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INTRODUCTION 
 

According to the 2018-2020 global cancer statistics [1, 
2], Among all malignant tumors, lung cancer has one of 

the highest incidence rates (over 10%) and the highest 

mortality rate (over 18.4%). Non-small cell lung cancer 

(NSCLC) is the predominant pathological type of lung 

cancer, which includes adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma [3, 4]. Surgery, 

radiation therapy, chemotherapy, targeted therapy, and 

immunotherapy are among the primary treatment 

options for NSCLC. Early NSCLC can usually be 
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ABSTRACT 
 

Background: Although there are numerous treatment methods for NSCLC, long-term survival remains a 
challenge for patients. The objective of this study is to investigate the role and causal relationship between the 
target of tetrandrine and non-small cell lung cancer (NSCLC) through transcriptome and single-cell sequencing 
data, summary-data-based Mendelian Randomization (SMR) and basic experiments. The aim is to provide a 
new perspective for the treatment of NSCLC.  
Methods: We obtained the drug target gene of tetrandrine through the drug database, and then used the 
GSE19188 data set to obtain the NSCLC pathogenic gene, established a drug-disease gene interaction network, 
screened out the hub drug-disease gene, and performed bioinformatics and tumor cell immune infiltration 
analysis. Single-cell sequencing data (GSE148071) to determine gene location, SMR to clarify causality and drug 
experiment verification.  
Results: 10 drug-disease genes were obtained from 213 drug targets and 529 disease genes. DO/GO/KEGG 
analysis showed that the above genes were all related to the progression and invasion of NSCLC. Four drug-
disease genes were identified from a drug-disease PPI network. These four genes were highly expressed in 
tumors and positively correlated with plasma cells, T cells, and macrophages. Subsequent single-cell 
sequencing data confirmed that these four genes were distributed in epithelial cells, and SMR analysis 
revealed the causal relationship between CCNA2 and CCNB1 and the development of NSCLC. The final 
molecular docking and drug experiments showed that CCNA2 and CCNB1 are key targets for tetrandrine in 
the treatment of NSCLC. 
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treated with surgery and stereotactic radiotherapy, but 

clinically most patients are diagnosed at an advanced 

stage and have lost the chance of radical cure. In recent 

years, targeted therapy has made important progress in 

non-squamous non-small cell lung cancer, especially 

the efficacy of targeted drugs targeting mutated genes 

such as EGFR, ALK, ROS1, and BRAF has been fully 

confirmed [5]. At the same time, with the widespread 

application of immune checkpoint inhibitors in the 

treatment of NSCLC, the overall survival of a 

considerable number of patients has been prolonged [6]. 

However, for most NSCLC patients, drug resistance is 

an unavoidable problem with the above therapies, so 

researchers need to find other treatment strategies.  

 

Traditional Chinese medicine has a long history in the 

treatment of non-small cell lung cancer, and has 

accumulated rich clinical experience. CATLA study 

showed that the Chinese herbal medicine Yiqi Yangyin 

Jiedu Decoction (YYJD) can delay the occurrence of 

acquired resistance to the first-generation EGFR-TKI, 

which provides a new idea for the treatment of non-

small cell lung cancer [7]. Studies have found that 

theabrownin (TB) is a pigment active substance in green 

tea, which has the ability to phosphorylate and activate 

MAPK/JNK pathway-related proteins, and at the same 

time inhibit epithelial-mesenchymal transition-related 

genes and pro-apoptotic molecules, p53 signaling 

pathway and MAPK/JNK signaling pathway, thereby 

effectively inhibiting the growth of NSCLC cells in 

xenograft models [8]. Cinobufacin (CNB) is a 

cardiotonic steroid or bufonilide extracted from 

Bufonis, which has detoxification, swelling, and 

analgesic effects. Studies have found that cinobufacin 

induces FOXO1 by inhibiting non-small cell lung 

cancer A549 cells G9a Regulates apoptosis, prolifera-

tion, migration and invasion [9]. 

 

Stephania tetrandra S. Moore is a traditional Chinese 

medicinal material. Its root is used as medicine to reduce 

edema and relieve pain. It can be used for dysuria and 

hypertension [10]. Tetrandrine is indicated for rheumatic 

pain, arthralgia, neuralgia, silicosis, and it can also be 

used in small doses in lung cancer radiotherapy [11]. 

Through the action of tetrandrine, the acidic environment 

of lysosomes is neutralized, thereby affecting the 

degradation process of the autophagy pathway, and at the 

same time inducing the apoptosis of prostate cancer, liver 

cancer, kidney cancer and bladder cancer cells [12]. 

Studies have found that tetrandrine can upregulate the 

mRNA and protein levels of BMP9 in colon cancer cells, 

and finally inhibit the proliferation of colon cancer cells 

through BMP9/PTEN/PI3K/AKT signaling [13]. It is 
reported that tetrandrine can enhance the expression of 

PARP, Bax, ICAM-1 and VEGF, and effectively inhibit 

the growth and induce apoptosis of A549 lung cancer 

cells by activating the VEGF/HIF-1α pathway [14]. It can 

be seen from the above that tetrandrine has a wide range 

of anticancer effects. 
 

Variations in an individual’s genome can affect drug 

metabolism, absorption, distribution, and excretion, 

thereby affecting drug efficacy and adverse effects [15]. 

Therefore, knowing an individual’s drug-disease genetic 

information can help doctors better choose drugs and 

drug dosages to improve treatment efficacy and reduce 

the risk of adverse reactions. In addition, drug-disease 

genetic information can also be used to develop more 

personalized treatment strategies and drugs. To assess 

the potential efficacy of tetrandrine in NSCLC, we 

constructed an interaction network between tetrandrine 

drug targets and NSCLC oncogenes. Through 

screening, we identified four hub genes and investigated 

their relevance to immune cells. Leveraging single-cell 

sequencing data, we elucidated the drug’s cell-type 

specificity and employed SMR analysis to establish the 

causal relationship between these genes and NSCLC. 

Our findings confirmed the ability of tetrandrine to 

inhibit proliferation of NSCLC tumor cells and 

identified important targets that can inform current 

clinical treatments for NSCLC. 

 

MATERIALS AND METHODS 
 

Drug target acquisition and functional analysis 
 

From Comparative Toxicogenomics Database (CTD) 

(http://ctdbase.org/) [16], SwissTargetPrediction (http:// 

www.swisstargetprediction.ch/) [17], BindingDB (http:// 

bindingdb.org/bind/) [18], TargetNet (http://targetnet. 

scbdd.com/home/index/) [19] four databases 

downloaded the target information of tetrandrine. In 

order to standardize and harmonize information 

obtained from various databases, we have retained the 

drug gene names from these database results while 

eliminating extraneous expression data. We then used a 

Venn diagram to display the combined results of drug 

genes in the above database. Disease Ontology 

(DO)/Gene Ontology (GO)/Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analyzes were performed 

using these pharmacogenes, respectively. 

 

NSCLC data obtain and analysis 

 

NSCLC patient information and transcriptome data 

come from the GSE19188 dataset (https://www. 

ncbi.nlm.nih.gov/geo/) [20]. The dataset encompasses 

genetic data from a cohort of 91 patients afflicted with 

NSCLC, comprising 91 tumor specimens and associated 
information from 65 neighboring normal lung tissue 

samples. R was used to normalized the transcriptome 

data in this data set, and then the “limma” R package 

http://ctdbase.org/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://bindingdb.org/bind/
http://bindingdb.org/bind/
http://targetnet.scbdd.com/home/index/
http://targetnet.scbdd.com/home/index/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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was used to screen the differential genes in the disease 

according to the standard of│logFC│>1, P<0.05. The 

“WGCNA” R package was used to cluster genes with 

similar expression patterns in GSE19188 to form 

different modules, and the relationship between genes 

and phenotypes or traits in the modules was analyzed. 

Finally, the intersection of the differential gene and the 

MEturquoise module genes analyzed by WGCNA was 

used as the disease gene. GO and KEGG enrichment 

analysis of disease genes to elucidate their functions in 

NSCLC. 

 

Drug-disease joint analysis 

 

Put all the drug and disease genes through the STRING 

database (https://string-db.org/) [21] to create a protein-

protein interaction (PPI) network with a confidence 

interval of 0.4, and delete independent genes that do not 

interact with other genes. Take the intersection of drug 

gene and disease gene as drug-disease gene. Then, use 

Cytoscape version 3.8.0 to process the PPI network, and 

use MCODE to set the Degree cutoff value to 2, and the 

rest to the default settings to get a subnetwork 

consisting of 124 genes. In order to further screen hub 

genes, a core sub-network composed of 41 genes was 

screened again through the STRING database and 

MCODE in Cytoscape according to the above criteria. 

DO/GO/KEGG analyzes were performed using these 

hub genes, respectively. At the same time, R was used 

to describe the expression of 41 genes in tumor and 

normal tissues in NSCLC. The “ pROC “ R package 

established receiver operating characteristic (ROC) 

curves to verify the performance of hub genes.  

 

Immune infiltration analysis 

 

We used the CIBERSORT algorithm to analyze the 

level of immune cell infiltration in normal and tumor 

tissues in the GSE19188 dataset. In addition, we also 

evaluated the correlation between each hub gene and 

immune cells using the “IOBR” R package to determine 

whether these genes could be used as new biomarkers in 

immunotherapy. These measures help to gain insight 

into the immune signature of tumors and provide the 

basis for personalized treatment of immunotherapy. 

 

Drug-disease gene and single cell sequencing 

analysis 

 

The single-cell sequencing data set (GSE148071) was 

obtained from the GEO database (https://www. 

ncbi.nlm.nih.gov/geo/) [22], the dataset comprises 42 

tumor samples from non-small cell lung cancer patients 
obtained through methods such as percutaneous biopsy, 

bronchoscopy, or superficial lymph node biopsy, along 

with their associated single-cell sequencing data. Then 

the single-cell data were processed using R packages 

such as “Seurat”, “harmony”, “UCell”, “irGSEA”, 

“GSVA”, and “GSEABase”. Percentages of 

mitochondria and rRNA are calculated by the 

PercentageFeatureSet function and ensure expression of 

more than 200 genes and <10,000 genes per cell with 

mitochondrial content <20%. All gene expression levels 

were processed by the “LogNormalize” function, and 

then the top 2000 highly variable genes were screened 

out using “FindVariableFeatures” function. After 

normalizing all genes, Principal Component Analysis 

(PCA) and Uniform Manifold Approximation and 

Projection (UMAP) were used for data dimensionality 

reduction. Cell annotation via HumanPrimary 

CellAtlasData. Finally, according to the standard of 

min.pct = 0.25, logfc.threshold = 0.25, the differentially 

expressed genes are retained and combined with the 

drug-disease gene list to display the distribution map to 

see which cell subsets the drug-disease gene acts on. 

 

Summary-data-based Mendelian randomization 

 

This study is based on publicly available summary-level 

data from genome-wide association studies (GWAS) 

and expression quantitative trait loci (eQTL) studies. 

These studies have been approved by relevant 

institutional review boards and informed consent has 

been obtained from the participants. Four hub genes 

(CCNB1, CCNA2, BIRC5, and AURKB) were 

selected as exposures, and their available eQTLs were 

used as genetic instruments for each gene. The eQTL 

summary-level data were sourced from eQTLGen 

(https://www.eqtlgen.org/) [23]. We identified common 

eQTLs (minor allele frequency [MAF] >1%, P < 5.0 × 

10-8) significantly associated with the expression of the 

four genes in blood samples. The summary-level data 

for non-small cell lung cancer (NSCLC) GWAS were 

obtained from FINNGEN (https://www.finngen.fi/en) 

[24] R8, with a total of 263,448 samples, including 

3,865 NSCLC cases and 259,583 controls. 

Subsequently, SMR software version 1.31 (https:// 

yanglab.westlake.edu.cn/software/smr/#Download) [25] 

was used for allele harmonization and analysis. We 

utilized the F-statistic to assess weak instrument 

variable effects and included SNPs with F > 10 to 

minimize weak instrument bias. For the SMR method, a 

P-value ≥0.01 from the heterogeneity in dependent 

instruments (HEIDI) test indicates no heterogeneity 

[26]. This step was performed to ensure the reliability 

and stability of the results. 

 

Validation of all cell lines 

 
Origin and Acquisition: The A549 and H1299 cell lines 

were acquired on April 5, 2023 from Dr. Mo’s 

laboratory. Testing and Authentication: Both the A549 

https://string-db.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.eqtlgen.org/
https://www.finngen.fi/en
https://yanglab.westlake.edu.cn/software/smr/#Download
https://yanglab.westlake.edu.cn/software/smr/#Download
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and H1299 cell lines have undergone rigorous testing 

and authentication to ensure their identity and purity. 

The authentication process involved the use of standard 

molecular biology techniques. Method of Testing: The 

authentication of the A549 and H1299 cell lines was 

conducted using DNA profiling, specifically through 

short tandem repeat (STR) analysis. This method allows 

for the comparison of the cell line’s STR profile with 

known reference profiles to confirm its identity. Last 

Testing and Verification: The A549 and H1299 cell 

lines were last tested and verified for authentication on 

May 30, 2023. This recent authentication confirms the 

integrity and fidelity of the cell lines used in this study. 

We affirm that the above information accurately reflects 

the origin, authentication, testing method, and recent 

verification status of the A549 and H1299 cell lines 

used in our research. 

 

Cytotoxicity, apoptosis assay and Edu incorporation 

assay 

 

The NSCLC cell lines A549 and H1299 were 

maintained in 1640 medium (Hyclone, USA) 

containing 10% FBS (Gibco, USA) at 37° C in an 

atmosphere of 5% CO2. These cells were digested 

with pancreatin (Life-iLab, Shanghai, China). NSCLC 

cells were primarily seeded in several 96-well plates, 

and after tetrandrine treatment, CCK-8 reagent was 

added and operated according to the manufacturer’s 

instructions. Cell apoptosis was conducted by Flow 

cytometry using Annexin V– FITC Detection Kit 

(Solarbio, Beijing, China). EdU incorporation assay 

was employed to conduct the cell proliferation 

capacity of NSCLC cells treated with tetrandrine 

(Abbkine, China) according to the manufacturer’s 

instructions. Finally, images were obtained and 

preserved under the confocal microscope. 

 

Molecular docking 

 

First use the punchem website (https://pubchem. 

ncbi.nlm.nih.gov/) [27] to obtain the 2D structure of 

tetrandrine, then use ChemBio3D Ultra 14.0.0.117 to 

convert it into a 3D structure. The protein structure of 

CCNA2 and CCNB1 were obtained from the RCSB 

database [28]. AutoDockTools 1.5.6 (https://autodock. 

scripps.edu/) was utilized to prepare the receptor protein 

and ligand molecules, including hydrogen addition, partial 

charge allocation, and protonation state assignment. 

During molecular docking, the XYZ grid coordinates of 

CCNA2 were set to 18.553, 62.684, and 77.232, and the 

XYZ grid coordinates of CCNB1 were set to -60.067, 

31.797, and -14.94, with a grid length of 40Å in each 
direction. The binding modes of the ligand molecules 

were generated using Autodock Vina [29], with an 

exhaustiveness setting of 8, maximum allowable energy 

range of 5 kcal/mol, and maximum output conformations 

of 20. The Protein-Ligand Interaction Profiler online site 

[30] is used to analyze non-covalent interactions between 

molecules and their ligands. PyMOL was used to process 

the resulting plots. 

 

RESULTS 
 

Functional enrichment analysis of drug targets 
 

213 drug target genes were identified from four  

drug target databases, including CTD, Swiss-

TargetPrediction, Binding DB, and TargetNet, and their 

intersection was shown in Figure 1A. The results of DO 

analysis indicated that these drug genes mainly 

functioned in various cancers, such as non-small cell 

lung cancer, connective tissue cancer, and musculo-

skeletal system cancer (Figure 1B). KEGG analysis 

revealed that these genes were enriched in tumor 

pathways closely related to tumor pathways, including 

EGFR tyrosine kinase inhibitor resistance, PI3K-Akt 

signaling pathway, PD-L1 expression, and PD-1 

checkpoint pathway (Figure 1C). Furthermore, GO 

analysis showed that drug genes were mainly enriched 

in biological processes of peptide-serine/ 

threonine modification (BP), protein kinase complex in 

cellular components (CC), and protein serine/threonine 

kinase activity in molecular function (MF) (Figure 1D). 

 

Acquisition and analysis of disease genes 
 

From the NSCLC data set (GSE19188), we screened 

out 1612 differentially expressed genes compared 

with normal tissues. Then, we selected a correlation 

coefficient of 0.86 corresponding to a soft threshold 

of 3 to construct a scale-free network for WGCNA 

analysis (Figure 2A, 2B). Through WGCNA analysis, 

all genes of NSCLC were constructed into 6 different 

gene modules, namely MEyellow, MEblue, 

MEturquoise, MEbrown, MEgreen and MEgrey, as 

shown in Figure 2C. According to the correlation 

analysis between the gene modules and Tumor shown 

in Figure 2C. These gene modules are related to the 

occurrence and development of NSCLC, among 

which MEturquoise has the most significant 

correlation with NSCLC and is considered as a key 

gene module. Based on the intersection of genes in 

this module and differentially expressed genes, 529 

disease-causing genes were found. These pathogenic 

genes were mainly enriched in organelle fission  

(BP), chromosomal region (CC) and catalytic activity  

acting on DNA (MF) in functional enrichment 

analysis. At the same time, KEGG analysis showed 
that these pathogenic genes were closely related to 

cell cycle, DNA replication and P53 signaling 

pathway (Figure 2D–2F). 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://autodock.scripps.edu/
https://autodock.scripps.edu/
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PPI network of drug targets and disease genes 

 

Through the combination of drug targets and disease 

genes, 10 genes were found to be drug-disease genes 

(Figure 3A). The first PPI network was obtained based 

on the STRING database and Cytoscape. The 

subnetwork of 124 genes was obtained by the default 

setting of the MCODE plug-in in Cytoscape, using 

MCODE again and 41 hub genes were further screened 

out, including 4 drug-disease genes (Figure 3B). To 

explore the functional annotations of these hub genes, 

we performed DO, KEGG and GO enrichment analyses. 

DO analysis shows that these genes are still highly 

enriched for NSCLC (Figure 3C). The KEGG pathway 

enrichment analysis results are shown in Figure 3D. For 

the GO functional annotation of genes, the top 10 

annotation results of BP, CC, and MF are shown in the 

Figure 3E. At the same time, the expression comparison 

between tumor tissue and normal tissue found that  

these hub genes were highly expressed in tumor tissue 

(Figure 3F). The results of ROC analysis showed that 

all 41 genes had good diagnostic performance for 

NSCLC (Supplementary Figures 1, 2).  

 

Analysis of tumor cell immune infiltration in 

HNSCC 

 

We performed immune infiltration analysis for normal 

and tumor groups using CIBERSORT algorithms, and 

the results are shown in Figure 4A. These calculation 

results allow us to intuitively understand that there are 

significantly more Plasma cells, various types of T cells, 

Macrophages M1 and Macrophages M2 in tumor 

tissues. The results of correlation analysis between 41 

hub genes and immune cells are shown in Figure 4B. At 

the same time, we found that four drug-disease genes 

(CCNB1, CCNA2, BIRC5 and AURKB) were 

negatively correlated with monocytes, and had 

statistical significance, but showed different correlations 

with other types of immune cells (Figure 4C). 

 

 
 

Figure 1. Analysis of drug targets. (A) Venn diagram of drug targets; (B) DO analysis; (C) KEGG analysis; (D) GO analysis. 
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Single cell sequencing and drug-disease gene analysis 

 

We selected the first five samples of the single-cell dataset 

(GSE148071), and visualized the QC metrics as a violin 

after following the quality control (QC) criteria of 

expressing more than 200 genes and less than 10,000 

genes per cell, and mitochondrial content <20%  

(Figure 5A), while finding a positive correlation with total 

intracellular sequences (R = 0.91, Figure 5B), we also 

found a slight correlation between sequencing depth and 

rRNA (R = 0.08). A total of 2,000 highly variable features 

were identified from 27,527 features (Figure 5C). When 

performing PCA dimensionality reduction screening, we 

selected 2000 highly variable features as input, and finally 

selected 20 PCs with significant differences for further 

analysis (Figure 5D, 5E). Using the UMAP algorithm, we 

 

 

 

Figure 2. WGCNA analysis and module identification. (A) Scale-free exponent and average connectivity of different soft threshold 

powers (β); (B) Construction of gene co-expression modules; (C) Correlation analysis between different modules and tumor tissues; (D) Venn 
diagram of WGCNA and differentially expressed genes; (E) GO analysis of disease genes; (F) KEGG analysis of disease genes. 



www.aging-us.com 524 AGING 

clustered the cells into 23 clusters and identified 15058 

marker genes. In the heatmap, the top 10% of marker 

genes in each cluster are represented (Figure 6A). 23 

clusters were annotated according to marker genes: cluster 

2/10 is B cells, cluster 21 is Endothelial cells, cluster 

0/4/12/14/15/20 is Epithelial cells, cluster 18 is 

Fibroblasts, cluster 3/5/7/16/22 is Macrophage, cluster 

6/17/19 is Monocyte, cluster 8/13 is T cells, cluster 1/9/11 

is Tissue stem cells (Figure 6B, 6C). The up-regulated 

differentially expressed genes were retained by the 

FindAllMarkers function and combined with the four 

drug-disease genes in the hub genes to analyze the 

distribution of these genes in cell subtypes (Figure 6D). 

According to the data in Figure 7A, 7B, it can be known 

that these four genes are highly expressed in epithelial 

cells, macrophages, T cells and fibroblasts. 

 

 
 

Figure 3. Identification and expression analysis of hub genes. (A) Venn diagram of drug targets and disease genes; (B) Protein-protein 
interaction (PPI) network of 41 hub genes; (C) DO analysis; (D) KEGG analysis; (E) GO analysis; (F) Gene expression between normal and 
tumor tissues. 
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SMR analysis reveals potential key gene in NSCLC 

development 

 

Based on the eQTLGen dataset, a total of 79, 87, 106, 

and 174 cis-eQTLs were identified for the CCNB1, 

CCNA2, BIRC5, and AURKB genes associated with 

the drug-disease relationship. The most significant cis-

eQTLs were selected as genetic tools for targeting these 

genes. In Figure 8, the results of the SMR analysis 

revealed a significant increase in gene expression of 

CCNA2 and CCNB1 in blood samples associated with 

an increased risk of NSCLC occurrence. Specifically, 

CCNA2 showed an odds ratio (OR) of 2.024 (95% 

confidence interval [CI]: 1.078–3.803; P = 0.028), 

suggesting its potential importance in the development 

of NSCLC and warranting further investigation. 

However, although BIRC5 and AURKB showed a trend 

towards association with NSCLC occurrence, the 

corresponding P-values did not reach statistical 

significance. Table 1 presents the representative eQTLs 

for each gene and the results of the heterogeneity test 

(HEIDI), which indicate no significant heterogeneity 

among the selected eQTLs (P ≥ 0.01). 

 

Tetrandrine reduced the viability, proliferation as 

well as induced the cell death in NSCLC cells 

 

In order to explore the anticancer properties of 

tetrandrine on NSCLC, different doses of tetrandrine (0-

30 μM) were treated in the NSCLC cells. Interestingly, 

we found that tetrandrine had the potentiality to restrain 

the viability of NSCLC cells (Figure 9A, 9B). And the 

IC50s in A549 and H1299 cells were 9.50 μM and 

10.18 μM, respectively. Therefore, 10 μM treatment of 

 

 
 

Figure 4. CIBERSORT analysis results. (A) Comparison of immune cell infiltration in normal and tumor tissues; (B) Correlation between 41 

hub genes and immune cells; (C) A lollipop graph of the relationship between 4 drug-disease genes and different immune cells. 
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Figure 5. Single-cell sequencing data quality control and dimensionality reduction. (A) Relationship between 
mRNA/UMI/mitochondrial content/rRNA content of each sample after filtration. (B) The relationship between rRNA and UMI, and the 
relationship between mRNA and UMI; (C) The volcano map of the top 2000 hypervariable genes; (D) PCA dimensionality reduction sample 
distribution map; (E) PCA anchor point map. 

 

 
 

Figure 6. Definition and analysis of cell clusters. (A) Heatmap of differentially expressed genes in different cell clusters; (B) Uniform 

Manifold Approximation and Projection (UMAP) of 23 cell clusters; (C) The cell types were identified by marker genes; (D) Distribution of 4 
drug-disease genes in different cells. 
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Figure 7. Drug-disease genes and single cell sequencing. (A) Heat map of expression of 4 genes among 8 types of cells; (B) Display of 
the distribution of each gene. 

 

 
 

Figure 8. Analysis results of SMR. 
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Table 1. Representative eQTL for SMR genes and HEIDI tests. 

Gene Chromosome location Top eQTL F-statistic HEIDI (P-value) HEIDI (Number of eQTLs) 

CCNB1 5 rs352626 256.70482 3.37E-01 16 

CCNA2 4 rs4833235 87.343871 3.66E-02 4 

BIRC5 17 rs11077350 266.91761 4.13E-01 4 

AURKB 17 rs12938531 246.57431 3.45E-01 20 

 

 
 

Figure 9. The effect of tetrandrine treatment on NSCLC cells. (A, B) NSCLC cells were subjected to several concentrations of 

tetrandrine treatment and the cell viability was measured by CCK-8 assay; (C, D) Cell proliferation of NSCLC cells were conducted by 5-
ethynyl-2′-deoxyuridine (EdU) incorporation assay; (E, F) NSCLC cells were subjected to tetrandrine treatment (10 μm, 24 h) and followed by 
Annexin V-FITC/PI assay. *P < 0.05, **P < 0.01, ***P < 0.001 versus control. 
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tetrandrine was selected for the next experiment. Next, 

we wonder whether tetrandrine treatment could 

suppress NSCLC cell proliferation. As expected, 

tetrandrine treatment caused a remarkable reduction in 

the percentage of EdU+ cells compared with the ctrl-

group, reveling that tetrandrine significantly disrupted 

NSCLC growth (Figure 9C, 9D). Consequently, we 

utilized the Annexin V-FITC/PI assay to further clarify 

the potential effect of tetrandrine, and the experiment 

demonstrated that tetrandrine treatment significantly 

increased the amounts of dead cells (Figure 9E, 9F). 

Collectively, these results highlighted the anticancer 

effect of tetrandrine. 

 

Molecular docking of tetrandrine with CCNA2 and 

CCNB1 
 

Based on the above analysis, CCNB1, CCNA2, BIRC5, 

and AURKB are considered to be important genes for 

tetrandrine in NSCLC treatment. Single-cell sequencing 

results show that CCNA2 and CCNB1 are distributed in 

epithelial cells, and SMR shows that CCNA2 and 

CCNB1 are closely related to the occurrence of NSCLC. 

So we decided to carry out molecular docking on them. 

We identified 20 molecular docking patterns of 

tetrandrine with CCNA2 and CCNB1 (Table 2). Through 

the Protein-Ligand Interaction Profiler online platform, 

the analysis indicates that CCNA2 exhibits hydrogen 

bonding and hydrophobic interactions with tetrandrine 

(Figure 10A, 10B). In contrast, CCNB1 demonstrates 

hydrophobic interactions with tetrandrine (Figure 10C, 

10D), consolidating the possibility of tetrandrine’s 

modulation through these specified genes. All procedures 

of this study can be reviewed in Supplementary Figure 3. 

 

DISCUSSION 
 

Although the current treatment methods for non-small 

cell lung cancer include surgery, radiotherapy, 

chemotherapy, targeted therapy, and immunotherapy, the 

treatment of NSCLC patients remains a serious challenge 

due to emerging toxic side effects and drug resistance 

[31–34]. Traditional Chinese medicine has a long history 

of treating lung cancer, and in-depth exploration of the 

role of traditional Chinese medicine in cancer treatment 

may provide us with a new breakthrough.  
 

In a previous study, a series of novel tetrandrine 

derivatives were successfully synthesized via the 

Suzuki-Miyaura reaction and their cytotoxicity against 

human non-small cell lung cancer (NSCLC) A549 cells 

was evaluated. The results showed that compounds Y5, 

Y6, Y9 and Y11 had the most significant cytotoxic 
effects, with IC50 values ranging from 3.87 to 4.66 

mM. This discovery will help in the design of more 

effective chemotherapy drugs for lung cancer in the 

future [35]. Some scholars found that inhibition of 

mitochondrial ATP production in lung adenocarcinoma 

A549 cells can enhance the cytotoxicity of tetrandrine 

[36]. Studies have pointed out that tetrandrine may 

increase the sensitivity of PC14 cells to gefitinib 

through lysosome inhibition [37].  

 

We observed that tetrandrine could inhibit the viability 

and proliferation of NSCLC cells and induce cell death. 

However, the relationship between drugs and diseases is 

very complex. We aim to explore their relationship in 

various ways. 213 drug target genes were got from four 

drug target databases, and DO analysis confirmed that 

these drug targets mainly play a role in various cancers 

including NSCLC. KEGG analysis confirmed that these 

genes were enriched in EGFR tyrosine kinase inhibitor 

resistance [38], PI3K-Akt signaling pathway [39], PD-

L1 expression and PD-1 checkpoint pathway [40] and 

other pathways. GO analysis also confirmed that drug 

genes were enriched in peptide-serine modification, 

synaptic membrane and protein serine/threonine kinase 

activity. Many studies have confirmed that the above 

enrichment results are closely related to NSCLC  

[41, 42]. Then we adopted the method of WGCNA 

interacting with differentially expressed genes. Finally, 

we obtained 529 disease genes.  

 

Using the interactions between drug targets and disease 

genes, we identified 10 drug-disease genes and 

constructed a PPI network covering all drug and disease 

genes. Through two rounds of MCODE screening, we 

screened out a core gene network containing four drug-

disease genes. We performed DO/GO/KEGG functional 

enrichment analysis on these core genes and found that 

these genes were strongly associated with the 

progression of NSCLC. In particular, KEGG analysis 

results showed that these core genes were enriched in 

pathways such as platinum resistance [43], Cellular 

senescence [44] and P53 signaling pathway [45], This 

also suggests that the hub gene may affect NSCLC 

through those ways.  

 

After immune infiltration analysis, we found that the 

number of various types of T cells and macrophages 

increased in tumor tissues. On the one hand, it shows 

that the antigens expressed by tumor cells can be 

recognized by the immune system, thereby activating T 

cells and macrophages. On the other hand, tumor cells 

secrete a variety of growth factors and cytokines, such 

as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) 

and interferon-γ (IFN-γ), which may also lead to such 

results [46, 47]. At the same time, we found that four 

drug-disease genes (CCNB1, CCNA2, BIRC5, and 
AURKB) were highly expressed in tumors, with high 

diagnostic accuracy, and were positively correlated  

with plasma cells, T cells, and macrophages; while 
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Table 2. CCNA2 and CCNB1 molecular 
docking results. 

Mode 
Affinity(kcal/mol) 

(CCNA2) 

Affinity(kcal/mol) 

(CCNB1) 

1 -8.2 -7.5 

2 -7.9 -7.4 

3 -7.7 -7 

4 -7.6 -6.8 

5 -7.5 -6.8 

6 -7.2 -6.7 

7 -7.1 -6.6 

8 -7.1 -6.6 

9 -7.1 -6.6 

10 -7.1 -6.5 

11 -7.0 -6.5 

12 -6.8 -6.5 

13 -6.8 -6.5 

14 -6.7 -6.3 

15 -6.6 -6.3 

16 -6.5 -6.2 

17 -6.5 -6.2 

18 -6.4 -6.2 

19 -6.4 -6 

20 -6.3 -5.9 

 

 
 

Figure 10. Molecular docking analysis. (A) Binding mode of CCNA2 protein and tetrandrine; (B) Three-dimensional (3D) interaction map 
of CCNA2 protein and tetrandrine; (C) Binding mode of CCNB1 protein and tetrandrine; (D) Three-dimensional (3D) interaction map of CCNB1 
protein and tetrandrine. 
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negatively correlated with monocytes. Studies have 

shown that T cells and B cells play an important role in 

tumor immunity [48, 49]. If these drug-disease genes 

can be used as new biomarkers, it may provide new 

ideas for current immunotherapy.  

 

Single-cell sequencing results showed that multiple 

cell types still exist in NSCLC at the cellular level. In 

addition, four genes showed higher expression in 

epithelial and endothelial cells compared to other cell 

types. Combined with previous bioinformatics data, 

suggest that they may be involved in specific 

biological processes in epithelial and endothelial cells, 

such as cell proliferation, metastasis and angiogenesis, 

which play a crucial role in the development and 

progression of NSCLC. To overcome the limitations 

of traditional observational studies, the SMR approach 

was used in this study, utilizing genetic variants 

associated with the expression of four genes as 

instrumental variables. The analysis showed that 

increased expression of CCNA2 and CCNB1 was 

associated with an increased risk of NSCLC 

formation. Research has revealed a significant 

upregulation of CCNA2 mRNA and lncRNA 

DNAH17 antisense RNA 1 (DNAH17-AS1) in 

NSCLC specimens and cell lines, accompanied by a 

notable decrease in miR-877-5p expression. Elevated 

DNAH17-AS1 levels correlate with TNM staging, 

distant metastasis, and reduced overall survival. 

Functional analysis indicates that silencing DNAH17-

AS1 inhibits proliferation, migration, and invasion of 

H1299 and 95D cells while promoting apoptosis. 

Further mechanistic investigations suggest that 

DNAH17-AS1 may function as a miR-877-5p sponge 

to upregulate CCNA2, thereby exerting its oncogenic 

role [50]. Simultaneously, research has also shown 

that Danshensu IIA can inhibit the progression of lung 

adenocarcinoma by inducing apoptosis and cell cycle 

arrest. These effects are achieved through the 

regulation of the CCNA2-CDK2 complex and the 

AURKA/PLK1 pathway [51]. Previous studies have 

indicated that MEOX1 exhibits lower expression in 

lung cancer tissues compared to normal adjacent 

tissues. MEOX1 shows a positive correlation with the 

overall survival of lung cancer patients, particularly 

those with lung adenocarcinoma. In vitro and in vivo 

functional experiments have demonstrated that stable 

overexpression of MEOX1 significantly inhibits the 

proliferative capacity of NSCLC cells, induces cell 

cycle arrest in the G2 phase, and enhances apoptotic 

capabilities. Furthermore, researchers have found a 

negative correlation between MEOX1 and CCNB1 

mRNA expression in various lung cancer tissues. 
Further investigations have revealed that MEOX1 

suppresses the progression of lung cancer cells by 

inhibiting the cell cycle checkpoint gene CCNB1 [52]. 

Bao et al. [53] discovered that overexpression of 

CCNB1 promotes the progression of lung cancer cells, 

and miR-139-5p may act as a negative regulator of 

CCNB1, thereby inhibiting cell proliferation, 

migration, invasion, and cell cycle progression. Our 

molecular docking studies of CCNA2 and CCNB1 

with tetrandrine have revealed interaction sites, 

highlighting the significant potential of tetrandrine in 

the treatment of NSCLC. This presents a crucial 

opportunity for repurposing as compared to the 

development of new drugs. 
 

CONCLUSIONS 
 

In this study, we systematically investigated the 

relationship between tetrandrine and non-small cell lung 

cancer (NSCLC), confirming the relevance and 

importance of drug-disease genes in tumor immunity, 

cell subtypes, and disease progression. It is also well 

illustrated that the repurposing of tetrandrine could 

potentially contribute to the treatment of NSCLC. 
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Supplementary Figure 1. ROC analysis of the first 24 genes. 
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Supplementary Figure 2. ROC analysis of the subsequent 17 genes. 

 

 
 

Supplementary Figure 3. Research flowchart. 


