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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) exhibits a high degree of invasiveness and is closely associated 
with rapid disease progression. Multiple lines of evidence indicate a strong correlation between anoikis 
resistance and tumor progression, invasion, and metastasis. Nevertheless, the classification of anoikis in HCC 
and the investigation of novel biological target mechanisms in this context continue to pose challenges, 
requiring further exploration. 
Methods: Combined with HCC samples from TCGA, GEO and ICGC databases, cluster analysis was conducted on 
anoikis genes, revealing novel patterns among different subtypes. Significant gene analysis of different gene 
subtypes was performed using WCGNA. The anoikis prognostic risk model was established by Lasso-Cox. Go, 
KEGG, and GSEA were applied to investigate pathway enrichment primarily observed in risk groups. We 
compared the disparities in immune infiltration, TMB, tumor microenvironment (TME), and drug sensitivity 
between the two risk groups. RT-qPCR and Western blotting were performed to validate the expression levels 
of SLCO4C1 in HCC. The biological functions of SLCO4C1 in HCC cells were assessed through various 
experiments, including CCK8 assay, colony formation assay, invasion migration assay, wound healing assay, and 
flow cytometry analysis. 
Results: HCC was divided into 2 anoikis subtypes, and the subtypeB had a better prognosis. An anoikis 
prognostic model based on 12 (COPZ2, ACTG2, IFI27, SPP1, EPO, SLCO4C1, RAB26, STC2, RAC3, NQO1, MYCN, 
HSPA1B) risk genes is important for survival and prognosis. Significant differences were observed in immune 
cell infiltration, TME, and drug sensitivity analysis between the risk groups. SLCO4C1 was downregulated in 
HCC. SLCO4C1 downregulation promoted the proliferation, invasion, migration, and apoptosis of HCC cells. The 
tumor-suppressive role of SLCO4C1 in HCC has been confirmed. 
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INTRODUCTION 
 

Among the malignant tumors originating from the  

liver, hepatocellular carcinoma accounts for the largest 

proportion. The incidence of hepatocellular carcinoma 

is related to many factors, including personal lifestyle, 

genetics and so on. Excessive drinking, hepatitis virus 

infection and carcinogens in food are the main causes  

of hepatocellular carcinoma [1]. According to statistics, 

there are more than 250 million patients with hepatitis 

virus infection worldwide, of which about 5% of the 

patients will develop hepatocellular carcinoma [2]. 

Furthermore, cirrhosis, fatty liver, and diabetes increased 

the likelihood of HCC [3]. 

 

For early hepatocellular carcinoma, the main treatments 

include surgery and interventional therapy. In cases of 

advanced liver cancer, radiotherapy and chemotherapy 

are usually used. Immunotherapy has emerged as  

a novel therapeutic approach for HCC [4]. Radical 

resection is the most selected modality in early HCC 

patients. For inoperable cases, interventional therapy, 

such as transcatheter radiofrequency ablation and 

alcohol injection, is also used as a common treatment. 

Radiotherapy can kill cancer cells by electromagnetic 

radiation and can effectively treat advanced HCC. 

Chemotherapy is also an effective treatment, but at 

present, the effect of chemotherapy on HCC is not good, 

at the same time, it has some side effects. Immuno-

therapy is a new treatment in recent years, which can 

effectively treat HCC by activating the immune system 

to attack tumor cells [5, 6]. Targeted therapy for 

immune checkpoints has also made some progress [7]. 

Despite the availability of numerous treatment options 

for HCC, the prognosis remains unfavorable, and a 

considerable number of patients will relapse, which 

brings more complexity to the treatment of HCC. At 

present, the popular concept of precision medicine is 

gradually applied in the treatment of tumor. Mainly 

comprehensive genomics, transcriptome, proteomics and 

other aspects of information analysis, strive to grasp the 

individual differences of patients with diseases, to find a 

strong basis for treatment [8, 9]. 

 

The mechanism of anoikis is that the discontact between 

the cell and its matrix induces death [10]. It was initially 
found in mammals that when cells are separated from 

the interaction of their matrix, it triggers the mechanism 

of anestrous apoptosis and promotes the elimination of 

abnormal cells [11]. In normal cells, anoikis plays a role 

in tumor inhibition because of its mechanism. However, 

tumor cells can avoid the effects of apoptosis through 

different mechanisms, and cancer cell proliferation and 

metastasis will be uninhibited [12]. Apoptosis is an 

important target in anti-tumor therapy. There are many 

ways for tumor cells to avoid anoikis. It can promote its 

own growth by increasing GFR signal pathway and up-

regulating hepatocyte growth factor receptor and EGFR. 

Inhibiting the function of apoptosis-related pathways  

is another common way for tumor cells to escape from 

nesting. The Bcl-2 family suppresses the activation of 

apoptosis-related proteins [13, 14]. At present, the study 

of anoikis has always been a hot research field in tumor 

therapy. Anoikis also affects the immunogenicity of 

tumor cells, which affects their ability to recognize and 

clear cancer cells. 

 

SLCO4C1 is a carrier protein belonging to the SLCO 

family. It is a human kidney-specific organic anion 

transport peptide [15, 16]. SLCO4C1 in head and neck 

cancer was a tumor suppressor gene [17]. Interference 

with SLCO4C1 expression caused inactivation of PI3K/ 

Akt pathway causing apoptosis in endometrial cancer 

[18]. SLCO4C1 has been implicated in tumor pro-

gression, there may be heterogeneity in the role in each 

tumor. Currently, the principle of how SLCO4C1 acts in 

HCC has not been reported. HCC can be classified into 

several anoikis subtypes, and the relationship between 

anoikis and patient prognosis and immune characteristics 

remains unclear. Our study aims to identify anoikis 

subtypes and identify new biological targets that can be 

used for the diagnosis and treatment of HCC. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

We logged on to TCGA (https://portal.gdc.cancer.gov/ 

repository) to obtain HCC data. Data from 50 normal 

samples from 371 HCC samples (374 transcripts)  

were downloaded for analysis. We downloaded 242 

GSE14520 HCC samples from the GEO (https:// 

www.ncbi.nlm.nih.gov/geo/). This study downloaded 

the ICGC-LIRI-JP data on the official website of ICGC 

(https://dcc.icgc.org/). The data included 232 liver 
cancer sample transcriptional groups and their clinical 

information. After screening patients by inclusion and 

exclusion criteria, a total of 829 HCC samples were 

Conclusions: Our study presents a novel anoikis classification method for HCC that reveals the association 
between anoikis features and HCC. The anoikis feature is a critical biomarker bridging tumor cell death and 
tumor immunity. In this study, we provided the first evidence of SLCO4C1 functioning as a tumor suppressor in 
HCC. 

https://portal.gdc.cancer.gov/%20repository
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used for subsequent analysis. We obtained 338 anoikis-

related genes (ARGs) with a correlation score >1.0 from 

the GeneCards database (https://www.genecards.org/). 

 

ssGSEA 

 

ssGSEA is an algorithm used to calculate feature scores. 

The algorithm can evaluate the enrichment of the 

eigengene sets in a sample. It can reflect the close 

correlation between the sample and the gene set [19]. 

We draw the anoikis enrichment spectrum of each HCC 

sample according to ssGSEA. The GSVA R packet was 

used to implement the ssGSEA algorithm. 

 

Consensus clustering analysis of ARGs 

 

Clustering method is widely used in the classification of 

cancer subtypes. Clustering can classify all contained 

samples into several subtypes through different sets of 

datasets, and compare the differences between subtypes 

[20]. It can be used to discover clinical differences 

between subtypes and subtypes of new diseases. Con-

sistent clustering confirms the rationality of clustering 

by constantly re-selecting samples, and determines the 

value of the final clustering number k. In this study,  

we used 829 samples from three databases for cluster 

analysis. The “ConensusClusterPlus” package was used 

to implement analysis. The number of subtypes was 

divided according to the optimal k value. 

 

Analysis of WGCNA 

 

Weighted gene coexpression network analysis 

(WGCNA) is a processing algorithm for complex 

patterns. This method calculates the genes with highly 

synergistic changes in clustered expression patterns, and 

matches these clustering modules with related traits [21]. 

The differential genes among clusters were determined 

by WGCNA algorithm to determine the gene modules 

which were highly related to the nesting score traits. 

Pearson test was used to analyze correlation between 

module eigengenes (MEs) and anoikis. The gene set with 

the most significant correlation was selected among all 

the modules with P < 0.05. 

 

Construction of anoikis prognostic model for HCC 

 

To exploit the potential of anoikis features in prediction, 

we developed a risk model. The anoikis prognosis model 

refers to the prediction of the probability and risk of 

patient mortality by evaluating the patient’s clinical  

data, biological features, and pathological features. The 

anoikis model was constructed based on the genes 
obtained from the Cox analysis. The model formula is: 

Risk Score = β1 × X1 + β2 × X2 + … + βn × Xn. In this 

formula, Risk Score represents the risk score, β1, β2, …, 

βn represent the feature weights (gene correlation 

coefficients), and X1, X2, …, Xn represent the feature 

variables (gene expression levels), which represent the 

value of each feature. The nomogram chart is a graphical 

tool for calculating risk scores. It intuitively displays the 

relationship between specific patient variables and risk 

outcomes through images. We constructed a nomogram 

that can be used for the prognostic evaluation of various 

clinical indicators. The calibration curve was employed 

to assess the concordance between the predicted and 

observed outcomes of the nomogram. 

 

GSEA 

 

Gene Set Enrichment Analysis (GSEA) can calculate 

the level of enrichment for each gene set [22]. GSEA 

analysis was conducted on the key genes within the risk 

model. The analysis of the major enriched pathways 

between two risk groups was performed using R 

packages, including “org.Hs.eg.db”, “clusterProfiler”, 

and “enrichplot”. 

 

Analysis of immune infiltration 

 

To mine the connection of anoikis features and  

immune cells, we employed 7 algorithms (TIMER, 

CIBERSORT, CIBERSORT-ABS, XCELL, MCP-

counter, EPIC, QUANTISEQ) [23]. The Pearson’s 

coefficient was used to assess the association degree 

between the immune cells. For the above analysis, the R 

packages “reshape2”, “tidyverse”, “ggplot2”, “ggpubr”, 

and “ggExtra” were employed. The content of immune 

checkpoints is closely correlated with tumor survival. 

For example, tumor patients with high levels of PD-L1 

expression usually respond more effectively to immune 

checkpoint inhibition therapy and have longer survival 

periods. This study selected several common immune 

checkpoint genes (ATIC, CTLA4, PDCD1, LAG3, 

PDCD1LG2, CD47, CD40, CD80, CD86) for analysis 

of their correlation with the anoikis risk score. 

Correlation analysis was performed by “limma” and 

“corrplot” R packages. 

 
Identify TMB differences between risk groups 

 

Tumor mutation burden (TMB) is a reflection of the 

genomic diversity of tumor cells. 

 

Tumor cells develop mutations more frequently, which 

could be attributed to their biological characteristics 

such as higher DNA replication error rates, or due  

to their exposure to environmental factors such as 

carcinogens or viruses [24]. A high TMB often 

indicates a higher frequency of gene mutations, which 

could result in faster tumor growth, increased malignant 

behavior, and poor treatment outcomes. Conversely, a 

https://www.genecards.org/


www.aging-us.com 1443 AGING 

low TMB suggests fewer gene mutations, which could 

lead to a slower tumor growth rate, lower degree of 

malignancy, and more promising therapeutic effects. 

 

The TCGA-LIHC cohort was used to analyze the 

relationship between TMB and risk scores. The 

“maftools” software package was used to identify genes 

with higher mutation frequency in the risk groups. 

Additionally, we used the “limma” and “ggpubr” 

software packages to complete the differential analysis. 

 

Difference analysis of TME 

 

The environment in which tumor cells survive is  

known as the tumor microenvironment (TME). Various 

components in the TME can interact with each other 

and affect tumor function. The cellular composition of 

the tumor microenvironment (TME) primarily consists 

of tumor, immune, and stromal cells [25]. 

 

The extracellular matrix (ECM) is also essential in tumor 

progression. Tumor cells can change the composition 

and structure of the ECM to adapt to the growth needs 

of the tumor. ESTIMATE is a method for calculating 

the proportion of different cell populations in the TME, 

which can be used to estimate the composition of  

the TME. ESTIMATE can be used to calculate the 

immune cells and stromal cells of the sample and the 

ESTIMATE score. The scoring reflects the infiltration 

abundance of the corresponding cells. The ESTIMATE 

algorithm can be implemented through the R “estimate” 

package. 

 

Drug sensitivity analysis 

 

The prognosis of cancer patients is similarly affected 

by drug sensitivity. By evaluating the sensitivity of 

tumors to certain drugs, drug sensitivity analysis can 

guide doctors to develop more personalized and 

effective treatment plans, so as to improve treatment 

results and patient prognosis. Drug sensitivity analysis 

can help determine which patients are suitable for 

which drugs, and how to use these drugs at different 

stages. We downloaded drug information from the 

GDSC website and used “oncoPredict” and “parallel” 

in the R software to predict drug sensitivity in patients 

in the risk groups. The p-value filtering condition was 

set to P < 0.001. 

 

Patient sample collection 

 

Fresh tumors and corresponding adjacent tissues from 

30 HCC patients were collected in this study. All the 
patients signed a written informed consent form. The 

Medical Ethics Committee of Anhui No.2 Provincial 

People’s Hospital approved this study. 

RT-qPCR 

 

Total tissue RNA extraction was performed according 

to the RNA Purification Kit manual. The cDNA was 

synthesized using the EvoM-MLVRTPremixcDNAS 

synthesis kit (Accurate Biotechnology, China). SYBR 

Green Premix Pro Taq HS qPCR Kit (Accurate Bio-

technology, China) was used in real-time quantitative 

polymerase chain reaction process. The primer sequences 

used are as follows: GAPDH: F, 5-CCACTCCTC 

CACCTTTG-3, R, 5-CACCACCCTGTTGCTGT-3 

SLCO4C1: F, 5-TTCCCTGACTGGCCTGATTTC-3, R, 

5-GCAAGCCATCTCGGCTTATG-3. 

 

Cell culture and transfection 

 

The Cell Bank of the Chinese Academy of Sciences 

provides human HCC cell lines Hep3B, HepG2, 

MHCC-LM3, SMMC-7721, MHCC97-H, PLC/PRF/5 

for the research. Cells were cultured using DMEM 

(Gibco, USA) supplemented with 10% fetal bovine 

serum. The required environment for a conventional 

cell culture incubator is 5% CO2 at 37°C. Purchased 

short hairpin RNA (shRNA, Zebra Biologics, China) 

was transfected into HCC-LM3 and HepG2 according 

to the rules of instructions. The ShRNA sequence is  

as follows: SLCO4C1-sh1: 5-GCCATAAGTGTTAC 

TTGTAAA-3, SLCO4C1-sh2: 5-GCTACGATATTT 

CATTCTGTT-3. 

 

Western blotting 

 

Total protein was extracted using 1% RIPA lysates 

(Servebio, Wuhan, China). The protein was transferred 

from the SDS-PAGE gel to NC membrane. Sub-

sequently, the primary antibodies (SLCO4C1, 24584-1-

AP, Proteintech, China; β-actin, 81115-1-RR, Proteintech, 

China) were incubated with the NC membrane overnight 

at 4℃. After incubation, chemiluminescence kit (ECL) 

was used to develop chromogenic protein. 

 

Cell proliferation assay 

 

Transfected HCC cells were plated in 96-well plates at a 

density of 4 × 103 cells per well, and 100 μl of complete 

culture medium was added to each well. Four holes 

were repeatedly added to each sample. 10 ul CCK-8 

(Biomark, Shanghai, China) was added after 24 h, 48 h, 

72 h and 96 h in 37℃ incubator. After incubated in cell 

incubator for 2 hours, the absorbance of OD450 was 

detected by enzyme labeling instrument. 

 

After successful transfection, HCC cells were seeded in  
6-well plates at a density of 1 × 103 cells per well and 

maintained in culture for 12 days. After washing with 

PBS, the samples were fixed in 4% paraformaldehyde 
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for 15 minutes and subsequently stained with 0.1% 

crystal violet for 10 minutes. After fully rinsing, the  

cell colonies were counted under the microscope and 

pictures were taken. 

 

Analysis of cell invasion and migration 

 

After a 24-hour transfection period, the cells were 

collected and then seeded onto the upper compartment 

of a 24-well plate that had been pre-coated with an  

8 μm matrix gel (Corning, USA). In the lower part, 600 

μl DMEM complete medium of 20%FBS was added. 

After a 24-hour incubation at 37°C, the cells were fixed 

with 4% paraformaldehyde for 20 minutes, followed  

by staining with 0.1% crystal violet for 10 minutes, and 

counted under the microscope after full washing. 

 

The transfected cells were plated in a 6-well (4 × 105 

cells/well). Subsequently, a scratch was created in each 

well using a sterile 10 ul pipette tip. The superfluous cells 

in the upper layer were washed by PBS and cultured with 

DMEM containing serum. Cells were washed with PBS 

and then cultured in serum-containing DMEM. After  

48 hours, a microscope was used to take pictures and 

calculate the change of the area of scratches. 

 

Apoptosis assay 

 

The Annexin V-APC/7-AAD kit (KeyGEN BioTECH, 

China) was used for apoptosis detection in the cells. 

First, 5 μl 7-AAD dye solution was added to 50 μl 

Binding Buffer and mix well. The cells were collected 

and mixed with the above-mentioned 7-AAD staining 

solution, and the 5~15 min was protected from light  

at room temperature. After the reaction, a mixture of 

450 μl Binding Buffer and 5 μl Annexin V-APC was 

added. Subsequently, the mixture was incubated at 

room temperature for 15 minutes. Cellular analysis was 

performed using cytoFLEX flow cytometry equipment 

(Beckman Coulter, USA). 

 
Statistical analyses 

 

R (version 4.2.2), GraphPad Prism8, and SPSS25  

were utilized in this study. Independent t-tests were 

performed to assess the differences between groups. 

Wilcoxon test was used to analyze the immune therapy 

response between groups. The significance level was 

defined as P < 0.05. 

 
Data availability statement 

 

Publicly available datasets were used in  

this study. These data can be found here:  

TCGA database (http://portal.gdc.cancer.gov/repository),  

ICGC database (https://dcc.icgc.org/), GEO database  

(GSE14520) (http://www.ncbi.nlm.nih.gov/geo/), Gene 

Cards (https://www.genecards.org/), IMvigor210 cohort  

(http://research-pub.gene.com/IMvigor210CoreBiologies/), 

CIBERSORT (https://cibersortx.stanford.edu/about.php), 

TCIA database (https://tcia.at/), GDSC database 

(https://www.cancerrxgene.org/), TIDE database 

(http://tide.dfci.harvard.edu). The data that support  

the findings of this study are available from the 

corresponding author upon reasonable request. 

 

RESULTS 
 

Identification and clinical significance of classification 

related to anoikis in HCC 

 

The expression of anoikis was extracted from 338 

downloaded samples of HCC patients integrated with 

TCGA, GSE14520 and ICGC. A total of 283 homing 

gene expression files were obtained from 828 samples. 

Cluster analysis was performed to classify the samples 

into two distinct subtypes, including 376 clusterA and 

452 clusterB (Figure 1A–1C). Subsequently, according 

to the dimension reduction analysis of typing, the 

anoikis-related genes could well distinguish the two 

cluster (Figure 1D). The results of tSNE and UMAP 

also confirmed that there were some differences in  

the distribution of the two cluster types (Figure 1E,  

1F). Furthermore, patients classified as clusterB showed 

a poorer prognosis compared to those classified as 

clusterA (Figure 1G). ClusterA was much more anoikis-

resistant than it was in clusterB. 

 

TME features and immune infiltration between the 

anoikis subgroups 

 

To explore the immune infiltration and TME distinction 

in the anoikis subtype population, we calculated the 

corresponding feature scores. In terms of scoring,  

the immune, stromal, and ESTIMATED scores were  

lower in subgroupB than in subgroupA (Figure 2A). 

SubgroupB also contained less immune cells than 

subgroupA (Figure 2B). Quantitative analysis of 29 

immune cells showed high levels of APC costimulatory 

cells, CD8+ T cells, HLA, iDCs, macrophages, pDCs,  

T cells co-stimulation, Th cells, and Treg cells in the 

subgroupA population (Figure 2C). The expression of 

the HLA family in subgroupA also showed consistency 

(Figure 2D). We noted that both costimulatory and 

corepressed cells were highly enriched in the anoikis 

resistant subpopulation. Similarly, the corepressor was 

more enriched in subgroupA (Figure 2E). This suggests 

a combined role of immunosuppression and stimulation 

in the anoikis resistance subgroup. GSVA analysis found 

that subgroupA was associated with the phagocytosis 

pathway, while subgroupB was involved in multiple 

amino acid metabolism and biosynthesis (Figure 2F). 

http://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://cibersortx.stanford.edu/about.php
https://tcia.at/
https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
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Construction and verification of aniokis prognostic 

model 

 

To identify differential genes associated with anoikis,  

we identified differential genes between the two geno-

types. 6830 differentially expressed genes (EDGs) were 

identified. Then, these DEGs are classified as distinct 

modules passing through WGCNA (Figure 3A, 3B). The 

anoikis score was calculated using the ssGSEA. Among 

all the modules examined, the grey module showed a 

strong correlation with the anoikis score (R2 = 0.77, P = 

33e−163) (Figure 3C, 3D). We developed a risk model 

based on anoikis clustering to predict prognosis. Firstly, 

192 genes were obtained by univariate Cox analysis  

of 491 genes (Supplementary Table 1). After univariate 

analysis, the genes were analyzed by Lasso-Cox, and 12 

gene expression characteristics based on aniokis were 

selected (Figure 3E, 3F). The 12 genes information were 

shown in Table 1. The survival curve demonstrated that 

the high-risk group exhibited a poorer overall survival 

(OS) (Figure 3G). The same results are also shown in the 

train group and the test group (Figure 3H). The elevated 

score corresponds to an increased proportion of high-risk 

patients and an increased risk of death (Figure 3I). The 

correlation was found between the risk survival status 

analysis and increased mortality, and the OS was 

relatively short (Figure 3J). The anoikis model showed a 

potential prognostic value. 

 

Functional analysis and anoikis model independent 

predictive value analysis 

 

To further analyze the gene functions of prognostic 

DEGs, we conducted enrichment analysis. GO analysis 

revealed that risk genes were primarily enriched in 

biological processes (BP) related to nutrient responses.  

It is enriched in kinesin complex and other pathways in 

the process of cell (Cellular Component, CC). In the 

process of molecular function (MF), it is mainly enriched 

in the pathway activated by receptors (Figure 4A–4C). 

KEGG indicated that ARGs were prominently enriched 

in signaling pathways such as “MAPK signaling 

pathway,” “transcriptional dysregulation in cancer,” 

“chemical carcinogenesis-receptor activation,” “focal  

adhesion,” “chemical carcinogenesis-DNA adducts,” 

“PPAR signaling,” and others (Figure 4D). High-risk 

subtypes showed significant enrichment in pathways 

such as “cell cycle”, “DNA replication”, “ECM receptor 

interaction” and “glycosaminoglycan biosynthesis” 

(Supplementary Figure 1A). The main enrichment 

 

 

 
 

 
Figure 1. Cluster analysis of anoikis in HCC cohort. (A) The HCC data sets in the three queues are divided into two different clusters. 

(B) Consensus clustering cumulative distribution function (CDF) for k = 2~9. (C) The relative change of the area under the CDF curve from 
k = 2 to 9. (D–F) PCA, tSNE and UAMP diagrams show that the cluster can distinguish patients according to the expression profile of HCC 
dataset. (G) Kaplan-Meier curve survival analysis among different clusters. 
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pathways in low-risk subtypes were “replenishment and 

condensation cascade”, “drug metabolism cytochrome 

P450”, “cytochrome P45”, “retinol metabolism” and 

“steroid hormone biosynthesis” (Supplementary Figure 

1B). 

 

Moreover, the accuracy of the anoikis model was also 

validated. In the complete dataset of HCC, the AUC 

values for 1-, 3- and 5-year OS were 0.735, 0.716, and 

0.676 (Figure 4E). In the training group, the AUC 

values for 1-, 3- and 5-year OS were consistent with the 

complete dataset, measuring at 0.749, 0.783, and 0.752 

(Figure 4F). Similarly, the test set exhibited consistent 

results, with AUC values of 0.727, 0.650, and 0.624 for 

1-year, 3-year, and 5-year OS (Figure 4G). The anoikis 

model we constructed has shown differences in survival, 

 

 
 

Figure 2. Immune-infiltration landscape in the two anoikis subtypes. (A) The TME score in the A anoikis subtype. (B, C) The native 

distribution of 29 common immune cells in the anoikis subpopulation. (D) Expression content of the DMHC family genes in each subset. (E) 
Analysis of the abundance of immunosuppressive molecules in subsets. (F) GSVA analysis of the pathways enriched in the subclusters. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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and further independent prognostic analysis was carried 

out. Stage and risk score have been identified as 

prognostic factors in this study (Figure 4H, 4I). When 

comparing the risk differences between the two anoikis 

types, we observed a significantly lower risk in clusterB 

compared to clusterA (Figure 4J). The predictive value 

 

 
 

Figure 3. Construction of the model based on the anoikis classification. (A, B) Co-expression network established by TCGA-LIHC 
database, GSE14520 data set and ICGC data. (C) Heatmap of the correlation between eigenes and anoikis scores for grey modules. (D) Grey 
module has the strongest correlation with anoikis (Cor = 0.75, P = 8e−90). (E) The 12 gene expression characteristics based on the type of 
anoikis were selected using the LASSO-Cox model. (F, G) Optimize the cross validation of parameter selection in LASSO model. (H) Kaplan-
Meier curve survival analysis of HCC patients in all samples, train group and test group. (I) Risk curves of all samples, train groups and test 
groups. (J) Risk status diagram of all samples, train group and test group. 
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Table 1. 12 Gene information of anoikis risk models. 

Id Coef HR HR.95L HR.95H p-value 

COPZ2 −0.191526 0.8256981 0.6751926 1.0097525 0.0621203 

ACTG2 0.1675359 1.1823877 1.0020956 1.3951171 0.0471708 

IFI27 −0.1111601 0.8947955 0.8124654 0.9854684 0.0239951 

SPP1 0.0703641 1.0728987 1.0036794 1.1468918 0.0386497 

EPO 0.2079613 1.2311655 1.0860713 1.3956437 0.001152 

SLCO4C1 0.1896167 1.2087862 1.0208163 1.4313683 0.0278864 

RAB26 −0.1921739 0.8251634 0.6858819 0.9927285 0.0416165 

STC2 0.1185894 1.1259075 0.9631719 1.3161385 0.1365227 

RAC3 0.3244314 1.3832439 1.1685828 1.6373369 0.0001629 

NQO1 0.0523483 1.0537427 0.9825589 1.1300835 0.1423996 

MYCN 0.2460688 1.2789875 1.0631165 1.5386922 0.0090842 

HSPA1B 0.1497878 1.1615877 1.01944 1.3235561 0.0245091 

 

of the risk score and stage was also reflected  

in the ROC curve (Figure 4K). The Sankey chart 

illustrates that the majority of patients in the survival 

status belong to the low-risk group, while they consisted 

mainly of clusterB patients (Figure 4L). The majority  

of deceased patients exhibited higher risk scores and 

were associated with clusterA. 

 

The immune landscape of the anoikis risk groups 

 

To better understand the potential mechanism of action 

of the anoikis, we investigated the correlation between 

anoikis and immune cell infiltration. The immune cell 

thermogram showed that the immune infiltration was 

more significant in the high-risk group (Figure 5A, 5B). 

We examined the correlation of signature genes and  

risk scores with immune cells, and most of the results 

were significant (Figure 5C–5I). The infiltration of 

CD8T cells, activated NK cells and resting mast cells 

was higher in the low risk group (Figure 5J). Immune 

checkpoint is an important target for immunotherapy. 

The analysis revealed a positive correlation between 

ATIC, CTLA4, LAG3, CD80, CD86, and the risk score 

(Figure 5K). These results suggest that the anoikis risk 

model is closely related to immune infiltration and may 

affect the responsiveness of immunotherapy. 

 

Analysis of the immunotherapy responsiveness 

 

Immune checkpoints are universally selected targets  

for the development of immunotherapeutic agents, and 

understanding the expression of their related genes 

helps in predicting the efficacy of immunotherapy. 

ATIC, CD47, CD80, CD86, and CTLA 4 were more 

abundant in the high-risk group (Figure 6A–6E). Patients 

in the higher-risk group achieved a lower IPS score 

(Figure 6F–6I). In the independent immunotherapy 

outcome IMvigor210 cohort, the proportion of patients 

achieving CR/PR was relatively high in the high-risk 

group (Figure 6J). The TIDE score reflects the clinical 

response power of immunotherapy, and obtains higher 

TIDE and Dysfunction score and lower Exclusion  

score, which may indicate a poor treatment effect. The 

presence of relatively low TIDE and Dysfunction scores 

was observed in the high-risk group, compared with 

higher Exclusion scores (Figure 6K–6M). Patients in the 

high-risk group can get a better treatment effect. 

 

Analysis of TMB, TME and drug sensitivity in risk 

groups 

 

We analyze the relationship between the anoikis risk 

model and TMB. TP53, CTNNB1, TTN, MUC16, PCLO 

were identified as being more frequently observed in the 

high-risk group (Figure 7A). The main type of mutation 

is missense mutation. The same pattern occurred in the 

low-risk group (Figure 7B). High-risk stromal scores 

and ESTIMATE scores were low, while the immune 

scores remained relatively stable between the two 

groups (Figure 7C). Low ESTIMATE score may be 

related to prognosis and therapeutic effect. Afuresertib, 

KRAS(G12C) Inhibitor-12, Doramapimod, Mitoxantrone, 

and Oxaliplatin showed higher sensitivity in high- 

risk patients (Figure 7D). However, patients in the high-

risk exhibited lower sensitivity to Alpelisib, Cediranib, 

Dasatinib, Docetaxel, and Paclitaxel (Figure 7E). Thus, 

low-risk patients will benefit from these drugs. 

 

Construct a nomogram to predict HCC survival and 

identify biological markers 

 

To provide a more intuitive prediction of patient 

prognosis and survival time, a nomogram was 

developed (Figure 8A). The high-risk group exhibited a 

significantly higher cumulative hazard (Figure 8B). The 

predicted results from the nomogram exhibit a strong 
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similarity to the actual probabilities (Figure 8C). DCA 

demonstrates that the nomogram and risk value provide 

greater net benefits (Figure 8D). The ROC curve of 

Nomogram suggested a higher reliability (Figure 8E). 

 

 

 
Figure 4. Enrichment analysis and prognostic model construction based on anoikis DEGs. (A–C) GO pathways enriched between 

the high-risk and low-risk groups. (D) KEGG pathways enriched between high-risk and low-risk groups. (E–G) ROC curves of all samples, 
train group and test group. (H, I) Univariate and multivariate Cox regression analysis showed that the risk score based on anoikis correlation 
cluster was an independent prognostic factor affecting the prognosis of HCC patients. (J) There are significant differences between cluster A 
and cluster B in risk score. (K) The ROC prediction curve of the anoikis model. (L) Sankey diagram reveals the potential relationship between 
clustering, risk score and survival status. 
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All of these indications suggest that the risk  

model and nomogram have high value in terms of 

prognosis. Among all the 12 signature genes, EPO  

and SLCO4C1 were lower expressed in the HCC data 

for TCGA (Figure 8F). EPO has been well studied  

and the biology of SLCO4C1 in HCC has not been 

elucidated. We selected SLCO4C1 for subsequent 

studies. 

 

 
 

Figure 5. Immune infiltration profile in the risk groups. (A, B) 7 algorithms evaluated the immune cell infiltration between the HCC 

risk groups. CIBERSORT (C), TIMER (D), QUANTISEQ (E), EPIC (F), MCP-counter (G), CIBERSORT-ABS (H), XCELL (I) to calculate the correlation 
of signature genes and risk scores with each immune cell. (J) The abundance of immune cells between the high and low risk groups. (K) 
Heatmap of correlation between Immune checkpoint genes and risk score. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Downregulation of SLCO4C1 expression in HCC 

 

The expression of SLCO4C1 in HCC and normal 

tissues was assessed using RT-qPCR and Western 

Blotting. Low mRNA levels of SLCO4C1 in HCC 

tissues (Figure 9A). The SLCO4C1 protein expression 

was also downregulated in HCC tissues (Figure 9B). 

SLCO4C1 expression levels were found to be higher in 

HepG2 and MHCC-LM3 among the six different HCC 

cell lines (Figure 9C, 9D). HepG2 and MHCC-LM3 cell 

lines were selected to transfect SLCO4C1 knockdown 

specific shRNA for further study. The figure shows that 

sh1 and sh2 have better inhibitory effect on SLCO4C1 

protein expression than NC group in two selected HCC 

cell lines. The inhibitory effects of sh1 and sh2 on 

SLCO4C1mRNA level and protein expression level 

were significant in these two cell lines (Figure 9E, 9F). 

Downregulation of SLCO4C1 promoted the 

proliferation and invasion and migration of HCC cells 

 

CCK-8 assays showed significantly higher cell viability 

in the SLCO4C1-sh1 and SLCO4C1-sh2 than in the 

normal group (Figure 10A). The invasion assay showed 

that HCC cells with knockdown SLCO4C1 exhibited 

enhanced invasion (Figure 10C). The SLCO4C1 knock-

down group had a faster scratch healing rate and a 

stronger migration ability (Figure 10B, 10D). More 

colony formation was observed in the SLCO4C1-sh1 

and SLCO4C1-sh2 groups, and the knockdown of 

SLCO4C1 increased the proliferative viability of 

HepG2 and MHCC-LM3 cells (Figure 10E). Reducing 

SLCO4C1 expression promoted the proliferative viability, 

invasion, and migration ability of HepG2 and MHCC-

LM3 cells. 

 

 

 
Figure 6. Immunotherapy response in different risk groups. (A–E) Expression of the 5 immune checkpoint genes in the risk groups. 

(F–I) IPS in the four immunotherapy groups in the risk groups. (J) Statistics of the treatment degree of patients in IMvigor210 cohort. (K–M) 
TIDE scores were calculated for immunotherapy responsiveness in the risk groups. 
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Downregulation of SLCO4C1 inhibited the 

apoptosis in HCC cells and affected the progression 

of EMT 

 

The rate of apoptosis detected in the SLCO4C1 knock-

down group was reduced, indicating that SLCO4C1 

knockdown inhibited the apoptosis of HCC cells 

(Figure 11A). In the SLCO4C1 knockdown group, 

decreased expression of the apoptosis-related protein 

caspase-3/9 was detected (Figure 11B). The metastatic 

progression of the tumor is tightly associated with 

EMT. We further found that E-cadherin and N-

cadherin expression were significantly reduced, while 

vimentin expression was significantly upregulated in 

the SLCO4C1 knockdown group (Figure 11C). This 

suggests that reduced expression of SLCO4C1 can 

promote EMT progression in HCC cells. 

 

DISCUSSION 
 

Due to their mild symptoms and rapid progression, the 

prognosis of HCC patients is generally poor [26, 27]. 

Mortality rate in HCC has largely not improved in the 

past decade [28]. The prognostic effect of traditional 

treatments is not satisfactory. In recent years, the research 

on HCC has been continuously deepened, including 

many new advances in etiology, prevention, diagnosis 

and treatment. The occurrence of HCC was associated 

with abnormal hepatocyte metabolism, which affects 

the behavior of HCC cells [29]. The investigators are 

continuing to explore the precise treatment of HCC. 

These therapeutic approaches could target specific 

molecules or signaling pathways in HCC cells to 

achieve control and treatment of HCC. Targeting certain 

immune checkpoints has improved the prognosis in 

advanced HCC [30]. However, there is a pressing  

need for predictive biomarkers to guide treatment 

selection. Studies based on the biological characteristics 

of molecular markers will provide more treatment 

options for HCC patients and improve the treatment 

efficacy and quality of life. 

 
To further elucidate the pathogenesis and therapeutic 

targets of HCC, targeted therapy and immunotherapy 
 

 

Figure 7. TMB and drug sensitivity between different risk characteristic groups. (A, B) The diagram shows gene mutations in high 

and low risk groups. (C) Analysis of tumor microenvironment components between risk characteristic groups. (D, E) Sensitivity analysis of 
chemotherapeutic drugs between different risk groups. NS p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
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have become novel options for HCC patients. The 

combination of targeting and immunity has achieved 

good results. This method can effectively fight the 

tumor, and has the advantages of less clinical side 

effects, low clinical recurrence rate and high degree  

of tumor remission [31, 32]. Recent research on the 

anoikis has also made good progress. Anoikis recovery 

was seen as an effective direction for antitumor therapy 

[33, 34]. A study in lung cancer showed that GDH1 

promoted anoikis resistance and metastatic of tumors 

through CamKK2 activation [35]. CPT1A promoted 

metastasis in colorectal cancer cells by inhibiting 

anoikis. The PRMT5/MTHFD1 axis promotes tumor 

resistance and accelerates its metastasis in oesophageal 

squamous cell carcinoma [36]. These studies suggest 

that anoikis resistance was a key factor in cancer 

initiation and metastasis in tumors. 

 

Thus, our study combines the analysis between HCC 

samples from 3 different databases and anoikis genes. 

We used clustering to classify all samples into two 

types (A and B), according to the anoikis gene. We 

found that the prognosis of subtypeB was obvious due 

to subtype A, and patients with subtype B had a greater 

survival advantage. To find DEGs between the two 

subtypes, we identified the gene modules most closely 

connected to anoikis using WGCNA and identified  

491 genes. To explore the functional role of DEGs in 

different HCC subtypes, we developed a quantitative 

anoikis risk model. We found that the high-risk sub-

types had a shorter OS. 

 

Immunotherapy is a promising direction among the 

numerous treatments for HCC. CD8T cells and 

activated NK cells are considered to be the roles in 

immune cells involved in clear tumor cells [37]. CTLA4 

is a common immune checkpoint, which is a protein 

receptor of T cells, and T cells are a type of leukocytes 

in the immune system. It functions as an immune 

checkpoint inhibitor by regulating the activation of  

T cells [38]. When activated, T cells were able to 

recognize and attack foreign substances, such as viruses 

or cancer cells. This makes CTLA4 an immunotherapy 

target for various autoimmune diseases and cancers,  

and blocking the CTLA4 pathway contributes to enhan- 

cing the immune response and attacking cancer cells. 

Ipilimumab as a CTLA4 blocker, it has been applied  

to the treatment of advanced melanoma [39, 40]. HCC 

 

 

 
Figure 8. Establishment and evaluation of survival prediction nomogram. (A) The 1-, 3- and 5-year survival rates were predicted 

by combining the risk score and other clinicopathological parameters. (B) The calibration curve shows the 1-, 3- and 5-year overall survival 
rate prediction of the nomogram we established. (C) The accumulated risk shows differences in the construction of the nomogram. (D) 
Decision curve analysis of 5-year overall survival rate. (E) The ROC curve of the nomogram. (F) Expression levels of the 12 signature genes in 
the TCGA data. NS p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
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responds differently to different drugs, which makes it 

difficult to assess the benefits of the drugs. The anoikis 

model we established could also help guide HCC patients 

in choosing appropriate therapeutic agents. 

The 12 risk genes in the anoikis model play their 

respective roles in tumors. FI27 acts as an immune 

response in the immune system. ATF3 regulates the 

biological behavior of human squamous cell carcinoma 

 

 
 

Figure 9. Expression of SLCO4C1 in HCC tissues and cell lines. (A) 30 SLCO4C1 mRNA expression levels in paired HCC tissues versus 

normal tissues. (B) 9 protein expression levels of SLCO4C1 in paired HCC tissues versus normal tissues. (C, D) The protein expression levels 
of SLCO4C1 in 6 common HCC cell lines. (E) The mRNA expression levels of SLCO4C1 in the HepG2 and MHCC-LM3 cell lines. (F) Protein 
expression levels of SLCO4C1 in HepG2 and MHCC-LM3 cells transfected with shRNA. *P < 0.05, **P < 0.01, ***P < 0.001. 



www.aging-us.com 1455 AGING 

through the downregulation of IFI27 [41]. IFI27 mRNA 

Promote angiogenesis in ESCC through exosomal miR-

21-5p/CXCL10 [42]. NQO1 promoted the aggressive 

phenotype of in HCC through amplification of ERK-

NRF 2 signaling [43]. RAB 26 played an inhibitory  

role in breast cancer, but it promoted cancer pro-

gression in lung cancer. Similarly, SLCO4C1 acting  

as an oncogene in endometrial cancer but as cancer 

 

 
 

Figure 10. Effect of sh-SLCO4C1 on proliferation, invasion, and migration of HCC cells. (A) Comparison of the cell proliferation 

capacity of HepG2 and MHCC-LM3 after SLCO4C1 knockdown. (B) Comparison of the invasive capacity of HepG2 and MHCC-LM3 after 
SLCO4C1 knockdown. (C) Comparison of the migration ability of HepG2 and MHCC-LM3 after SLCO4C1 knockdown. (D) Scratch healing 
assay comparing HepG2 and MHCC-LM3 after SLCO4C1 knockdown. (E) The proliferation changes of HepG2 and MHCC-LM3 cells after 
SLCO4C1 knockdown were observed in the colony formation assay. *P < 0.05, **P < 0.01, ***P < 0.001. 
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suppression in head and neck cancer [18]. Our study 

identified a low expression of SLCO4C1 in HCC and 

could inhibit HCC. 

Reducing SLCO4C1 expression significantly increased 

the proliferation viability, invasiveness and migratory 

ability of HCC cells. Meanwhile, the low expression of 

 

 
 

Figure 11. Effect of SLCO4C1 knockdown on apoptosis in HCC cells. (A) Flow cytometry analysis of apoptosis in HepG2 and MHCC-

LM3 cells after SLCO4C1 knockdown. (B) Western blotting for the expression of apoptosis-related protein cleavage caspase-3/9 in SLCO4C1 
knockdown HepG2 and MHCC-LM3 cells. (C) Expression of EMT markers in SLCO4C1 knockdown HepG2 and MHCC-LM3 cells by Western 
blotting. *P < 0.05, **P < 0.01, ***P < 0.001. 
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SLCO4C1 can also reduce the apoptosis in HCC cells. 

It can be determined that SLCO4C1 promotes the 

malignant phenotype of HCC cells. However, the low 

expression of SLCO4C1 inhibited the biological beha-

vior of endometrial cancer cells and could promote  

the apoptosis of their tumor cells [18]. Our study 

elucidates the heterogeneity of SLCO4C1 in HCC 

tumor progression. 
 

Members of the solute carrier family are associated  

with a variety of neoplastic diseases. Upreregulation  

of SLC7A11 suppresses ferroptosis through cystine and 

promotes the growth of tumor cells [44]. Cells over-

expressing SLC7A11 under glucose starvation conditions 

induced disulfide disassembly between intracellular 

actin cytoskeletal proteins, causing the outcome of cell 

death [45]. SLC25A5 mediated the MAPK signaling 

pathway to inhibit the malignant behavior in colon 

cancer cells [46]. SOCS2 promoted the progression of 

ferroptosis in HCC cells by accelerating SLC7A11 

degradation [47]. Previous studies have shown a role of 

SLCO4C1 in reducing renal inflammation and lowering 

blood pressure. The biological role of SLCO4C1 in 

HCC was first reported in this study, and the decreased 

expression of SLCO4C1 promoted the malignant action 

phenotype of HCC cells. The EMT process is generally 

recognized as an important event in the spread of cancer 

cells. Experiments confirmed that decreased SLCO4C1 

expression resulted in decreased e-cadherin and n-

cadherin expression and increased vimentin expression. 
 

Our study classified HCC patients into different  

anoikis subtypes and identified key prognostic genes 

according to the DEGs between subtypes. An anoikis 

risk prognostic model and nomogram were constructed 

to predict OS. The feature model of anoikis has special 

accuracy and utility in predicting OS, assessing immune 

infiltration and drug sensitivity analysis. Our experiments 

provided the first evidence that SLCO4C1 suppresses 

HCC progression and demonstrated a mechanism of 

action. Meanwhile, the progression of apoptosis and 

EMT in HCC cells were also affected by the expression 

of SLCO4C1. In conclusion, this study provides a 

powerful predictive means for improving survival and 

provides new individualized management and new 

biological targets for the treatment of HCC. 
 

CONCLUSIONS 
 

In conclusion, we developed a HCC classification 

approach for anoikis features and constructed new 

prognostic models. The new classification shows good 

potential in clinical prognosis and immunological 

features. Moreover, we successfully identified and 

validated the tumor-suppressive role of SLCO4C1 in 

HCC, which holds great potential for improving the 

diagnosis and treatment of HCC patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. (A, B) Enrichment map for gene collection enrichment analysis of high-risk and low-risk groups. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Gene files resulting from the univariate Cox analysis. 

 

 


