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INTRODUCTION 
 

Working memory (WM) is a fundamental executive 

process which involves the storage, maintenance, and 

manipulation of relevant information. WM processes 

are generally grouped into three phases: information 

encoding, maintenance, and retrieval. The maintenance 

phase, which involves the rehearsal of the encoded 

information and the active inhibition of any new 

sensory stimuli, is the defining component which 

differentiates WM from other types of memory. 

Multiple studies have shown that WM processes are 

supported by a combination of neural spiking and 

oscillatory activity in the frontal and posterior cortices 

[1–8]. Historically, the neurophysiological under-

pinnings of WM function have been primarily 

investigated using functional MRI (fMRI). Such studies 

have revealed a left dominant, bilateral WM network 

with converging nodes in the dorsolateral prefrontal 

cortex (dlPFC), inferior frontal gyri, parieto-temporal 

cortices, and occipital regions [9–11]. More recently, 
electrophysiological studies have helped illuminate the 

specific oscillatory dynamics underlying WM function. 

Specifically, theta band activity during WM 
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ABSTRACT 
 

Working memory (WM) is a foundational cognitive function involving the temporary storage of information. 
Unfortunately, WM is also one of the most sensitive cognitive functions to the detrimental effects of aging. 
Expanding the field’s understanding of age-related WM changes is critical to advancing the development of 
strategies to mitigate age-related WM declines. In the current study, we investigated the neural mechanisms 
serving WM function in seventy-eight healthy aging adults (range: 20.2–65.2 years) using magnetoencephalography 
(MEG) and a Sternberg WM task with letter stimuli. Neural activity during the different phases of the WM task (i.e., 
encoding, maintenance, and retrieval) were imaged using a time-frequency resolved beamformer and whole-brain 
statistics were performed. We found stronger increases in theta activity and stronger decreases in alpha and beta 
activity (i.e., more negative relative to baseline) as a function of healthy aging. Specifically, age-related increases in 
theta activity were detected during the encoding period in the primary visual and left prefrontal cortices. 
Additionally, alpha and beta oscillations were stronger (i.e., more negative) during both encoding and maintenance 
in the left prefrontal cortex in older individuals. Finally, alpha and beta oscillations during the retrieval phase were 
stronger (i.e., more negative) in older participants within the prefrontal, parietal, and temporal cortices. Together, 
these results indicate that healthy aging strongly modulates the neural oscillatory dynamics serving WM function. 
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performance has been associated with the encoding of 

visual stimuli in primary visual cortices and higher-

order cognitive control in the prefrontal cortex (PFC) 

[8, 12–14]. Similarly, alpha and beta band activity has 

been associated with higher-order visual processing in 

the posterior cortices and cognitive control in the PFC 

[14–17]. 

 

Previous literature has demonstrated that WM processes 

are vulnerable to age-related decline [18–20], with these 

changes being particularly evident at higher cognitive 

loads [21–23]. Across the adult lifespan, it has been 

shown that individuals tend to recruit the same brain 

regions when performing WM tasks [16, 24]. However, 

differential activation patterns become apparent when 

the cognitive load of the WM tasks is varied. For 

example, at lower cognitive loads, older individuals 

maintain WM performance comparable to younger 

individuals by recruiting more neural resources (i.e., 

stronger activations and/or more sites of activity) [24–

26]. Nevertheless, at higher cognitive loads, this neural 

compensation in older individuals faulters, resulting in 

behavioral decrements accompanied by weakened 

neural activity [21, 24, 27–29]. This pattern of age-

related overactivation, plateau, and subsequent under-

activation is known as the compensation-related 

utilization of neural circuits hypothesis (CRUNCH) 

[30]. The CRUNCH phenomenon has been most 

commonly observed in PFC regions [21, 24, 27, 31–33], 

which are thought to be responsible for exerting 

executive control over WM processes [10, 11]. Further, 

these executive prefrontal areas have shown age-related 

differentiation in the lateralization of neural activity. 

Specifically, younger individuals consistently show 

stronger left hemispheric neural activity during WM 

performance, compared to a more bilateral pattern of 

activity in older adults [16, 24, 29, 31, 34, 35]. 

 

In addition to the plethora of past fMRI and positron-

emission tomography (PET) work investigating age-

related WM changes, more recent electrophysiologic 

work has been conducted to quantify the neural 

dynamics of these WM changes with age. One such 

study by Proskovec and colleagues [16] found that older 

adults had stronger alpha/beta oscillations (i.e., 

decreases in power relative to baseline), in right frontal 

regions during WM encoding and maintenance, and  

in the right superior temporal gyrus later in the 

maintenance phase. Conversely, it was shown that 

younger adults had stronger alpha/beta oscillations in 

the right parieto-temporal regions early in the encoding 

phase [16]. Age-related changes in alpha activity during 

WM processing was later shown by Tran and associates 
[36], who demonstrated that older adults had lower pre-

trial alpha phase consistency, and that this lower phase 

consistency predicted lower WM task accuracy in older 

participants. Finally, event-related potential (ERP) 

analyses have revealed that, overall, older adults have 

reduced amplitudes in the fronto-central positivity (i.e., 

P200) and parietal positivity (i.e., P300) [37]. However, 

when high- and low-performing older adults were 

separately analyzed, high-performing adults had 

stronger P200 and P300 amplitudes, more similar to 

younger adults [38]. This interesting pattern of ERP 

results are in agreement with CRUNCH, with the high-

performing older adults seemingly showing 

compensatory hyperactivation and the low-performing 

adults having reached a “resource ceiling” and 

decompensated.  

 

Despite previous work characterizing age-related 

changes in WM, no previous studies have examined 

spectrally-specific age-related changes in neural 

oscillatory activity throughout all phases of WM (i.e., 

encoding, maintenance, and retrieval). Thus, in the 

current study we used the spatiotemporal precision of 

MEG to examine the effects of healthy aging on  

the spectrally-resolved neural oscillatory dynamics 

underlying all three phases of WM processing. We 

hypothesized that older adults would require stronger 

engagement of key left hemispheric frontal and parieto-

occipital WM hubs. Additionally, we expected that 

prefrontal activity lateralization (i.e., stronger left 

hemispheric activity) during WM performance would 

diminish as a function of age, with older individuals 

tending to utilize a more bilaterally distributed WM 

network. 

 

METHODS 
 

Participants 

 

Seventy-eight adults with a mean age of 45.10 (SD = 

12.76) years were selected for inclusion in this study. 

The age range for males was 20.2 to 65.2 years and that 

for females was 21.4 to 62.2 years. These participants 

were chosen from a larger-scale study of accelerated 

aging in persons with HIV [39, 40], with only the HIV-

negative participants included in this investigation of 

healthy aging. Of the 78 adults, 95% were right-handed, 

79% were male, 10% were African-American, 6% were 

Asian, 77% were Caucasian, 4% were more than one 

race, and the remaining 3% preferred not to answer.  

This distribution corresponds closely to the racial 

demographics of the surrounding region. Notably, there 

was no effect of age on years of education (r74 = −.073, p 

= .531). Exclusionary criteria included any medical 

illness affecting CNS function (e.g., HIV/AIDS, Lupus, 

etc.), any neurological or psychiatric disorder, cognitive 

impairment, history of head trauma, current substance 

abuse, and the MEG laboratory’s standard exclusionary 

criteria (e.g., ferromagnetic implants). The Institutional 
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Review Board reviewed and approved this investigation. 

Each participant provided written informed consent 

following a detailed description of the study. 

 

Experimental paradigm 

 
Participants were shown a centrally-presented fixation 

cross embedded in a 3 × 2 grid for 1.3 s (Figure 1). An 

array of six consonants then appeared at fixed locations 

within the grid for 2.0 s (i.e., encoding phase). 

Following the encoding phase, the letters disappeared 

and the empty grid remained on the screen for 3.0 s 

(i.e., maintenance phase). Finally, during the retrieval 

phase, a single probe consonant then appeared in the 

grid for 0.9 s, and the participant was instructed to 

respond via button press with their right index or middle 

finger as to whether the probe was in or out of the 

previous array of letters. A total of 128 trials were 

completed, equally split and pseudorandomized 

between in- and out-of-set trials, for a total run time of 

about 15 min. This task has been utilized in several 

previous studies from our laboratory [16, 17, 41–44]. 

 

MEG data acquisition 

 

All recordings were conducted in a magnetically-

shielded room with active shielding engaged. 

Neuromagnetic responses were sampled continuously at 

1 kHz, with an acquisition bandwidth of 0.1-330 Hz, 

using a MEGIN Vectorview MEG system with 306 

magnetic sensors (MEGIN, Helsinki, Finland). During 

data acquisition, participants were monitored via real-

time audio-visual feeds from inside the shielded room. 

Subject-wise MEG data were corrected for head motion 

and subjected to external noise reduction using signal 

space separation with a temporal extension [45]. 

 

Structural MRI processing and MEG coregistration 

 

Preceding MEG measurement, four head position 

indicator (HPI) coils were attached to the participant’s 

head and localized, together with three fiducial points 

and at least 100 scalp surface points, with a 3D 

digitizer (Fastrak 3SF0002, Polhemus Navigator 

Sciences, Colchester, VT, USA). Once in the MEG, 

electrical currents with unique frequencies (e.g., 322 

Hz) were fed into each of the HPI coils. These HPI 

coil currents induced measurable magnetic fields, 

allowing the position of the HPI coils to be activity 

tracked relative to the MEG sensors throughout the 

recording. Since HPI coil locations are known in head 

coordinates, all MEG measurements could be 

transformed into a common coordinate system. With 

this coordinate system, MEG data were coregistered 

with each individual’s high-resolution structural T1-

weighted MRI data prior to source reconstruction 

using Brain Electrical Source Analysis MRI (BESA 

MRI, Version 2.0, BESA GmbH, Gräfelfing, 

Germany). Individual structural MRI data for each 

participant was acquired using a Siemens Prisma 3T 

scanner (Siemens Medical Solutions) with a 64-

channel head coil. An MP-RAGE sequence was 

utilized with the following parameters: TR: 2300 ms; 

TE = 2.98 ms; flip angle = 9°; FOV = 256 mm; slice 

thickness = 1.00 mm; voxel size = 1 × 1 × 1 mm. 

Structural MRI data were transformed into 

standardized space (i.e., Talairach space) and aligned 

parallel to the anterior and posterior commissures. 

Following source analysis, each participant’s MEG 

functional images were also transformed into 

standardized space and spatially resampled.  

 

MEG preprocessing, time-frequency transformation, 

and sensor-level statistics 

 

Blink and cardiac artifacts were removed from the raw 

data using an adaptive artifact correction method in 

which brain activity is selectively separated from 

artifactual activities [46]. This adaptive artifact 

correction is accounted for during subsequent source 

analysis. The continuous magnetic time series was 

divided into 7200 ms epochs, with the baseline period 

 

 
 

Figure 1. Modified Sternberg working memory paradigm. Participants were required to encode and maintain six letter stimuli. During 

the retrieval stage, participants were then required to indicate whether the probe letter was or was not present in the initial six letter set. 
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being defined as the 400 ms prior to the encoding phase 

(i.e., −400 to 0 ms). Subsequently, epochs containing 

artifacts were removed based on a fixed threshold 

method, supplemented with visual inspection. Briefly, 

the amplitude and gradient distributions across all trials 

were determined per participant, and those trials 

containing the highest amplitude and/or gradient values 

relative to this distribution were rejected based on 

participant-specific thresholds. This approach was 

employed to minimize the impact of individual 

differences in sensor proximity to the brain and overall 

head size, which strongly affect MEG signal amplitude. 

Importantly, there were no age-related changes in 

either the amplitude (r74 = −.182, p = .115) or gradient 

(r74 = −.135, p = .245) thresholds used for artifact 

rejection. Artifact-free epochs were then transformed 

into the time-frequency domain using complex 

demodulation [47–49], with a resolution of 1 Hz and 50 

ms between 2 and 100 Hz. Following time-frequency 

transformation, spectral power estimates per sensor 

were averaged across trials to generate plots of mean 

spectral density per sensor. These sensor-level data 

were then normalized to the baseline power within each 

frequency bin, which was calculated as the mean 

power for that 1 Hz bin during the −400 to 0 ms time 

period. 

 

The significant time-frequency windows used for source 

imaging were determined by statistical analysis of the 

sensor-level spectrograms across the entire array of 

gradiometers. Briefly, each pixel per spectrograms was 

initially evaluated using a mass univariate approach 

based on the general linear model, followed by cluster-

based permutation testing to address the problem of 

multiple comparisons [50, 51]. Specifically, a two-stage 

procedure was utilized to minimize false positive results 

while maintaining sensitivity. The first stage consisted 

of performing paired-sample t-tests against baseline on 

each pixel per spectrogram and thresholding the output 

spectrograms of t-values at p < .05 to define time-

frequency bins containing potentially significant 

oscillatory deviations from baseline. Bins that survived 

thresholding (at p < .05) were clustered with temporally 

and/or spectrally neighboring bins that also survived, 

and cluster values were derived by summing all t-values 

within each cluster. In stage two, nonparametric 

permutation testing was used to derive a distribution of 

cluster-values and the significance level of the cluster(s) 

from stage one was tested directly using this permuted 

distribution, which was the result of 10,000 

permutations. Based on this cluster-based permutation 

analysis, only the time-frequency windows that 

contained significant oscillatory deviations from 

baseline at the p < .001, corrected, threshold across all 

participants were subjected to source imaging (i.e., 

beamforming). 

MEG source imaging and statistics 

 

Cortical networks were imaged through a time-

frequency-resolved extension of the linearly constrained 

minimum variance (LCMV) beamformer [52–54]. The 

images were derived from the cross spectral densities of 

all combinations of MEG gradiometers averaged over 

the time-frequency range of interest, and the solution of 

the forward problem for each location on a grid 

specified by input voxel space. In principle, the 

beamformer operator generates a spatial filter for each 

grid point that passes signals without attenuation from a 

given neural region, while suppressing activity in all 

other brain areas. The filter properties arise from the 

forward solution (i.e., lead field matrix) for each 

location on a volumetric grid specified by input voxel 

space, and from the MEG cross spectral density matrix. 

Basically, for each voxel, a set of beamformer weights 

is determined, which amounts to each MEG sensor 

being allocated a sensitivity weighting for activity in the 

particular voxel. Following convention, the source 

power in these images was normalized per participant 

using a pre-stimulus period (i.e., baseline) of equal 

duration and bandwidth [55]. Such images are typically 

referred to as pseudo-t maps, with units (pseudo-t) that 

reflect noise-normalized power differences (i.e., active 

vs. passive) per voxel. MEG pre-processing and 

imaging used BESA (version 7.0) software. 

 

After imaging, average whole-brain maps were 

computed across all participants for the selected time-

frequency windows. These 3D maps of brain activity 

were used to assess the neuroanatomical basis of the 

significant oscillatory responses identified through the 

sensor-level analysis. Finally, these source images were 

subjected to correlation analyses with age to investigate 

how the oscillatory processes underlying WM encoding, 

maintenance, and retrieval change as a function of age. 

To control the multiple comparisons inherent to whole-

brain voxel-wise statistics, cluster-based permutation 

testing was again utilized [50, 51, 56]. This whole-brain 

cluster-based permutation testing was virtually identical 

to the approach used for sensor-level statistics (see 

above), with the exception that the input data was 

voxel-level neural responses and we used a different 

statistical threshold following permutation testing (i.e., 

stage one threshold of p < .001; threshold of p < .05 

following permutation testing for multiple comparisons 

correction). 

 

Statistical analyses 
 

Statistical analyses were performed using custom R [57] 
and MATLAB [58] scripts. Correlation analyses were 

used to test differences as a function of healthy aging in 

education, accuracy, reaction time, total correct trials, 
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amplitude cutoffs, and gradient cutoffs. Permutation 

testing of the sensor-level spectrograms and whole-brain 

images was performed using BESA Statistics (Version 

2.1, BESA GmbH, Gräfelfing, Germany). Finally, to 

reduce the impact of outliers on statistical analyses, 

participants with values 2.5 SDs above or below the 

group mean were excluded for each analysis. 

 

Data availability 

 

The data that support the findings of this study are 

available from the corresponding author, upon 

reasonable request. Specifically, the anonymized data 

will be available for non-commercial research purposes 

and responses will occur at earliest convenience with a 

goal of delivering the data within 1 month. 

 

RESULTS 
 

Behavioral results 

 

Of the 78 participants that performed the verbal WM 

task, two were removed due to poor task performance 

(i.e., <65% correct). While there was no effect of age on 

accuracy (r74 = .012, p = .919), there was an effect of 

age on reaction time (r74 = .453, p < .001) such that 

older participants were slower than younger 

participants. Across all participants, the mean accuracy 

was 84.33% (SD = 7.04%) and the mean reaction time 

was 895.4 ms (SD = 193.06 ms). 

 

Spectrally-specific neural oscillations 

 

Sensor-level time-frequency analysis across all 

participants revealed significant clusters (p < .001, 

corrected) of theta, alpha, and beta band oscillatory 

activity during the encoding, maintenance, and retrieval 

phases (Figure 2). During the encoding phase, theta band 

(3-6 Hz) activity sharply increased immediately following 

stimulus presentation (i.e., 0 ms), continued through the 

encoding phase, and slowly dissipated over the first 800 

ms of the maintenance phase (i.e., 3-6 Hz, 0-2800 ms; p < 

.001, corrected). Additionally, decreases in alpha band (9-

15 Hz) activity began around 200 ms after the onset of the 

encoding grid and were sustained throughout the encoding 

phase, terminating near the beginning of the maintenance 

phase (i.e., 9-15 Hz, 200-1800 ms; p < .001, corrected). 

During the maintenance phase, there was a significant 

cluster of increased alpha/beta activity in a slightly higher 

frequency band (12-17 Hz; 2500-2900 ms; p < .001, 

corrected). During the retrieval phase, an increase in theta 

activity followed retrieval probe presentation (3-6 Hz; 

5000-5350 ms; p < .001, corrected). Finally, overlapping 

decreases in alpha (8-12 Hz; 5350-5750 ms) and beta (14-

19 Hz; 5250-5650 ms) band activity were observed during 

the retrieval phase (both ps < .001, corrected). 

 

 
 

Figure 2. Grand-averaged time-frequency spectrogram from a sensor near parieto-occipital areas (MEG1922) with time 
(ms) shown on the x-axis and frequency (Hz) denoted on the y-axis. A color scale bar is shown to the right of the spectrogram 

which shows the percent power change relative to the baseline period (−400 to 0 ms). 
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Beamformer analysis 

 

In order to determine the neural regions involved in 

verbal WM, the aforementioned sensor-level time-

frequency bins of interest for theta, alpha, and beta band 

oscillatory activity were imaged using a time-

frequency-resolved beamformer. Considering that 

beamforming windows must be the same length as the 

baseline period (i.e., 400 ms), the oscillatory deviations 

from baseline were imaged in 400 ms increments or 

less. For the temporally extended oscillatory responses 

(i.e., those over 400 ms), participant-level image 

averaging was performed for each neural response as 

follows: theta encoding (3-6 Hz; 0-2000 ms), theta 

maintenance (3-6 Hz; 2000-2800 ms), and alpha 

encoding (9-15 Hz; 200-1800 ms). These whole-brain 

average maps per participant were then averaged across 

all individuals to allow for visualization of the neural 

oscillations during the different WM phases (i.e., 

encoding, maintenance, and retrieval). These images 

revealed differential patterns of neural activity in the 

theta, alpha, and beta bands throughout all phases of 

WM performance (Figure 3). During the encoding 

phase, a strong increase in theta activity relative to the 

 

 
 

Figure 3. Grand-averaged beamformer images (pseudo-t) across all participants for theta (left) and alpha/beta (right) bands. 
During the encoding phase (top), there were increases in theta band amplitude relative to baseline in the primary visual cortex and decreases 
in alpha band activity (i.e., more negative relative to baseline) in the lateral occipital cortices, parietal cortices, and left hemisphere frontal 
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cortex (including language areas). During the maintenance phase (middle), theta increases were limited to the right dlPFC and decreased 
alpha/beta activity in the left hemisphere frontal cortex (relative to baseline) was largely sustained. Additionally, a decrease in alpha/band 
activity relative to the baseline was observed in the lateral occipital cortices during the maintenance phase. During the retrieval phase 
(bottom), theta band activity increased in the right posterior cingulate gyrus and bilateral primary visual cortices, while alpha activity decreased 
(i.e., became more negative) in the lateral occipital cortices, left SMG, and left angular gyrus. Finally, decreased beta activity (i.e., more negative 
relative to baseline) in the bilateral primary motor cortices, lateral occipital cortices, and right superior parietal lobe was observed. 

 

baseline was observed in the bilateral primary visual 

cortices, while decreased alpha activity (i.e., more 

negative relative to baseline) was observed in the lateral 

occipital cortices bilaterally, and left frontal cortex. 

During the maintenance phase, increased theta activity 

was observed in the right dorsolateral prefrontal cortex 

(dlPFC). Further, the decreased alpha/beta oscillations 

(i.e., more negative) observed in the frontal cortices 

during the encoding phase were sustained through the 

maintenance phase, along with decreased alpha activity 

in the lateral occipital cortices bilaterally. During the 

retrieval phase, theta band activity was shown to 

strongly increase in the right posterior cingulate gyrus 

and the bilateral primary visual cortices. Decreased 

alpha activity (i.e., more negative) during the retrieval 

phase were observed in the lateral occipital cortices, left 

supramarginal gyrus (SMG), and left angular gyrus. 

Similarly, decreased beta oscillations (i.e., more 

negative) during the retrieval phase were found in the 

lateral occipital cortices, bilateral primary motor 

cortices, and bilateral superior parietal cortices. 

 

To statistically examine the effects of healthy aging on 

the neural dynamics serving WM function, we subjected 

the frequency-specific whole-brain encoding, mainte-

nance, and retrieval participant-level average maps to 

correlation analysis. These whole-brain correlation 

analyses were then followed by cluster-based per-

mutation testing to correct for multiple comparisons. 

These analyses revealed that theta oscillations during 

encoding became significantly stronger as a function of 

age in the left primary visual cortex (p = .037, corrected) 

and left dlPFC (p = .045, corrected; Figure 4), and that 

there were no age-related theta effects during the 

 

 
 

Figure 4. Effect of age on theta oscillations during the encoding phase. Whole-brain linear regression analysis revealed that theta 

activity increased in the left primary visual cortex and left dlPFC with older age. Linear regression plots of peak voxel pseudo-t values are 
shown as a function of age. Lines of best-fit and 95% CI (shaded area) are overlaid. 
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maintenance or retrieval phases. In contrast, the 

decreases in alpha and beta became stronger (i.e., more 

negative) with increasing age throughout all phases of 

WM processing (i.e., encoding, maintenance, and 

retrieval; Figure 5). During the encoding phase, 

decreases in alpha became stronger (i.e., more negative) 

as a function of age in the left middle frontal gyrus (p = 

.023, corrected) and the left anterior cingulate gyrus (p = 

.033, corrected). This age-related change in activity in 

the left middle frontal gyrus was sustained through the 

maintenance phase (p = .029, corrected), along with 

stronger decreases in alpha/band responses (i.e., more 

negative) in the left dlPFC (p = .031, corrected). During 

the retrieval phase, decreases in alpha oscillations also 

became stronger (i.e., more negative) as a function of 

age in the left insula (p = .009, corrected), left anterior 

cingulate (p = .020, corrected), and left middle temporal 

gyrus (p = .031, corrected). Finally, the decreases in beta 

oscillations (14-19 Hz) during the retrieval phase were 

found to get stronger (i.e., more negative) with 

 

 
 

Figure 5. Effect of age on alpha and beta oscillations during the encoding, maintenance, and retrieval phases. Whole-brain 

linear regression analyses testing for age-related changes in alpha (encoding and retrieval), alpha/beta (maintenance), and beta (retrieval) 
are shown during the encoding (top), maintenance (middle), and retrieval bottom) phases. During encoding (top), decreases in alpha 
activity became significantly stronger (i.e., more negative relative to baseline), as a function of age, in prefrontal cortical regions and 
anterior cingulate. Additionally, age-related alterations in alpha and beta activity during the maintenance period (middle) were found in the 
left prefrontal cortices, while age-related effects during retrieval (bottom) were observed across a diverse set of brain regions that have 
been implicated in working memory processing (i.e., frontal, temporal, and parietal cortices). Beyond statistical maps, linear regression 
plots of peak voxel pseudo-t values are shown as a function of age for encoding and maintenance peaks. Lines of best-fit and 95% CI 
(shaded area) are overlaid. 
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Table 1. Coordinates of the peak response in each significant age correlation cluster. 

Region/Effect of interest Frequency X Y Z df Statistic 

Encoding      r 

Left primary visual cortex θ −2 −85 10 70 .42 

Left dlPFC θ −34 24 38 70 .40 

Left middle frontal gyrus α −42 −5 54 74 −.41 

Left anterior cingulate gyrus α −10 −5 42 74 −.40 

Maintenance      r 

Left middle frontal gyrus α/β −42 −1 54 72 −.42 

Left dlPFC α/β −42 28 42 72 −.42 

Retrieval      r 

Left insula α −30 −13 10 72 −.41 

Left anterior cingulate gyrus α −6 −5 42 72 −.40 

Left middle temporal gyrus α −58 −37 -3 72 −.39 

Left primary motor cortex β −42 −13 50 71 −.45 

Right primary somatosensory cortex β 42 −21 42 71 −.46 

Left superior parietal cortex β −14 −45 54 71 −.45 

Right superior parietal cortex β 30 −53 58 71 −.45 

Left dlPFC β −50 32 22 71 −.41 

Left anterior superior temporal gyrus β −50 24 -11 71 −.41 

All test statistics are significant at p < .001 level and survive cluster-based permutation testing. All coordinates are in Talairach 
space. Abbreviations: dlPFC: dorsolateral prefrontal cortex; df: degrees of freedom. 
 

increasing age in the left primary motor cortex (p < .001, 

corrected), right primary somatosensory cortex (p < 

.001, corrected), bilateral superior parietal cortices (ps < 

.001, corrected), left dlPFC (p = .007, corrected), and 

left anterior superior temporal gyrus (p = .020, 

corrected). Alpha and beta retrieval phase scatterplots 

that were not included in Figure 5 can be found in the 

Supplementary Material (Supplementary Figure 1). A 

complete summary of all significant effects can be found 

in Table 1. 

 

DISCUSSION 
 

In the present study, we investigated the effect of 

healthy aging on the neural oscillatory dynamics 

serving verbal WM processing using MEG and 

advanced source reconstruction. Similar to previous 

studies utilizing a modified Sternberg WM task in 

healthy aging adults, we found that reaction time 

increased with age and that there were no significant 

aging effects on task accuracy [16, 59]. Across all 

participants, our results also showed that WM 

processing is supported by regionally distinct neural 

oscillations in the theta, alpha, and beta bands 

throughout all phases (i.e., encoding, maintenance, and 

retrieval) and that such activity is broadly affected by 

healthy aging. Briefly, theta oscillations were shown to 

become stronger in the primary visual cortices and in 

the frontal cortex with increasing age. Furthermore, 

throughout all WM phases and in several frontal, 

parietal, and temporal regions, alpha, beta, and 

alpha/beta activity became stronger (i.e., more negative) 

as a function of age. Critically, these results represent 

the first oscillatory analysis of verbal WM function in a 

healthy aging sample in which neural activity was 

examined throughout all phases of processing, including 

the retrieval stage. Below, we discuss the implications 

of these novel findings on our understanding of how 

healthy aging affects verbal WM processing. 

 

Across all frequencies, our findings demonstrate 

widespread and robust cortical activation patterns 

during verbal working memory task performance, as 

well as age-related changes in these neural activations. 

 

These task-related activations and age-related changes 

are most prevalent in the occipital, parietal, and frontal 

cortices; regions which have been shown to be critical to 

verbal working memory performance [9, 10]. According 

to the theories of working memory function originally 

proposed by Baddeley and colleagues, the neural 

subsystems serving working memory processing include 

the visuospatial sketchpad, phonological loop, episodic 

buffer, and the central executive [60, 61]. The 

visuospatial sketchpad is responsible for processing the 

visual and spatial components of a stimulus, and is 

served by the occipital and parieto-temporal cortices [9, 

10]. The phonological loop deals with the processing 

and rehearsal of auditory and language information. 

Further, the phonological loop is a predominately left 

hemispheric network comprised of the phonological 

store in the parietal lobe [9, 62], which briefly stores 

fleeting memory traces, and the articulatory process in 

the inferior frontal gyrus and superior temporal gyrus 
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(e.g., Broca’s area) [63–65], responsible for the rehearsal 

and manipulation of information in the phonological 

store (e.g., through subvocal repetition). The episodic 

buffer is a more distributed subsystem which links 

working memory and long-term memory, facilitating the 

integration of information from separate modalities (i.e., 

visual, spatial, auditory, language, etc.) and binding 

information into coherent episodes [61]. Finally, the 

central executive component exerts top-down control 

over the other working memory subsystems, via the 

allocation of attentional resources and direction of 

information flow to the other subsystems, and is thought 

be housed in the prefrontal cortex [10, 11]. Considering 

the letter-based stimuli utilized in our modified 

Sternberg working memory task, we expected robust 

activation of each of the aforementioned subsystems. 

 

One of our most interesting findings was the broad 

strengthening of alpha and beta oscillations (i.e., 

decreases from baseline) with increasing age. The local 

suppression of alpha and beta activity, relative to 

baseline levels, has been shown to represent active 

cortical engagement (i.e., active visual processing in 

higher-order visual areas) [16, 17, 66–68]. This is 

further supported by multimodal studies which have 

demonstrated co-localization of decreases in alpha and 

beta activity with increased BOLD fMRI signal during 

cognitive tasks [69, 70]. During the encoding phase, 

older individuals showed significantly stronger 

decreases in alpha activity (i.e., more negative relative 

to baseline) in the left middle frontal gyrus (MFG) and 

the left anterior cingulate. This significant age-related 

shift in left MFG activity extended into the maintenance 

period, with the addition of age-related effects in 

alpha/beta activity in the left dlPFC. These prefrontal 

cortical regions are thought to act as central executive 

nodes during WM task performance, allowing for the 

allocation of WM subsystem resources and the direction 

of attention [10, 11]. These findings of age-related 

increases in frontal regions are in widespread agreement 

with the aging literature, which has demonstrated that 

increased prefrontal neural recruitment can offset 

declines in cognitive performance as a function of 

healthy aging (i.e., CRUNCH) [21, 24, 27, 30–33]. Of 

note, we found no significant age-related changes 

during the encoding and maintenance phases in 

alpha/beta activity in either visual processing or 

language areas, which have historically been linked to 

the visuospatial sketchpad and phonological loop, 

respectively [9, 10, 62]. In sum, the present work is in 

agreement with our hypotheses that older adults would 

require stronger engagement of left hemispheric frontal 

WM hubs and reinforces previous aging WM literature 
in demonstrating how crucial increased neural activity 

in prefrontal cortices is for older individuals during WM 

processing. 

Beyond the encoding and maintenance phases, we found 

significant alpha and beta oscillatory changes as a 

function of age during the retrieval phase. Though 

previous studies have extensively characterized neural 

activity during WM encoding and maintenance, studies 

analyzing the neural dynamics during the retrieval phase 

are sparse. During the retrieval phase, older participants 

showed stronger decreases in alpha activity (i.e., more 

negative) in the left posterior middle temporal gyrus 

(MTG), left insula, and left anterior cingulate. 

Additionally, beta activity during the retrieval phase 

decreased (i.e., more negative) with increasing age in the 

left primary motor cortex, bilateral superior parietal 

cortices, left dlPFC, left anterior superior temporal gyrus, 

and other regions. Thus, unlike the age-related alpha/beta 

effects observed during the encoding and maintenance 

phases, which were largely confined to prefrontal 

cortices, age-related changes in alpha/beta activity during 

the retrieval phase were found to extend to other WM 

subsystems. Specifically, in the retrieval phase, older 

individuals tended to more strongly engage neural 

regions linked to higher-order visual processing (i.e., 

visuospatial sketchpad; left posterior MTG), language 

processing (i.e., left STG), phonological storage (i.e., 

superior parietal lobes), central executive processes (i.e., 

left dlPFC), and motor execution (i.e., primary motor 

cortex). These retrieval phase findings are in line with 

our hypothesis that older adults would more strongly 

recruit left hemispheric frontal and parieto-occipital WM 

nodes, relative to younger participants. As noted above, 

only a few studies have examined the retrieval stage, 

Guran and associates [71] found that older (i.e., 53-80 

years) compared to younger (i.e., 18-30 years) 

individuals had stronger alpha/beta decreases relative to 

baseline in sensors overlying frontal, central, and parietal 

regions [71], which is consistent with our findings. 

Finally, our finding of stronger decreases in beta (i.e., 

more negative) in the primary motor cortex in older 

participants is consistent with work from the motor 

control literature [72, 73]. Thus, this effect of aging on 

motor beta activity is likely task independent.  

 

We also found robust age-related effects in the theta 

range. Theta oscillations in the primary visual cortex 

have been widely implicated in basic visual processing, 

while frontal theta activity has been shown to be 

important for the higher-order organization and 

maintenance of stimulus information [8, 12–14, 66, 74]. 

Though theta activity has been shown to be critical for 

WM function, age-related changes in these theta band 

dynamics have only been weakly characterized. Age-

related theta alterations in the current study were found 

to be confined to the encoding phase, with activity in 
the primary visual cortex and left dlPFC getting 

stronger as a function of increasing age. One 

comparable study found that older participants (i.e., 62–
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71 years) were more susceptible to WM disruption and 

that frontal midline theta was stronger in older 

individuals (i.e., 19–29 years) [75]. Our findings of age-

related increases in theta activity, particularly those in 

the dlPFC, are consistent with our alpha and beta band 

findings and the neural compensation hypothesis (i.e., 

CRUNCH). Additionally, theta band activity in the PFC 

of healthy young adults during WM performance has 

been shown to increase stepwise with increasing task 

load [12, 14, 66], further supporting the idea that the 

increased theta activity with increasing age may 

represent these older individuals needing to exert more 

neural resources to complete this WM task (i.e., less 

efficient processing). Altogether, in conjunction with 

our alpha and beta findings, we have demonstrated that 

the widely cited age-related increases in neural 

recruitment are not frequency specific, with age-related 

effects spanning multiple frequency bands (i.e., theta, 

alpha, and beta) and working memory subsystems. 

 

Interestingly, our results did not show the hypothesized 

and commonly reported age-related change in the 

lateralization of prefrontal activation. Specifically, 

previous work has demonstrated that younger individuals 

more strongly utilize left hemispheric prefrontal regions 

during working memory performance, compared to older 

individuals who exhibit more bilateral prefrontal activity 

[16, 24, 29, 31, 34, 35]. This discrepancy may be due to 

study design and analysis differences. Firstly, our sample 

of 78 health adults is nearly double the size of most 

previous healthy aging WM studies and our whole-brain 

data were modeled using age as a continuous variable, 

compared to dichotomizing age groups as has commonly 

been done [16, 24, 31, 35]. Secondly, the current study 

utilized cluster-based permutation testing of the source 

images to strongly control for false positives, compared 

to the much less stringent multiple comparison correction 

approaches that have previously been used (e.g., 

uncorrected or cluster-size corrections) [16, 31, 35]. 

Finally, the oldest participants in the current study were 

younger (i.e., 65 years) than many aging WM studies 

(e.g., 75–82 years) [24, 31, 34, 35]. Thus, our relatively 

younger participants may not have reached a level of 

cognitive dysfunction that necessitates bilateral prefrontal 

recruitment, but future studies are needed to confirm 

these findings. 

 

Before closing, it is important to note the limitations of 

this study. First, as mentioned above, the oldest 

participants in our sample were slightly younger (i.e., 

65 years) than some previous WM studies of aging 

(e.g., 75–82 years). For future studies, increasing the 

age of the oldest participants would allow for the 

hypothesized transition from age-related compensation 

(i.e., increased neural activity and normal accuracy) to 

age-related decompensation (i.e., decreased neural 

activity and decreased accuracy) to be more thoroughly 

studied. Finally, the modified Sternberg WM paradigm 

that was utilized for the current study required that 

participants remember six letter stimuli per trial and 

previous work has shown that varying the cognitive 

load of WM tasks leads to an interesting pattern of 

effects in older individuals (i.e., greater neural activity 

at low working memory loads with decompensation and 

decreased neural activity at higher working memory 

loads) [21, 24, 27–29]. Thus, future aging WM research 

would benefit from having multiple memory load 

conditions of varying difficulty. 

 

Taken together, these data support the previous 

literature showing greater recruitment of the prefrontal 

cortex in older individuals during WM performance. 

Importantly, our findings extend this literature by 

demonstrating that age-related hyperactivation of 

prefrontal regions occurs in all phases of WM (i.e., 

encoding, maintenance, and retrieval) and is 

multispectral involving theta, alpha, and beta oscillatory 

activity. Further, though the age-related changes in 

alpha and beta band activity were restricted to prefrontal 

executive control regions during the encoding and 

maintenance phases, these age-related changes emerged 

in a more widespread network that included language 

(i.e., phonological loop) and motor regions during the 

retrieval phase. Developing a better understanding  

of these age-related alterations in WM function may 

have important implications for developing targeted 

interventions aimed at improving cognitive function and 

promoting healthy aging across the lifespan. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Linear regression plots of peak voxel pseudo-t values are shown as a function of age for the alpha 
and beta retrieval peaks from Figure 5. 

 
 


