcription 

factors of M1 included TCF21, FOSL2, and RREB1, 

which were three subtypes of cell-specific transcription 

factors (Figure 12A). When the average activity fraction 

of each module was expressed using tSNE, it was found 

that each module occupied a different region, along 

with the presence of a complementary relationship 

between all highlighted regions of these modules (Figure 

12B). KEGG pathway enrichment analysis of transcrip-

tion factors in M1 revealed that significantly enriched 

pathways were connected with cancer, transcriptional 

misregulation in cancer, viral oncogenic effects, and 

human papillomavirus infection (Figure 12C). 

 

 
 

Figure 9. The pseudo-time trajectory of CAFs. (A–C) The pseudo-time trajectory of CAFs with gene expression profiles derived from 
Monocle 2, with each point representing a single cell; (D) Heat map of gene expression changes. 
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DISCUSSION 
 

Cervical cancer, the fourth most common female 

tumor, threatens the health of women. In recent  

years, the heterogeneity of many tumors and their 

microenvironment has been well described, but the 

heterogeneity of cervical cancer and the reasons for its 

treatment failure have not been more comprehensively 

explained. Herein, the heterogeneity of cervical cancer 

was investigated with the help of scRNA-seq tech-

nology, revealing the biological roles of different cells 

in cervical cancer by classifying cervical cancer cells 

into different types, which provided good evidence  

for the study of cervical cancer heterogeneity. At the 

same time, a more in-depth study of CAFs in cervical 

cancer was also conducted, revealing the heterogeneity 

of CAFs and their biological transformation during  

the development of cervical cancer. Our study not  

only provided a more specific description of the tumor 

microenvironment heterogeneity in cervical cancer, but 

also offered new ideas for targeted therapy in cervical 

cancer. 

 
A total of nine cell types in cervical cancer were 

identified by scRNA-seq, including T cells, epithe- 

lial cells, smooth muscle cells, CAFs, macrophages, 

endothelial cells, B cells, lymphocytes, and plasma 

cells. Subsequently, pathway enrichment analysis of 

the nine cell types using GSEA was performed, 

indicating that some characteristic pathways, such as 

 

 
 

Figure 10. KEGG enrichment analysis of CAFs developing in early (A) to mid (B) to late (C) stages. 
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“coagulation”, were significantly enriched in CAFs, 

which have been shown to be involved in the extra-

cellular mesenchymal organization, cell migration 

regulation and angiogenesis [27]. CAFs were also 

divided into three subtypes and had three developmental 

states, with pathways such as “metabolic pathway” and 

“Wnt signaling pathway” being significantly enriched in 

CAFs at early developmental stages and Wnt/beta-

catenin signaling pathway being significantly enriched 

in CAFs at early developmental stages. The Wnt/beta-

catenin signaling pathway regulates various important 

embryonic and somatic processes, such as cell dif-

ferentiation, organ development, and the formation of 

homeostasis within tissues [28]. Considering that CAFs 

 

 
 

Figure 11. Transcription factor prediction of CAFs subtypes. (A) Ranking of transcription factors of type1 cells based on transcription 

factor specificity score (RSS); (B) Highlighting type1 in the t-SNE plot (indicated by red dots); (C) Binary conversion of transcription factor activity 
scores for transcription factors with higher RSS TCF21 (Z-Score normalization for all samples with a 2.5 dividing line to convert values to 0 and 
1), highlighting in t-SNE plots (indicated by green dots); (D) Ranking of transcription factors of type2 cells based on transcription factor 
specificity score; (E) Highlighting type2 in the t-SNE plot (indicated by red dots); (F) Binary conversion of transcription factor activity scores for 
transcription factors with higher RSS ZC3H11A, highlighting in t-SNE plots (indicated by green dots); (G) Ranking of transcription factors of type3 
cells based on transcription factor specificity score; (H) Highlighting type3 in the t-SNE plot (indicated by red dots); (I) Binary conversion of 
transcription factor activity scores for transcription factors with higher RSS MYEF2, highlighting in t-SNE plots (indicated by green dots); (J) Co-
expression results of TCF21 and its target genes in different GEO datasets retrieved using SEEK.; (K) Co-expression results of ZC3H11A and its 
target genes in different GEO datasets retrieved using SEEK; (L) Co-expression results of MYEF2 and its target genes in different GEO datasets 
retrieved using SEEK. The x-axis represents different datasets and the y-axis represents the statistical significance of the correlation between 
target genes in each dataset. Functionally related and significantly correlated (p < 0.01) datasets are indicated by yellow dots. 
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are mainly transformed by fibroblasts under the 

stimulation of growth factors and that normal 

fibroblasts can also acquire the phenotype of CAFs by 

communicating with cancer cells, early CAFs exhibit 

similar functions as normal fibroblasts; The “TNF 

signaling pathway” and “IL-17 signaling pathway” are 

the most important pathways, which are significantly 

enriched in CAFs in middle developmental stages 

(cluster 2), and TNF (tumor necrosis factor) serves as 

the role of immunomodulator [29]. The IL-17 signaling 

pathway is associated with autoimmune diseases and 

cancer progression [30]. This suggests that CAFs 

become involved in immune-related regulation as  

they develop; “DNA replication” and “mismatch repair” 

pathways are significantly enriched in CAFs at late 

developmental stages (cluster 1), which reflects that 

CAFs gradually play a regulatory role. These more 

complex and advanced roles of transcription can be 

seen. 

 

CAFs are classified into 3 subtypes, named type1 cells, 

type2 cells, and type3 cells. C7 (Complement C7) and 

CNN1 are marker genes for type1 cells, and some 

studies have manifested that C7 can be used as a marker 

gene for immune CAFs [31]. However, other marker 

genes of immune CAFs, such as C3, IGF1, IL6, 

CXCL12, and other genes are not specifically expressed 

[31, 32]. Therefore, they cannot be defined as immune 

 

 
 

Figure 12. The modularity of transcription factors and pathway enrichment analysis. (A) Identification of transcription factor 

modules based on transcription factor ligand specificity indices, with representative transcription factors selected, and binding sequences of 
transcription factors plotted; (B) tSNE plot of the average transcription factor activity score for each module; (C) KEGG pathway enrichment 
analysis of genes in module 1. 
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CAFs yet; CNN1, as a protein-coding gene, is mainly 

involved in the negative regulation of vascular smooth 

muscle cell proliferation [33, 34]. SELENOM and 

RACK are marker genes in type2 cells, and SELENOM 

exerts a great influence on the regulation of body 

weight and energy metabolism [35, 36]. CTGF and 

TNXB are marker genes for type 3 cells. CTGF  

plays a crucial part in chondrocyte proliferation and 

differentiation, such as cell adhesion, and is relevant to 

a platelet-derived growth factor [37, 38]. Based on the 

above analysis, it can be speculated that type1 cells are 

likely to be immune-associated CAFs, type2 cells are 

likely to be vascular-associated CAFs, and type3 cells 

are likely to be stroma-associated CAFs, although this 

speculation needs to be confirmed by more cell numbers 

and functional experiments. 

 

Further, the communication between CAFs and several 

others was analyzed, obtaining the ligand-receptor pairs 

between CAFs and T and B cells. The communication 

between CAFs and immune cells also potentially reveals 

the role of CAFs in the tumour microenvironment. 

COL1A1- CD44 and COL1A2- CD44, as important 

ligand-receptor pairs between CAFs and T cells, are 

important signaling pathways for communication 

between CAFs and T cells. In cervical cancer, CAFs 

and B cells communicate through MIF-(CD74+CXCR4) 

and MIF-(CD74+CD44). MK signaling pathways are 

important pathways that mediate tumor cell growth, 

migration, and angiogenesis, and MK can play an 

important role as a potential tumor marker in tumor 

detection, prognosis, and treatment [39]. In our study, 

CAFs were confirmed to play a key role in the MK 

signaling pathway, capable of communicating well with 

several other cells in the MK signaling pathway. 

Additionally, key transcription factors for type1,  

type2, and type3 cells were obtained, namely TCF21, 

ZC3H11A, and MYEF2. TCF21 is an important tran-

scription factor in fibroblasts and plays an important 

role in the differentiation of fibroblasts [40]. TCF21  

is also involved in the repression of DNA-binding 

transcriptional activity [41]. ZC3H11A is mainly 

involved in the translocation of mature transcripts to  

the cytoplasm, thus affecting transcriptional processes 

[42]. The RNA-binding protein, MYEF2, can influence 

cell differentiation through PARylation regulation  

[43]. The transcription factors of the three cell types 

were modularized in this study, and it was found  

that important transcription factors were clustered in 

Module 1, which were significantly enriched in “cancer-

related pathways”, “transcriptional misregulation in 

cancer”, “viral oncogenesis” and “human papillomavirus 

infection”, consistent with our study of cervical cancer 
and its characterization by HPV infection. Among the 

four genes associated with cervical cancer prognosis  

in CAFs, NR2F2 -AS1 can influence cervical cancer 

progression by regulating the miR-4429/mbd1  

axis [44] and miR-221-3p promotes angiogenesis by 

targeting THBS2 and influences cervical carcinogenesis 

[45]. 

 
In conclusion, our study contributed to better under-

standing the role of CAFs in cervical cancer, providing 

a theoretical basis for further targeted therapies against 

CAFs. 

 

CONCLUSIONS 
 
A total of 9 cell types were identified in this research, 

encompassing T cells, epithelial cells, smooth muscle 

cells, CAFs, endothelial cells, macrophages, B cells, 

lymphocytes, and plasma cells. CAFs were further 

classified into three cell subtypes, type1 cells, type2 

cells, and type3 cells. And key transcription factors for 

three cell types, TCF21, ZC3H11A, and MYEF2 were 

acquired, revealing the communication between CAFs 

and several other cell types, and the important role  

of CAFs in the MK signaling pathway. scRNA-seq 

technology not only helped to explore the tumor 

heterogeneity of cervical cancer more deeply but also 

gave us further insight into the biological functions  

of CAFs in cervical cancer. Nevertheless, it is still 

necessary to collect more specimens, obtain more cells, 

and verify the specific mechanisms of CAFs in cervical 

cancer through experiments. 
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