
www.aging-us.com 762 AGING 

INTRODUCTION 
 

Peripheral arterial disease (PAD) is primarily seen as a 

manifestation of systemic atherosclerosis, presenting as 

chronic arterial occlusive disease in the lower 

extremities [1]. It is considered the third most prevalent 

manifestation of atherosclerotic vascular disease, with 

coronary artery disease (CAD) and stroke being the two 

leading presentations [2]. PAD can lead to intermittent 

claudication (IC), chronic limb-threatening ischemia 

(CLTI), limb functional impairment, and even life-

threatening cardiovascular events [3, 4], and this mainly 

includes IC and CLTI. IC is clearly more common, 

characterized by pain in the calf, thigh, or buttock 

muscles that can be induced by repeated exercise and 

relieved by rest. CLTI is characterized by rest pain or 
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ABSTRACT 
 

Background: The causal relationship between gut microbiota and peripheral artery disease (PAD) is still not 
clear. In this research, we employed the Mendelian randomization (MR) technique to explore the potential 
causal connection between 211 gut microbiota species and PAD. We also investigated whether the causal 
effects operate in both directions. 
Methods: We used Genome-wide Association Studies (GWAS) summary statistics data from the MiBioGen and 
FinnGen consortia to conduct a two-sample MR analysis to explore the causal link between gut microbiota and 
PAD. Sensitivity analysis is conducted to assess the robustness of the MR results. In addition to that, reverse 
MR analysis was performed to examine the inverse causal relationship. 
Results: The inverse variance weighted (IVW) method provided evidence supporting a causal relationship 
between 9 specific gut microbiota taxa and PAD. The study findings indicated that family Family XI (OR=1.11, CI 
1.00-1.24, P=0.048), genus Lachnoclostridium (OR=1.24, 1.02-1.50, P=0.033), and genus Lachnospiraceae 
UCG001 (OR=1.17, 1.01-1.35, P=0.031) are risk factors associated with PAD. class Actinobacteria (OR=0.84, 0.72-
0.99, P=0.034), family Acidaminococcaceae (OR=0.80, 0.66-0.98, P=0.029), genus Coprococcus2 (OR=0.79, 0.64-
0.98, P=0.029), genus Ruminococcaceae UCG004 (OR=0.84, 0.72-0.99, P=0.032), genus Ruminococcaceae 
UCG010 (OR=0.74, 0.58-0.96, P=0.022), and order NB1n (OR=0.88, 0.79-0.98, P=0.02) may be associated with 
the risk factors of PAD. Moreover, our analysis did not uncover any evidence of a reverse causal relationship 
between PAD and the nine specific gut microbiota taxa investigated. 
Conclusions: Our MR research has confirmed the potential causal relationship between gut microbiota and PAD 
while also identifying specific gut bacterial communities associated with PAD. 
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tissue loss in the lower limbs. Compared to CLTI, the 

natural history of IC is benign, and few IC patients 

progress to CLTI. The development of PAD is 

influenced by various risk factors, such as smoking, 

hypertension, hyperlipidemia, and diabetes [5]. PAD is 

a widespread condition that affects more than 200 

million individuals across the globe [6], and the 

prevalence of PAD ranges from 3% to 10%. However, 

based on data from older individuals, the prevalence 

among the elderly population can be as high as 15% to 

20%. Furthermore, the current prevalence rates are even 

higher [7]. It has been found that the incidence of PAD 

increases with age, obesity, and diabetes [8]. PAD 

imposes a significant burden on affected individuals, 

families, and even the entire society. Therefore, it 

underscores the necessity of identifying risk factors 

associated with its development. 

 

While the exact cause and underlying mechanisms of 

PAD remain incompletely understood, it is generally 

acknowledged to be a multifactorial disease with 

various contributing factors. The human gastrointestinal 

system provides a home to trillions of bacteria and 

archaea, which coexist with the human body in a 

mutually beneficial relationship that is crucial for 

human health [9]. Intestinal microbiota plays a role in 

various physiological functions, including maintaining 

metabolic stability, regulating immune responses, and 

resisting infections [10]. A growing body of research 

has established a link between the gut microbiota and 

the development and advancement of diseases, resulting 

in its acknowledgment as an endocrine organ [11]. 

Many studies and evidence suggest that the gut 

microbiota and its metabolites are associated with the 

formation and development of atherosclerosis (AS), 

including the formation and progression of 

atherosclerotic plaques, endothelial dysfunction, and 

thrombus formation [12, 13]. Atherosclerotic plaques 

themselves are a microbiota environment, containing 

microorganisms such as Streptococcus, Pseudomonas, 
Klebsiella, Veillonella, and Chlamydia pneumoniae 

[14]. A meta-analysis has revealed that shifts in the gut 

microbiota composition are linked to changes in the 

levels of bacterial metabolites, some of which have 

been shown to have atherosclerotic effects on 

endothelial cells [15]. In cross-sectional studies, it  

has been shown that symptomatic AS patients have 

higher abundances of Collinsella, Enterobacteriaceae, 
Streptococcaceae, and Klebsiella in their gut microbiota 

compared to healthy controls. On the other hand, the 

abundances of bacteria that produce short-chain fatty 

acids (SCFA) such as Faecalibacterium, Roseburia, and 

Ruminococcaceae are lower in symptomatic AS patients 
[16]. Additionally, there has been extensive research 

into the functions of specific metabolites originating 

from the gut microbiota, including trimethylamine N-

oxide (TMAO) from carnitine metabolism, 

phenylacetylglutamine from phenylalanine metabolism, 

and bile acids from lipid metabolism, particularly in 

relation to AS. Most studies have been unable to 

establish a direct link between the composition of the 

gut microbiota and AS-related plaque vulnerability, 

rupture, or cardiovascular events. Currently, there is a 

lack of evidence for causal factors in this regard. 

 

Although there have been rapid advancements in 

genomics, metabolomics, and other technologies that 

have revealed a strong correlation between gut 

microbiota and PAD, the exact causal relationship 

between them remains unclear [17, 18]. This method 

identifies and measures the causal impact of exposures 

on outcomes through the use of genetic variants as 

instrumental variables (IVs) [19, 20]. Because alleles 

are randomly distributed from parents to offspring, 

undergo independent assortment, and maintain genetic 

stability after birth, Mendelian randomization (MR), 

akin to randomized controlled trials (RCTs), can 

mitigate biases arising from conventional confounding 

factors (e.g., environmental influences, population 

traits, and dietary behaviors) and reverse causation [21, 

22]. In this research, a two-sample MR analysis was 

conducted, leveraging summary statistics data from the 

Genome-wide Association Studies (GWAS) of the 

MiBioGen and FinnGen consortia, to explore the causal 

connection between gut microbiota and PAD. 

 

MATERIALS AND METHODS 
 

Research design 

 

We employed a two-sample MR design using GWAS 

meta-analysis data to furnish strong support for the 

causal link between gut microbiota and PAD. The 

study design and reporting of this study are in 

accordance with STROBE-MR guidelines [23]. To 

mitigate the impact of confounding variables on the 

outcomes, the MR approach must adhere to three 

essential assumptions (Figure 1). (1) Choose SNPs that 

exhibit significant associations with gut microbiota as 

IVs; (2) IVs should be independent, meaning they 

should not be correlated with other confounding 

factors like age and smoking; (3) IVs should solely be 

linked to the outcome via their connection with the 

exposure and must not affect the outcome through any 

alternative pathways [24]. 

 

Data source 

 

Genetic information pertaining to the gut microbiota is 

derived from an extensive case-control GWAS meta-

analysis carried out by the international MiBioGen 

consortium [25]. The study includes 25 cohorts from 
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countries such as the United States, Italy, and South 

Korea, with a total of 18,340 participants. The primary 

objective is to pinpoint genetic loci that impact the  

gut microbiota’s relative abundance through the 

examination of 16S rRNA sequencing profiles of the 

participants. GWAS summary statistics pertaining to 

PAD were extracted from the FinnGen Consortium R6 

release dataset, comprising 9,021 PAD cases and 

244,907 individuals serving as controls [26]. 

 

Selection of IVs 

 

Employ the subsequent quality control techniques to 

carefully choose suitable genetic IVs, thereby 

safeguarding the integrity and precision of causal 

inferences regarding the connection between gut 

microbiota composition and PAD risk. (1) In 

accordance with the typical practice observed in most 

MR investigations involving gut microbiota [27, 28], 

we established the significance threshold at P < 

1.0×10^(-5) to detect an ample quantity of potential 

instrumental variables. This decision takes into account 

that the number of loci identified for gut microbiota is 

relatively limited [29]; (2) SNP variants associated with 

each bacterial taxonomic group are grouped together, 

and only independent SNPs are retained. The threshold 

for linkage disequilibrium (LD) aggregation is defined 

as r^2 < 0.001, and this aggregation is performed over a 

distance of 10,000 kb [30]; (3) In cases where 

palindrome SNPs are detected, allele frequency data is 

utilized to deduce the alleles on the forward strand; (4) 

An F-statistic threshold of >10 is set as the threshold for 

strong IVs. Otherwise, if the IVs are found to have a 

weak association with the exposure, they are considered 

to be excluded [31]. (5) To exclude SNPs linked to 

potential confounding factors like smoking and 

occupational exposure, we employed PhenoScanner to 

identify all SNPs meeting the specified criteria [32]. 

 

Reverse MR data 

 

The data source for reverse MR corresponds to that 

used for forward MR. In this scenario, we regard PAD 

as the exposure and extract SNPs closely linked to PAD 

as the exposure (p < 5*10^-8). Similar to forward MR, 

we also conducted a selection process in reverse MR, 

which includes eliminating linkage disequilibrium, 

palindromic sequences, and weakly correlated variables, 

and excluding SNPs with confounding factors. We 

employed the significant genera identified from the 

forward MR analysis as our results and subsequently 

conduct a two-sample MR analysis to establish the 

causal connection between PAD and gut microbiota. 

 

MR analysis 

 

In this study, the primary analytical approach used to 

establish causal relationships was the inverse variance 

weighted (IVW) method [33]. This method calculates 

weighted averages based on the reciprocals of 

variances, under the assumption that all instrumental 

variables are valid. The results of this method are 

deemed the most accurate when there is neither 

heterogeneity nor horizontal pleiotropy. Furthermore, 

Supplementary Methods including MR-Egger 

regression, weighted median (WM), simple mode (SM), 

and weighted mode estimation are utilized alongside the 

IVW results [34]. MR-Egger has strong applicability for 

testing the hypothesis and can tolerate heterogeneity in 

more than 50% of the SNPs [35]. Weighted median is 

the median of the distribution function obtained by 

weighting all individual SNP effect values according to

 

 
 

Figure 1. An overview of the MR analysis and its three primary assumptions. 
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their weights. Robust estimation of weighted median 

can be obtained when at least 50% of the information 

comes from valid instrumental variables [36]. The 

principle of simple mode is to estimate causal effects 

directly using the effect estimate of the instrumental 

variable when there is only one instrumental variable 

available [37]. The weighted mode method is a 

commonly used statistical method for calculating the 

mode of a set of data. By considering the weight of each 

value, it can provide a more accurate description of the 

central tendency of the dataset [38]. 

 

Horizontal pleiotropy and heterogeneity evaluation 

 

To evaluate the robustness of the findings, additional 

sensitivity analyses were carried out. Heterogeneity 

among the instrumental variables (IVs) in the IVW 

method was quantified using Cochran’s Q statistic and 

MR-Egger regression (p < 0.05 was regarded as potential 

heterogeneity in IVs) [39]. The MR-Egger intercept test 

was applied to detect the presence of horizontal 

pleiotropy. If the p-value is greater than 0.05, it suggests 

the absence of horizontal pleiotropy [40]. Additionally, a 

powerful method known as MR pleiotropy residual sum 

and outlier (MR-PRESSO) is used to detect and remove 

potential horizontal pleiotropy outliers, which could 

greatly impact the estimation results within the MR-

PRESSO framework. For each SNP, the MR-PRESSO 

outlier test calculates a p-value for its horizontal 

pleiotropy significance, while the MR-PRESSO global 

test calculates a p-value for the overall level of horizontal 

pleiotropy. Based on the p-values from the MR-PRESSO 

outlier test, SNPs are sorted in ascending order and 

sequentially removed from the list. Each time a SNP is 

removed from the list, the remaining SNPs are subjected 

to the MR-PRESSO global test. This recursive process is 

repeated until the p-value from the global test becomes 

insignificant (P > 0.05). The remaining SNPs after 

removing the ones with horizontal pleiotropy are then 

used for subsequent MR analysis [41]. We employ the 

“leave-one-out” method to assess sensitivity. This 

involves systematically removing each instrumental SNP 

one at a time and then re-performing the IVW analysis to 

determine if the causal estimates might be biased or 

influenced by a single SNP [42]. The statistical analysis 

was conducted using R version 4.3.1, with the 

“TwoSampleMR” R software package, which is widely 

used for this type of analysis. 

 

Data availability 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

Causal effect of gut microbiota on PAD 

 

This study selected 211 relative abundances of intestinal 

microbiota from gut microbiota GWAS data involving 

18,340 participants as the exposure variable for the 

research. Due to the negative results of heterogeneity 

and pleiotropy tests, the IVW analysis results were used 

as the primary reference indicator in the study. The MR 

analysis results indicated that there may have been 

associations between nine different intestinal microbiota 

(1 class, 1 order, 2 families, and 5 genera) and PAD 

(Figure 2). Additionally, the results of the other four 

computational methods were found in Table 1. Lastly, 

the results of the five MR models analyzing the 

association between all gut microbiota and PAD risk 

were found in Supplementary Table 1. 

 

We identified 3 microbiota taxonomic groups that were 

positively correlated with PAD. These included the 

 

 
 

Figure 2. Forest plot summarizing the causal impact of gut microbiota composition on the risk of PAD, based on the IVW 
method. 
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Table 1. Statistical results of the four models other than IVW. 

Gut microbiota Analytical methods nSNP P-value Odds ratio (95%CI) 

class Actinobacteria     

 MR Egger 15 0.45 1.20 (0.76-1.90) 

 Weighted median 15 0.35 0.90 (0.72-1.12) 

 Simple mode 15 0.22 0.76 (0.50-1.16) 

 Weighted mode 15 0.93 0.99 (0.74-1.31) 

family Acidaminococcaceae     

 MR Egger 7 0.33 0.72 (0.39-1.31) 

 Weighted median 7 0.05 0.77 (0.60-1.00) 

 Simple mode 7 0.19 0.74 (0.50-1.10) 

 Weighted mode 7 0.14 0.73 (0.52-1.04) 

family Family XI     

 MR Egger 8 0.21 1.63 (0.83-3.21) 

 Weighted median 8 0.07 1.14 (0.99-1.30) 

 Simple mode 8 0.19 1.20 (0.94-1.53) 

 Weighted mode 8 0.21 1.19 (0.93-1.53) 

genus Coprococcus2     

 MR Egger 8 0.48 1.89 (0.36-10.01) 

 Weighted median 8 0.1 0.79 (0.60-1.04) 

 Simple mode 8 0.11 0.64 (0.39-1.04) 

 Weighted mode 8 0.1 0.65 (0.41-1.02) 

genus Lachnoclostridium     

 MR Egger 13 0.43 1.30 (0.70-2.42) 

 Weighted median 13 0.08 1.19 (0.98-1.44) 

 Simple mode 13 0.24 1.22 (0.89-1.68) 

 Weighted mode 13 0.31 1.19 (0.86-1.63) 

genus Lachnospiraceae UCG001     

 MR Egger 13 0.43 1.30 (0.70-2.42) 

 Weighted median 13 0.08 1.19 (0.98-1.44) 

 Simple mode 13 0.24 1.22 (0.89-1.68) 

 Weighted mode 13 0.31 1.19 (0.86-1.63) 

genus Ruminococcaceae UCG004     

 MR Egger 11 0.52 1.35 (0.56-3.27) 

 Weighted median 11 0.3 0.89 (0.71-1.11) 

 Simple mode 11 0.67 0.92 (0.63-1.35) 

 Weighted mode 11 0.72 0.93 (0.63-1.37) 

genus Ruminococcaceae UCG010     

 MR Egger 6 0.32 0.64 (0.30-1.37) 

 Weighted median 6 0.02 0.68 (0.50-0.93) 

 Simple mode 6 0.09 0.64 (0.42-0.97) 

 Weighted mode 6 0.09 0.66 (0.45-0.98) 

order NB1n     

 MR Egger 13 0.56 0.87 (0.56-1.36) 

 Weighted median 13 0.02 0.85 (0.74-0.98) 

 Simple mode 13 0.2 0.86 (0.69-1.07) 

 Weighted mode 13 0.2 0.86 (0.69-1.07) 

 



www.aging-us.com 767 AGING 

family Family XI (OR=1.11, CI 1.00-1.24, P=0.048), 

the genus Lachnoclostridium (OR=1.24, CI 1.02-1.50, 

P=0.033), and the genus Lachnospiraceae UCG001 

(OR=1.17, CI 1.01-1.35, P=0.031). Additionally, we 

found 6 microbiota taxonomic groups that were 

negatively correlated with PAD. These included the 

class Actinobacteria (OR=0.84, CI 0.72-0.99, 

P=0.034), the family Acidaminococcaceae (OR=0.80, 

CI 0.66-0.98, P=0.029), the genus Coprococcus2 

(OR=0.79, CI 0.64-0.98, P=0.029), the genus 

Ruminococcaceae UCG004 (OR=0.84, CI 0.72-0.99, 

P=0.032), the genus Ruminococcaceae UCG010 

(OR=0.74, CI 0.58-0.96, P=0.022), and the order 

NB1n (OR=0.88, CI 0.79-0.98, P=0.02). We 

presented these statistical results using scatter plots 

(Figure 3) and forest plots (Figure 4) to illustrate 

 

 
 

Figure 3. The scatter plots for association between gut microbiota and PAD. (A) family Family XI; (B) genus Lachnoclostridium;  
(C) genus Lachnospiraceae; (D) class Actinobacteria; (E) family Acidaminococcaceae; (F) genus Coprococcus2; (G) genus Ruminococcaceae 
UCG004; (H) genus Ruminococcaceae UCG010; (I) order NB1n. Note: SNP effects were plotted into lines for the inverse-variance weighted 
test (light blue line), MR-Egger (blue line), weighted median (green line), Simple mode (light green line) and Weighted mode (red line). The 
slope of the line corresponded to the causal estimation. 
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the causal effects of each SNP of the gut microbiota on 

PAD risk. 

 

To assess heterogeneity in the results, a Cochran’s Q 

test with a distribution set at 10,000 for both the IVW 

and MR-Egger regression analyses was conducted. The 

test results indicated the absence of heterogeneity in  

the SNPs for each microbiota taxonomic group. 

Additionally, the symmetry of the funnel plot suggested 

that there was no heterogeneity in the study 

(Supplementary Figure 1). The P-values of the intercept 

term in the MR-Egger regression consistently exceeded 

0.05, signifying the absence of horizontal pleiotropy. In 

addition, in the MR-PRESSO analysis, if the global test 

p-value for the associated microbiota community is 

greater than 0.05, it indicates the absence of horizontal 

 

 
 

Figure 4. The forest plots for the association between gut microbiota and PAD. (A) family Family XI; (B) genus Lachnoclostridium; 
(C) genus Lachnospiraceae; (D) class Actinobacteria; (E) family Acidaminococcaceae; (F) genus Coprococcus2; (G) genus Ruminococcaceae 
UCG004; (H) genus Ruminococcaceae UCG010; (I) order NB1n. 
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pleiotropy (Table 2). The leave-one-out test results 

confirmed the robustness of the MR findings in the 

study (Supplementary Figure 2). 

 

Reverse-direction MR analyses 

 

We employed the IVW method to perform a reverse 

MR analysis, aiming to examine the causal association 

between 9 specific gut microbiota taxa and PAD. 

Three SNPs that were closely associated with PAD 

were identified. As shown in Table 3, none of the gut 

microbiota taxa categories, including class 

Actinobacteria (P=0.31), family Acidaminococcaceae 

(P=0.88), family Family XI (P=0.99), genus 

Coprococcus2 (P=0.93), genus Lachnoclostridium 

(P=0.14), genus Lachnospiraceae UCG001 (P=0.77), 

genus Ruminococcaceae UCG004 (P=0.66), genus 

Ruminococcaceae UCG010 (P=0.53), and order NB1n 

(P=0.72), showed a significant reverse causal 

relationship with PAD. The reliability of our findings 

was validated through the utilization of the MR-Egger 

regression method and the Cochran’s Q test. 

 

DISCUSSION 
 

Main findings and interpretation 

 

For the first time, this study evaluated the possible causal 

connection between gut microbiota and PAD utilizing 

bidirectional MR. We identified specific gut microbiota 

communities strongly linked to PAD at various 

taxonomic levels, including phylum, order, family, and 

genus. Among them, family Family XI, genus 

Lachnoclostridium, and genus Lachnospiraceae UCG001 

were identified as potential risk factors for PAD, while 

class Actinobacteria, family Acidaminococcaceae, genus 

Coprococcus2, genus Ruminococcaceae UCG004, genus 

Ruminococcaceae UCG010, and order NB1n were 

identified as potential protective factors for PAD. 

Sensitivity analysis indicated the absence of hetero-

geneity or horizontal pleiotropy, affirming that our MR 

analysis remains unaffected by confounding factors. 

Furthermore, the “leave-one-out” analysis validated the 

study’s robustness. 

 

The gut microbiota, as the most complex microbiota 

ecosystem in the human body, regulates a wide range 

of physiological processes [43]. Simultaneously, 

progress in high-throughput DNA sequencing 

technology has furnished us with a more profound 

comprehension of the gut microbiota’s composition 

and functionalities. Generally, the gut microbiota 

community comprises a diverse assortment of bacteria 

present in specific proportions. These bacteria interact, 

constrain, and depend on each other, establishing a 

qualitative and quantitative ecological balance [44]. 

Gut dysbiosis increases intestinal permeability by 

inhibiting tight junction proteins, allowing trans-

location of lipopolysaccharides into the circulation 

[45]. The lipopolysaccharides derived from gut 

dysbiosis bind to Toll-like receptors (TLRs) and 

activate downstream immune responses [46]. 

Lipopolysaccharides bind to the TLR4 complex and its 

co-receptor, cluster of differentiation 14 (CD14). 

Upregulation of TLRs initiates the inflammation-

driven process of atherosclerosis [47]. The interaction 

between lipopolysaccharides and TLR4 activates the 

MYD88 and NFκB pathways, thereby enhancing the 

synthesis of pro-inflammatory cytokines such as IL-6, 

IL-1, IL-27, and TNF-α. These inflammatory 

cytokines play a role in the development of athero-

sclerosis and cardiovascular diseases [48]. 

 

The primary characteristic of PAD is AS. A growing 

body of evidence underscores the pivotal role of the gut 

microbiota in the initiation and advancement of AS, 

rendering it a novel target for the prevention and 

management of AS [49]. During the early 21st century, 

numerous investigations documented the presence of 

bacterial DNA from diverse species within athero-

sclerotic plaques, representing the initial evidence of a 

connection between the microbiota and AS [50, 51]. The 

gut microbiota can serve as a circulating factor that 

promotes or prevents the formation of AS by generating 

metabolites from dietary sources [52, 53]. Gut dysbiosis, 

which signifies the perturbation of gut microbiota linked 

to various diseases, was also highlighted. Another study 

revealed that individuals with AS display an ecological 

imbalance characterized by an overabundance of 

Actinobacteria in their gut compared to a healthy control 

group, a phenomenon associated with butyrate 

production [54]. Furthermore, changes in the composition 

of gut microbiota and the presence of its byproducts, 

including short-chain fatty acids (SCFAs) and bile acids 

(BAs), are linked to the risk of AS development [55, 56]. 

 

Particular bacterial species within the gut are correlated 

with the progression of PAD. At the phylum level, 

significant alterations in the gut microbiota composition 

are observed in PAD patients compared to the control 

group [57]. In this study, we have identified and 

confirmed 9 specific gut microbiota communities that 

have a potential causal relationship with PAD. 

Dysbiosis has the potential to compromise the integrity 

of the intestinal barrier, resulting in the release of 

detrimental metabolites like lipopolysaccharides (LPS) 

and other bacterial constituents such as peptidoglycans 

into the bloodstream. This, in turn, can incite an 

inflammatory reaction and contribute to the progression 
of AS [58, 59]. A study has established a positive 

correlation between the presence of Lachnoclostridium 

and the production of inflammatory cytokines and LPS 
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Table 2. Heterogeneity and level of pleiotropy testing for 9 specific microbiota communities. 

Gut microbiota nsnp 
Q_inverse. 

variance.weighted 

Q_pval_inverse. 

variance.weighted 

Q_MR.

egger 

Q_pval_MR

.egger 
Egger_intercept 

Egger_ 

intercept_pval 

MR-PRESSO_ 

global_test_p 

family Family XI 8 6.51 0.48 5.26 0.51 -0.05 0.31 0.523 

genus Lachnoclostridium 13 9.01 0.7 8.77 0.64 -0.01 0.63 0.735 

genus Lachnospiraceae UCG001 13 7.15 0.85 7.04 0.8 -0.01 0.75 0.825 

class Actinobacteria 15 12.48 0.57 9.89 0.7 -0.03 0.13 0.676 

family Acidaminococcaceae 7 4.9 0.56 4.76 0.45 0.01 0.72 0.588 

genus Coprococcus2 8 6.36 0.5 5.3 0.51 -0.06 0.34 0.53 

genus Ruminococcaceae 

UCG004 
11 9.58 0.48 8.43 0.49 -0.04 0.31 0.49 

genus Ruminococcaceae 

UCG010 
6 6.04 0.3 5.8 0.21 0.01 0.7 0.376 

order NB1n 13 10.31 0.59 10.31 0.5 0 0.95 0.528 

 

Table 3. Reverse MR analysis results for 9 specific microbiota communities. 

Gut microbiota OR (95%CI) Pval 
Q_pval_inverse.variance.

weighted 

Q_pval_MR.

egger 

Egger_intercep

t (pval) 

class Actinobacteria 0.95 (0.87-1.05) 0.31 0.6 0.78 0.09 (0.51) 

family Acidaminococcaceae 0.99 (0.89-1.10) 0.88 0.99 0.89 -0.01 (0.96) 

family Family XI 1.00 (0.79-1.28) 0.99 0.27 0.46 -0.3 (0.38) 

genus Coprococcus2 1.00 (0.89-1.11) 0.93 0.88 0.78 -0.05 (0.74) 

genus Lachnoclostridium 1.08 (0.98-1.19) 0.14 0.3 0.12 -0.02 (0.92) 

genus Lachnospiraceae UCG001 0.98 (0.85-1.13) 0.77 0.22 0.52 -0.18 (0.35) 

genus Ruminococcaceae UCG004 0.95 (0.77-1.18) 0.66 0.05 0.01 0.02 (0.96) 

genus Ruminococcaceae UCG010 0.97 (0.87-1.07) 0.53 0.97 0.82 0 (0.98) 

 

in the serum [60]. Trimethylamine (TMA) is a  

small-molecule byproduct resulting from the  

microbiota metabolism of choline, carnitine, and 

phosphatidylcholine within the gut [61, 62]. Within the 

liver, TMA undergoes conversion into trimethylamine-N-

oxide (TMAO) through the action of flavin-containing 

monooxygenase 3 [63, 64]. A growing body of evidence 

supports the notion that plasma TMAO serves as an 

independent risk factor for AS. Research has shown that 

Lachnoclostridium strains can effectively convert choline 

into TMA. When co-administered with choline to ApoE-

/- mice, these strains can increase the levels of TMAO in 

the serum and promote the formation of AS [65]. 

Ruminococcaceae generates acetate and butyrate, serving 

as the primary energy source for intestinal epithelial cells 

while concurrently suppressing the signaling pathways of 

pro-inflammatory cytokines [66]. The anti-atherosclerotic 

effects of butyrate have been extensively confirmed [67, 

68]. Butyrate can reduce cholesterol levels in the blood 

by converting cholesterol to coprostanol [69]. In addition, 

Coprococcus can also produce butyrate [70]. In AS 

disease, the significant reduction of Acidaminocccaceae, 

decreased synthesis of SCFAs, and increased  

TMAO levels can lead to an increase in atherogenic 

lipoproteins in the blood, contributing to the development 

of AS [71]. 

Limitation 
 

However, this study also has limitations: (1) Human 

behavior is intricate, and while comprehending the 

genetic predisposition to a disease can aid in its 

prevention to a certain degree [72], environmental 

factors also contribute to the disease’s onset [73]. MR 

can only partially address confounding factors, 

including environmental influences. (2) The study’s 

outcome data are based on European and American 

populations, and further validation is required to 

ascertain whether the results are representative of the 

broader population. (3) While confirming a causal link 

between gut microbiota and PAD, the precise 

underlying mechanisms remain elusive, necessitating 

additional research. 

 

CONCLUSIONS 
 

The study obtained data from GWAS databases and 

employed a two-sample bidirectional MR approach to 

validate the potential causal connection between gut 

microbiota and PAD. These findings offer novel 
insights into the pathogenesis of PAD and potential 

treatment strategies. Subsequent studies should aim to 

delve deeper into the mechanisms through which these 
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microbiota communities impact PAD and investigate 

potential therapeutic approaches targeting the gut 

microbiota. Additionally, gut microbiota may serve as a 

novel important predictive biomarker for PAD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The funnel plots for the association between gut microbiota and PAD. (A) family Family XI; (B) genus 

Lachnoclostridium; (C) genus Lachnospiraceae UCG001; (D) class Actinobacteria; (E) family Acidaminococcaceae; (F) genus Coprococcus2; (G) 
genus Ruminococcaceae UCG004; (H) genus Ruminococcaceae UCG010; (I) order NB1n. 
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Supplementary Figure 2. The leave-one-out sensitivity analysis for the association between gut microbiota and PAD.  
(A) family Family XI; (B) genus Lachnoclostridium; (C) genus Lachnospiraceae UCG001; (D) class Actinobacteria; (E) family 
Acidaminococcaceae; (F) genus Coprococcus2; (G) genus Ruminococcaceae UCG004; (H) genus Ruminococcaceae UCG010; (I) order NB1n. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The results of the five MR models analyzing the association between all gut microbiota 
and PAD risk. 

 

 


