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INTRODUCTION 
 

Pancreatic cancer is a prevalent type of cancer,  

ranking seventh in global cancer mortality [1–3]. 

Incidence of pancreatic cancer is expected to rise  

with population growth, accelerated ageing and the 

spread of Westernized lifestyles. Pancreatic cancer  

has a poor prognosis, mainly due to delayed diagnosis 
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ABSTRACT 
 

Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete 
understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic 
methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this 
disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression 
network analysis (WGCNA) method was employed to identify key genes associated with the progression and 
prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis 
(GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic 
adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we 
analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and 
Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the 
potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the 
progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, 
S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered 
based on their therapeutic potential through comparing them with the reference dataset in the CMAP 
database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by 
comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the 
potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and 
metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study 
provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered 
potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to 
promote apoptosis in pancreatic cancer cells. 
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and missed surgery as well as a lack of specific 

biomarkers and targeted drugs [4, 5]. Identifying novel 

prognostic biomarkers and formulating improved 

therapeutic approaches is therefore essential.  
 

Natural products play an important role in developing 

anti-cancer drugs, primarily because they’re readily 

available and possess potent bioactivity, but the high 

cost and long lead time restrict the development of new 

drugs [6–8]. With the development of gene chips and 

sequencing technology, we now have the potential to 

use bioinformatics and big data integration to identify 

key genes related to tumor progression and prognosis [9]. 

WGCNA is a systems biology method for characterizing 

gene association patterns in diverse samples, which  

are essential for understanding underlying biological 

mechanisms. It aims to identify highly synergistic gene 

sets and determine potential biomarker genes or 

therapeutic targets by considering their inter-

connectedness and association with the phenotype [10, 

11]. Similarly, researchers have developed a gene 

expression database called the Connectivity Map 

(CMAP). which is based on the L1000 sequencing 

method that identifies highly co-altered genes and 

contains gene expression profiling data for many 

different drug treatments [12, 13]. Screening key tumor 

genes using WGCNA and then combining them with 

CMAP to identify effective drugs for treating tumors is 

an efficient approach to discover disease biomarkers 

and potential drugs with lower costs [14].  
 

This study utilized WGCNA to filter key  

genes significantly associated with pancreatic cancer 

development and progression. The CMAP database 

was used in identifying relevant small molecule target 

drugs and selecting natural small molecule Taxifolin 

for further study. The experimental results provide 

evidence supporting Taxifolin’s potential to hinder 

pancreatic cancer growth. 
 

RESULTS 
 

Screening differential genes in gene expression 

profile data 
 

In Figure 1A, the box plots showed that the  

correction was good and there were no outliers  

among the samples, the PCA plots in Figure 1B showed  

that the differential genes were expressed significantly  

differently in tumor samples and normal samples, and the  

volcano plots showed the differentially expressed genes  

in the GSE71989 dataset (Figure 1C). After eliminating 

duplicated genes, a total of 3292 up-regulated genes and 

748 down-regulated genes were found. The top five up-

regulated genes were INHBA, S100P, CTHRC1, SULF1 

and COL8A1, and the top five down-regulated genes 

were ALB, SYCN, GCG, CTRL and PNLIRP1. 

Analysis of gene ontology (GO) enrichment and the 

KEGG signaling pathway was conducted for the 

differentially expressed genes 

 
We performed pathway and Gene Ontology (GO) 

enrichment analysis utilizing the first 100 differential 

gene set previously obtained. The KEGG pathway 

analysis results showed that protein digestion and 

absorption, pancreatic fluid secretion, fat digestion 

and absorption, AGE-RAGE signaling pathway in 

diabetic complications, and mature diabetes mellitus 

were significantly enriched (Figure 2A). The GO 

enrichment analysis displayed significant enrichment 

in biological processes like extracellular matrix 

organization, extracellular structural organization, 

collagen fiber organization, and cell adhesion. 

Additionally, the cellular components that were 

enriched included extracellular space, extracellular 

region, extracellular regional part, and molecular 

functions like the structural components of the 

extracellular matrix. The top 20 enrichment results 

were selected based on the P-value and displayed in 

circle diagrams (Figure 2B).  

 
Weighted co-expression network construction and 

key module identification 

 
The pancreatic cancer dataset from TCGA was 

downloaded from the UCSC database to create the input 

dataset used in WGCNA. The clustering dendrogram  

in the sample (Figure 3A) indicates an absence of 

significant differences in WGCNA between the samples. 

On the basis of the scale-free topological model and  

the average connection for the WGCNA analysis, the 

optimal soft threshold was set to 9 (Figure 3B). The 

minimum size of the gene dendrogram was fixed at 30 

in order to group genes with near-identical expression 

profiles into gene modules using the TOM-based 

dissimilarity metric and average linkage Hierarchical 

Clustering. The sensitivity was fixed to three, in 

addition, 7 co-expression modules were obtained by 

merging modules with a distance of smaller than  

0.5. Noticeably, the gray modules were considered as  

a collection of genes that could not be assigned to  

any other module, and genes in gray modules were 

removed from subsequent analyses (Figure 3C). The 

interactions of the seven modules were analyzed  

using a network heat map. The results indicate a high 

degree of independence among modules, as evidenced 

by the fact that they were found to be independent of 

one another (Figure 3D). Moreover, the Navajowhite 

module’s ME exhibited a significant correlation with 

the grading and staging of pancreatic cancer as 
compared to other modules (Figure 3E, 3F). Thus,  

we chose to examine 64 genes in the Navajowhite 

module more closely.  
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Functional annotation and KEGG pathway 

enrichment of the Navajowhite module 

 

We performed GO analysis and KEGG pathway 

enrichment on the above Navajowhite modules to 

investigate potential biological processes associated 

with pancreatic cancer. Figure 4A shows the KEGG 

pathway enrichment results, revealing significant 

pathways that include the estrogen signaling pathway, 

Staphylococcus aureus infection, the Wnt signaling 

pathway, Alzheimer’s disease and basal cell carcinoma. 

GO analysis of biological processes revealed  

that Navajowhite module genes are predominantly 

associated with epidermis development, keratinization, 

skin formation, and epithelium development (Figure 

4B). 

 

Detection and validation of key genes for pancreatic 

cancer 

 

We screened 11 key genes based on the principle  

of significant expression differences in GSE71989 

 

 

 

Figure 1. Differentially expressed genes identified in the GSE71989 dataset. (A) Box plot showing the correction across samples,  

(B) PCA plot showing the differences across samples after downscaling the high latitude data, and (C) volcano plot showing the genes that 
showed differential expression in GSE71989. Up-regulated genes are indicated by red nodes and down-regulated genes are indicated by 
green nodes. 
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Figure 2. Circle plots of KEGG pathway analysis (A) and GO enrichment analysis (B) for differentially expressed genes in the GSE71989 

dataset. 
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(|log2FC|>1) and co-occurrence in the Navajowhite 

module, which were DKK1, S100A2, PMEPA1, CDA, 

KRT6A, CST6, MUC16, ITGA3, GPR87, IL20RB,  

and ZBED2. As illustrated in Figure 5A–5K, the levels 

of expression for 11 genes in PAAD tumor tissue  

were significantly higher in comparison to neighboring 

normal tissue. Based on the gene expression data  

from the TCGA database, diagnostic ROC curves and 

 

 
 

Figure 3. Construction of the WGCNA co-expression module. (A) Clustering dendrogram of the module feature genes. (B) Scale-free 

fit index analysis. (C) Clustering dendrogram of differentially expressed genes. (D) Network heatmap of modules. (E) Heat map demonstrating 
the correlation between the genes associated with module features and the staging and grading of pathology. (F) Scatterplot of module 
signature genes in the Navajowhite module. 
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Figure 4. (A) Bubble plot of KEGG enrichment analysis of module feature genes in Navajowhite module. (B) Category histogram of the GO 

enrichment analysis of feature genes within the Navajowhite module. 
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survival graphs were generated to assess the diagnostic 

usefulness of these genes for pancreatic cancer and 

survival. Survival graphs were constructed using the 

TCGA database to compare the prognosis of the higher 

and lower groups. The study findings suggest that the 

survival of pancreatic cancer patients is associated with 

the expression levels of 11 key genes (P-value < 0.05). 

(Figure 6A–6K). The AUCs were shown in Figure 6L–

6O, which depicted the 11 key genes based on the ROC 

validation analysis on the validated TCGA dataset, 

namely, DKK1 (AUC=70. 9%), S100A2 (AUC=81. 

8%), PMEPA1 (AUC=55%), CDA (AUC=71. 5%),  

 

 
 

Figure 5. Validation of expression levels of individual core genes in normal pancreas and PAAD tissues from the GEPIA 
database. (A–K) DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6 and MUC16 were significantly up-regulated in 

PAAD when compared to normal tissues (P < 0. 01). Red * indicates P < 0. 01. 



www.aging-us.com 2624 AGING 

KRT6A (AUC=75. 7%), CST6 (AUC=56. 1%), 

MUC16 (AUC=71. 2%), ITGA3 (AUC=80%), GPR87 

(AUC=76. 7%), IL20RB (AUC=79. 3%) and ZBED2 

(AUC=70. 3%).  

 

Related small molecule drug screening 

 

We screened the CMAP database for natural small 

molecule drugs to identify potential drug candidates for 

pancreatic cancer. Natural small molecule drugs with 

high relevance based on the screened genes. The top  

10 small molecule drugs were selected by norm_cs score 

(Table 1). Taxifolin, quercetin, and papaverine showed  

a high negative correlation among these small molecule 

drugs and had potential for treating pancreatic cancer. 

Some of these drugs have been shown to have anticancer 

effects. The top-ranked Taxifolin was selected as the 

target drug for further experimental validation.  

 

Inhibition of proliferation and clonogenicity of MIA 

PaCa-2 cells in pancreatic cancer by Taxifolin 

 

To confirm Taxifolin’s inhibitory effect on pancreatic 

cancer cells, MIA PaCa-2 cells were treated with 

 

 
 

Figure 6. Overall survival analysis of the 11 key genes in PAAD (A–K); Diagnostic ROC plots based on the 11 key genes from pancreatic cancer 

data in the TCGA database (L–O). 
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Table 1. Results of CMAP analysis. 

RANK Name Moa Norm_cs 

1 taxifolin Opioid receptor antagonist -1.9845 

2 quercetin Polar auxin transport inhibitor -1.8074 

3 papaverine Phosphodiesterase inhibitor -1.8072 

4 fraxidin Carbonic anhydrase inhibitor -1.7963 

5 caffeine Adenosine receptor antagonist -1.73 

6 fumagillin Methionine aminopeptidase inhibitor -1.7221 

7 arctigenin MEK inhibitor -1.7174 

8 bilobalide GABA receptor modulator -1.7004 

9 camptothecin Topoisomerase inhibitor -1.6964 

10 piceatannol Syk inhibitor -1.675 

 

Taxifolin at concentrations ranging from 0 to 160 μM. 

After 48 hours of incubation, a significant and dose-

dependent inhibition of cell proliferation was observed 

in the MIA-PaCa-2 cells. The calculated half inhibitory 

concentration (IC50) of Taxifolin in MIA PaCa-2 cells 

at 48 h was 49. 32μM (Figure 7A). We conducted a 

clonogenic assay to examine Taxifolin’s clonogenic 

potential on pancreatic cancer cells. Results indicate 

that Taxifolin greatly inhibited the clone-forming ability 

of MIA PaCa-2 cells, with a gradual decrease in clone-

forming ability as the drug concentration increased (see 

Figure 7B).  

 

 
 

Figure 7. (A) Rate of proliferation inhibition in MIA PaCa-2 pancreatic cancer cells following 48 hours of Taxifolin treatment. (B) The impact 
of Taxifolin on the clonogenic potential of MIA PaCa-2 pancreatic cancer cells. 
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Inhibition of migration and invasion of pancreatic 

cancer MIA PaCa-2 cells by Taxifolin 

 

The previous experiments confirmed Taxifolin’s  

impact on the proliferative ability of pancreatic cancer 

cells MIA PaCa-2 through CCK-8 assay. In order to 

further evaluate Taxifolin’s effect on the migratory  

and invasive ability of these cells, we conducted scratch 

and Transwell assays. The study results showed that 

Taxifolin significantly inhibited the migration and 

invasion ability of MIA PaCa-2 cells. As the drug 

concentration increased, the cells’ ability to migrate 

decreased gradually (Figure 8A). Furthermore, a lower 

concentration of Taxifolin (20μM) significantly restricted 

cell invasion ability (Figure 8B).  

 

Taxifolin induced apoptosis of MIA PaCa-2 

pancreatic cancer cells 

 

Through the action of various drugs, the growth of  

tumor cells can be effectively inhibited and apoptosis  

was induced, thereby fulfilling the goal of treating  

cancer and improving the survival rate of patients. After 

treating MIA PaCa-2 cells with different concentrations 

of Taxifolin, we determined the proportion of apoptotic 

cells by AO/EB assay, which indicated that Taxifolin 

treatment resulted in obvious apoptotic changes (Figure 

9A). Next, proteins related to apoptosis in pancreatic 

cancer cells after Taxifolin treatment were examined by 

Western blot. Statistical analysis of the gray-scale values 

of each band (Figure 9B) indicates that treatment with 

Taxifolin resulted in increased values of pro-apoptotic 

protein Bax and anti-apoptotic protein Bcl-2 in MIA-

PaCa-2 cells (p<0.05). Meanwhile, Taxifolin treatment 

significantly increased the expression levels of PARP, 

caspase-9 and caspase-3. Analysis of the results showed 

that treatment with Taxifolin triggered both exogenous 

and endogenous apoptotic pathways.  

 

Screening information for Taxifolin targets 

 

To better understand the potential apoptotic effects  

of Taxifolin on pancreatic cancer cells, we conducted  

a bioinformatics analysis. We retrieved the 2D and  

3D chemical structures of Taxifolin from PubChem,  

as shown in Figure 10A, 10B, respectively. After 

uploading the structures to the PharmMapper database, 

we obtained a list of potential target proteins. From the 

top 300 target proteins, we selected 79 by intersecting 

them with a list of 12,771 genes related to pancreatic 

cancer from GeneCards. The final identified molecular 

targets are presented in Figure 10C. 

 

 
 

Figure 8. Effect of Taxifolin on the immigration and invasion capacity of MIA PaCa-2 pancreatic cancer cells. (A) Scratch assay 

to examine the migration of MIA PaCa-2 cells affected by Taxifolin. (B) Transwell assay was conducted to evaluate the effect of Taxifolin on 
the invasion of MIA PaCa-2 cells. 
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Protein interaction PPI network construction 

 

To investigate the protein interaction network of 

Taxifolin’s potential target proteins, we utilized the 

STRING database platform to analyze the 79 proteins 

along with their annotated gene names. The results of 

the PP1 analysis (Figure 10D) showed that 52 of the 

nodes were interconnected, forming 95 edges, and 27 

nodes were isolated. This suggested that the target did 

not interact with other proteins.  

 

The PPI network arrangement revealed dense 

interactions among multiple targets within the core 

region. Calculation of the key topological parameters 

for the PPI network demonstrated that 52 nodes had an 

average degree value of 2. 5. Out of the 52 examined 

 

 
 

Figure 9. (A) MIA PaCa-2 cells were double-stained with AO/EB after Taxifolin treatment. (B) The expression of apoptosis-related proteins in 

MIA PaCa-2 cells after Taxifolin treatment. 
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nodes, the genes B2M, INS, VEGFA, SEC24C, and 

BCKDHA had the most significant degree scores. This 

discovery indicates that these nodes may function as  

the key targets affecting the pharmacological impacts  

of Taxifolin. These 52 genes were organized using 

Cytoscape 3.7.1 software, and after removing the outlier 

genes, 48 key genes remained (Figure 10E).  

Analysis of KEGG signaling pathway of key genes 

 

The 48 prime protein targets affected by Taxifolin  

were correlated with the list of KEGG-treated disorders 

and their associated primary signaling pathways. A 

comprehensive KEGG enrichment analysis evaluated a 

set of 37 genes involved in various signaling pathways, 

 

 
 

Figure 10. (A) Showed a 2D structural diagram of Taxifolin, (B) showed its 3D structural diagram. (C) Displayed the Interactive Wayne plots 

of the screening results obtained from the PharmMapper database and the GeneCards database. (D) Showed PPI interactions of the Taxifolin 
target genes. In (E) PPI plots of the Taxifolin target genes collated by the Cytoscape software were shown. (F) Displayed bubble plots of the 
KEGG pathway analyses of the key genes. 
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and found that they were associated with 136 diseases 

and signaling pathways.  

 

The analysis identified several enriched pathways and 

diseases for the key target genes, including Valine, 

leucine, and isoleucine degradation, Prostate cancer, 

HIF-1 signaling pathway, Propanoate metabolism, and 

Ovarian steroidogenesis. Figure 10F highlighted the 

enrichment of the HIF-1 signaling pathway, propanoate 

metabolism, and ovarian steroidogenesis. Among these 

pathways, the HIF-1 signaling pathway was strongly 

associated with tumors. It was predicted that Taxifolin 

can promote apoptosis of pancreatic cancer cells 

through HIF-1 signaling pathway.  

 

Predicted binding patterns of Taxifolin to important 

target proteins 

 

KEGG enrichment analysis identified crucial nodes  

in the signaling pathways associated with cancer 

development, including VEGFA, INS, IGF1R, and 

INSR. Furthermore, we retrieved the respective structure 

files of the identified targets from the PDB database. 

The MOE software was utilized to carry out forward 

molecular docking between Taxifolin and the target. 

The results were presented in Figure 11. Using MOE 

molecular docking software, we calculated the binding-

free energy of each target, and observed that four protein 

targets exhibited binding potential with Taxifolin.  

 

Among the four targets, the amino acid sites where 

Taxifolin mainly acted on IGF1R protein included 

Tyr173, Asn 172, Cys120 (Figure 11A). The amino acid 

sites where Taxifolin mainly acted on INS protein 

included Asp132, Thr134 (Figure 11B). The amino acid 

sites where Taxifolin mainly acted on INSR protein 

included Phe1044, Ser1006, Asp1150 (Figure 11C). 

The amino acid sites on VEGFA protein where 

Taxifolin mainly acted included His27, Cys26 (Figure 

11D). The MOE software was utilized to compute the 

binding free energy of every individual target binding 

site, and the results showed that all the four protein 

targets had binding potential with Taxifolin (Table 2).  
 

DISCUSSION 
 

Cancer is currently a significant global public  

health problem [15–17]. Patients with pancreatic  

cancer typically survive for about 10-12 months after 

treatment due to late diagnosis and a restricted pool  

of patients who qualify for surgical resection [18, 19]. 

The standard treatment for pancreatic cancer includes 

FOLFIRONOX (a blend of 5-fluorouracil, calcium 
folinic acid, irinotecan, and oxaliplatin) or gemcitabine 

with albumin-conjugated paclitaxel [20, 21]. Never-

theless, metastasis occurs early in the progression of 

pancreatic cancer and is prone to chemotherapeutic  

drug resistance, thereby posing a significant challenge 

to clinical treatment [22]. Hence, further exploration  

of novel prognostic biomarkers, therapeutic targets, and 

therapeutic agents is crucial to enhance the therapeutic 

approach for pancreatic cancer.  

 

WGCNA is a technique employed for characterizing 

gene associations across samples. It detects gene sets 

with high synergy, which can then be sorted into 

clusters based on comparable gene expression patterns. 

Subsequently, these clusters can be analyzed further to 

comprehend the connections among them and specific 

features, such as the patients’ clinical information. 

Additionally, WGCNA can screen potential biomarkers 

or therapeutic targets by analyzing interactions between 

gene sets and associations of gene-set with phenotypes 

[23–25]. Yongwen et al. [26] applied WGCNA to 

identify six modules related to clear cell renal cell 

cancer (ccRCC) pathology staging and grading, and 

identifies a total of nine key genes related to ccRCC 

patient progression and prognosis. Multivariate Cox 

regression analysis revealed that risk scores founded on 

the attributes of the nine pivotal genes were clinically 

autonomous prognosticators for ccRCC patients. Zohreh 

et al. [27] employed WGCNA to screen biomarkers  

for early detection of stomach cancer and found that 

ITGAX, CCL14, ADHFE1, HOXB13 were higher in 

stomach cancer tumor tissues than in normal neighboring 

tissues. Further approaches in systems biology have  

also confirmed the potential of such genes as gastric 

cancer marker genes. Hence, WGCNA is a trustworthy 

technique for detecting the disease’s key targets.  

 

In this study, we identified 11 significant genes linked 

to patient outcome and prognosis using WGCNA 

analysis. Their diagnostic efficiency in pancreatic 

cancer was verified, and their correlation with patient 

prognosis was evaluated using OS and diagnostic ROC 

analyses based on the GEPIA and TCGA databases. 

Some of the 11 genes were proven to be highly 

significant in pancreatic cancer. Integrin Subunit Alpha 

3 (ITGA3) gene has a close association with pancreatic 

cancer [28]. ITGA3 expression was observed to be 

higher in pancreatic cancer patients compared to non-

cancer patients and showed correlation with clinical 

traits such as histologic type, histologic grade, stage, T 

classification, and survival status. Higher expression of 

ITGA3 in pancreatic cancer patients, particularly in 

early-stage cancer patients, is associated with poorer 

overall survival and recurrence-free survival [29, 30]. 

Hence, ITGA3 has the potential to serve as a diagnostic 

marker and prognostic indicator for pancreatic cancer. 
DKK1 is another marker associated with a wide range 

of tumors, and the dysregulated expression of this gene 

has been linked to the development and progression  
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of several cancers, including breast cancer [31, 32].  

DKK1 is considered a promising biomarker for the 

early diagnosis and prediction of pancreatic cancer and 

can be used by WGCNA to screen for key pancreatic 

cancer targets. 

The Connectivity Map (CMAP) archives differences  

in gene expression of human cells after exposure  

to different perturbations and their corresponding 

biological applications. To create the database, the drug 

sequencers first record the gene expression profiles of 

 

 
 

Figure 11. Taxifolin-target protein binding patterns. (A) IGF1R; (B) INS; (C) INSR; (D) VEGFA. 



www.aging-us.com 2631 AGING 

Table 2. The results of Taxifolin-target protein docking. 

Target points PDB ID Combined free energy (Kcal/mol) 

VEGFA 4KZN -4.9668 

INS 5W2H -5.5051 

IGF1R 8EYR -5.0767 

INSR 5E1S -5.5836 

 

thousands of drugs after treating various cells [33]. 

Then we can upload our list of differentially expressed 

genes to compare it with the database reference dataset 

using CMAP and screen small molecule drugs that may 

show efficacy based on gene expression differences. A 

previous study used WGCNA to filter genes associated 

with endometriosis and macrophages, and the study 

obtained 23 small molecules from the CMAP database 

with potential therapeutic effects on endometriosis [34]. 

In another study, the DGIdb/CMAP database was utilized 

to anticipate appropriate drugs for Alzheimer’s disease 

and rosacea. After prediction, Melatonin (MLT) was 

chosen as the targeted drug [35]. Melatonin’s (MLT) 

therapeutic effects and mechanisms in rosacea were 

verified in vivo and in vitro, providing a solid theoretical 

basis for our study.  

 

Small molecule drugs derived from natural products 

offer unique advantages in the treatment of tumors  

[36]. One of the advantages of natural products are  

their diversity, which allows us to discover a range of 

compounds with anti-tumor activity, providing wider 

options for tumor treatment. Moreover, small molecule 

drugs from natural products have high efficiency  

and specificity, enabling selective targeting of tumor 

cells and a lower risk of damage to healthy cells. 

Furthermore, in comparison to large molecule drugs, 

small molecule drugs derived from natural products 

typically have less severe side effects and suit better  

for long-term use. However, certain small molecule 

drugs present in natural products have demonstrated 

resistance against multidrug-resistant tumor cells, thus 

showing potential in treating refractory tumors. Also, 

natural products are comparatively easy to be obtained, 

presenting a promising source of medication in tumor 

therapy. To summarize, the benefits of small molecule 

drugs extracted from natural products in tumor therapy 

have high efficiency, specificity, accessibility as well as 

less side effects and drug resistance, which allow them 

to be exploited as promising drug candidates in tumor 

therapy.  

 

The top-scoring natural small molecule drug Taxifolin 

was screened using the CMAP combined with norm- 

cs scoring. Taxifolin is a flavonoid found in various 

plants and exhibits a diverse range of biological actions. 

Taxifolin has been widely employed in various fields 

such as food, medicine, and industry. Taxifolin could 

boost the human immune system and contribute to 

disease prevention. Additionally, it has antioxidant, anti-

inflammatory, and anti-tumor effects [37]. Ronghua 

Wang et al. [38] found that Taxifolin could inhibit the 

stemness and EMT of lung cancer cells by inhibiting the 

inactivation of PI3K and OCT4, demonstrating its 

potential of a viable therapeutic agent for lung cancer. 

Chen Xin et al. [39] reported that Taxifolin, derived 

from yew, could inhibit the growth, migration, and 

invasion of human osteosarcoma cells. Nevertheless, the 

effectiveness and mechanism of Taxifolin in treating 

pancreatic cancer remain unclear.  

 

Through implementation of CCK8, clonogenic assays, 

and Transwell experiments, it has been successfully 

validated that Taxifolin is capable of suppressing the 

proliferation, migration, and invasion of pancreatic 

cancer cells. Several previous studies have found that 

Taxifolin enhances mesenchymal-epithelial transition 

via the β-catenin signaling pathway. At the same time, it 

inhibits the ability of breast cancer cells to multiply, 

invade, and migrate, which was in line with our findings 

[40]. Furthermore, various scholars have shown that 

Taxifolin can induce apoptosis of cancer cells, including 

cervical and prostate cancer cells. Our study found  

that Taxifolin induced apoptosis of pancreatic cancer 

cells, as confirmed by the AO/EB assay and changes in 

expression levels of apoptosis-related proteins detected 

by Western blot. In a subsequent study, we predicted 

that inhibiting pancreatic cancer progression using 

Taxifolin was achieved through the HIF-1 signaling 

pathway based on network pharmacology analysis. This 

was consistent with the results of Butt et al. [41]. The 

pro-apoptotic activity of Taxifolin was confirmed in the 

hepatocellular carcinoma cell lines HepG2 and Huh7. It 

was shown to induce apoptosis. The down-regulation of 

HIF-1 expression in a dose-related manner indicates 

that taxifolin exerts its anti-tumor effect through the 

HIF-1 signaling pathway as one of its mechanisms. 

However, the signaling pathway was not thoroughly 

investigated in pancreatic cancer, which became a 

limitation of the current study. Further studies including 

in vivo investigations on the anticancer effects of 

Taxifolin are required, specifically in pancreatic cancer. 

We hope future studies could further improve the 

findings of our study.  
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In summary, the combination of WGCNA and  

CMAP was a reliable method in discovering disease-

related key genes and small molecule drugs that may 

have therapeutic activity. On the basis of this method, 

Taxifolin has been identified as a possible drug for the 

treatment of pancreatic cancer.  

 

MATERIALS AND METHODS 
 

Gene expression profiling data 

 

We obtained mRNA gene expression profiles and 

corresponding clinical data for pancreatic cancer from 

the Gene Expression Omnibus (GEO) database (http:// 

www.ncbi.nlm.nih.gov/geo/). The dataset GSE71989 

includes 13 samples of pancreatic cancer tissues and 9 

normal pancreatic tissues. Gene expression profiling 

was used to identify differentially expressed genes. We 

obtained data related to pancreatic cancer, including 

gene sequencing data and corresponding clinical 

information, from The Cancer Genome Atlas (TCGA) 

database, using the University of California, Santa  

Cruz (UCSC) Genome Browser. We used this data to 

perform WGCNA and validate core genes.  

 

Data pre-processing and differential expression gene 

screening 

 

The data set GSE71989 was retrieved from the  

GEO database using the GEOquery package of  

the software “R” (4.2.1) and normalized using  

the normalizeBetweenArrays function of the limma 

package. The samples were viewed in box plots, the 

clustering between the sample groups was viewed in 

PCA plots, and the two data sets were analyzed for 

differences using the Limma package. The results of the 

difference analysis were visualized using volcano plots. 

 

WGCNA 

 

We constructed a weighted gene co-expression 

network using the R software package “WGCNA”  

and performed sample clustering. Subsequently, we 

determined the soft-threshold power β by using a 

standard scale-free network. Then, using the power 

adjacency function of the Pearson correlation matrix, 

we calculated the connectivity between all filtered 

genes. We converted the data to a topological overlap 

matrix (TOM) and calculated the corresponding 

dissimilarity (1-TOM). A gene dendrogram was 

generated based on the dissimilarity measure using 

TOM. Clustering was performed on the average 

linkage hierarchical structure with a minimum value  

of 50. We computed the gene differences between  

the representative modules and identified and merged 

highly similar modules based on clustering.  

Identification and functional annotation of clinically 

important modules 

 

Module eigengenes (ME) are defined as the major 

components of a given module, representing the gene 

expression profile within the module. We calculated 

the correlation between ME and clinically significant 

features to identify relevant modules and provide a 

summary. Gene significance (GS) is defined as the 

logarithm to the base 10 (log10) transformation of  

the P-value. It is obtained from a linear regression 

analysis conducted between gene expression and 

pathological progression. The module significance 

(MS) is calculated as the average gene significance 

(GS) within a module. The module with the highest 

absolute value of MS is considered to be the one that 

correlates with clinically significant traits among the 

selected modules. To explore the potential mechanisms 

of how the module genes affected relevant clinical 

traits, we uploaded all genes in Navajowhite modules to 

the Database Annotation, Visualization, and Integrated 

Discovery (DAVID) online tool (https://david.ncifcrf. 

gov/). We performed a functional enrichment analysis 

using the Gene Ontology (GO) pathway database  

and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway database, with a significance 

threshold of P < 0.05.  

 

Identification and validation of hub genes 

 

We extracted the genes from the Navajowhite module. 

Then, we identified significant gene expressions 

(|log2FC|>1) in GSE71989 that also co-occurred in  

the major modules. Further, the reliability and accuracy 

of the hub genes were confirmed by ROC curves using 

the TCGA database. Survival curves were established 

based on the data from the GEPIA database.  

 
Screening of small molecule drugs using the CMAP 

database 

 

CMAP, also known as Connective Map, is a database 

for gene expression profiling. After uploading our hub 

gene data for pancreatic cancer, we compared it with  

the reference dataset available on CMAP to search for  

small molecule drugs based on expression comparison. 

Therapeutic drugs for pancreatic cancer were selected 

using norm-cs scoring sequences.  

 
Taxifolin information 

 

Taxifolin, registered under the Chemical Abstracts 

Service (CAS) number 480-18-2, possesses a molecular 

formula of C15H12O7 and a molecular weight of 

304.25 g/mol. Its structural data were obtained from the 

PubChem organic small molecule bioactivity database 
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(https://pubchem.ncbi.nlm.nih.gov/). The standard 

Taxifolin was acquired from MedChemExpress 

(Monmouth Junction, NJ, USA) and stored at room 

temperature. The stock solution of Taxifolin was 

prepared by reconstituting the mother liquor to a 

concentration of 20mM using dimethyl sulfoxide 

(DMSO), and it was subsequently stored at -20° C for 

future use.  

 

Cell culture 

 

The MIA PaCa-2 pancreatic cancer cell line is of human 

origin. It was acquired from Sevier Biologics (Wuhan, 

China). The cells were cultured in high-glucose DMEM 

medium supplemented with 1% penicillin-streptomycin 

(Thermo Fisher Scientific, Waltham, MA, USA) and 

10% FBS (VivaCell Bioscience, Shanghai, China). The 

cells were cultured in a CO2 incubator at 37° C with 

95% air and 5% CO2, and the culture medium was 

replaced two to three times per week. 

 

CCK-8 experiment 

 

The human pancreatic cancer cell line MIA-PaCa-2 was 

cultured to logarithmic growth phase, and a single-cell 

suspension was prepared using trypsin (Solarbio Life 

Science, Beijing, China). A counting plate was used to 

regulate the cell density, and 5 replicate wells per group 

with 5000/100 μl plates were set up in 96-well plates. 

To reduce the effects of evaporation, PBS buffer was 

included in the edge wells prior to overnight incubation. 

Taxifolin was diluted to the target concentrations (2. 5, 

5, 10, 20, 40, 80, 160 μmol/L) the following day. The 

DMSO concentration in the 160 μmol/L Taxifolin was 

utilized as a negative control. The liquid in the plate 

was removed. DMSO and Taxifolin were then given to 

each of the wells at the above concentrations. A control 

group was included as a reference. The plates were 

subsequently incubated for 48 hours (h). Next, 10 μL  

of CCK-8 solution (Toho Chemical, Japan) was given 

to each hole in the plates, which were returned to the 

incubator for one hour. After incubation, we measured 

the Optical Density (OD) at 450 nm using an enzyme-

labeled instrument (Molecular Devices, Shanghai, 

China). The obtained results were subsequently analyzed 

and processed.  

 

Clone formation experiments 

 

Cells in logarithmic growth phase were harvested from 

the MIA PaCa-2 cell line, and single cell suspension 

were prepared for cell counting. The cells were diluted 

using complete medium and plated in 6-well plate  
at a density of 1500 cells in each well. Once the  

cells attached to the plate surface, the reference group 

received complete medium containing DMSO, while the 

remaining cells were treated with either 20 or 40 μmol/L 

Taxifolin for 48h. The complete culture medium was 

changed and replenished every 2 days for a duration  

of 14 days following treatment. Once the cells formed 

clusters, they were fixed by 4% paraformaldehyde 

(Leagene Biotechnology, Beijing, China) and stained by 

0. 1% crystal violet (Solarbio Life Science, Beijing, 

China) to count the number of clones.  

 

Scratch experiment 

 

A suspension of MIA-PaCa-2 cells was prepared and 

distributed onto a 6-well plate. The following day, once 

the cells had adhered to the wall, a line perpendicular  

to the mark on the back was drawn in the wells using  

a 200-μL Pipette gun head. Subsequently, the floating 

cells were rinsed off using PBS. The control group was 

given a medium of 2% FBS for incubation, and the 

experimental group was given 2% FBS with the medium 

of Taxifolin diluted to 20 and 40μM. The cells were 

photographed under a microscope, incubated, and photo-

graphed again at the 24 and 48-hour marks. The size of 

the scratches was measured with Image J software version 

2.1.0 (Bethesda Softworks, Bethesda, MA, USA). 

 

Transwell experiment 

 

Before the Transwell experiment, the cells were cultured 

in a 2% FBS medium for 12 hours. Matrix gels (BD 

Biosciences, New York, NK, USA) were placed on  

ice to dissolve, and a precooled lance was used to add  

50 μL of matrix gel to each upper chamber of the 

Transwell (Corning Life Science, New York, NY, USA) 

in the matrix gel. The chambers were incubated at 37° C 

overnight to allow full solidification in the matrix gel.  

On the second day, 800μL of complete culture medium 

containing 15% FBS was added to the lower chamber  

of the Transwell. Cells were diluted to 4 × 10^4 cells/ 

200μL in culture medium with 2% FBS or varying 

concentrations of Taxifolin. 200μL of the prepared cell 

suspension was added to the upper chamber of the 

Transwell placed in the incubator. After 48 hours, we 

fixed the Transwell chamber with 4% paraformaldehyde 

at 15 minutes, followed by staining with 0.1% crystal 

violet solution at 15 minutes. Next, wash the compartment 

twice with PBS. Then gently remove the matrix gel and 

cells in the upper chamber with a cotton swab. Finally, 

the chamber was placed under a microscope to capture 

pictures of 4-5 random fields of view. The average cell 

count in each visual field was then computed.  

 

Acridine orange-ethidium bromide (AO/EB) staining 

to detect apoptosis 

 

MIA-PaCa-2 cells were prepared by creating a single-cell 

suspension and counting them. The cell concentration was 

https://pubchem.ncbi.nlm.nih.gov/
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adjusted to 1×10^5/ml and inoculated them into a 

confocal dish. Following cell attachment, the cells  

were subjected to treatment with DMSO and varying 

concentrations of yew Taxifolin for a duration of 48 

hours. The supernatant was discarded after adding 2μL 

AO/EB working solution (Faraway Wildlife, Shanghai, 

China). The cells were blended and allowed to incubate 

for 15 minutes at room temperature, away from light, and 

quickly photographed under a fluorescence microscope.  

 

Western blot experiment 

 

Cells were seeded in diameter Petri dishes (10 cm) and 

treated with DMSO and Taxifolin, respectively. After 

treatment completion, the cells were lysed with lysis 

solution (Solarbio Life Science, Beijing, China) which 

contained 1% PMSF (by volume) and a phosphatase 

inhibitor. The lysate was then disrupted by ultrasound  

and then subjected to centrifugation at 12,000 rpm for  

10 minutes in 4° C. After centrifugation, the supernatant 

should be extracted and the concentration should be 

detected using the BCA quantitative reagent kit (Solarbio 

Life Science, Beijing, China). An appropriate volume of 

5x loading buffer was then dispensed and the mix was 

boiled for 10 minutes, followed by storage at -20° C  

in a refrigerator. For protein content detection, SDS-

PAGE gels were prepared at 10% or 7.5% concentration 

depending on the molecular weight size, and the samples 

were added for electrophoresis and then transferred to  

the PVDF membrane, followed by incubation first with 

5% nonfat dry milk at ambient temperature for 1.5 h,  

then with the corresponding primary antibody on a shaker 

at 4° C overnight, and with the secondary antibody  

at ambient temperature the next day. Antibody was 

developed using ECL exposure solution. Image J software 

2. 1. 0 was used for grey value calculation.  

 

The following antibodies were obtained from 

Proteintech Group (Wuhan, China) for use in this study: 

GAPDH (Proteintech, #10494-1-AP, 1:5000); HRP-

conjugated affinipure rabbit anti-goat IgG (Proteintech, 

#SA00001-2, 1:6000); Bcl-2 (Proteintech, #60178-1-lg, 

1:4000); PARP & cleaved-PARP (Proteintech, #66520-

1-lg, 1:10000); HRP-labeled Goat anti-mouse IgG 

(Proteintech, #PR30012, 1:6000), Caspase3 (Proteintech, 

#66470-1-Ig, 1:3000); Caspase9 (Proteintech, #66169-

1-Ig, 1:2000); Bax (Proteintech, #60267-1-Ig, 1:20000). 

 

Screening of potential targets of Taxifolin 

 

The three-dimensional structural pattern map of Taxifolin 

was submitted to PharmMapper (http://www.lilab-ecust. 

cn/pharmmaDper/), an online website for structural 
target analysis and screening of pharmacophore.  

We selected a library of pharmacophore models for 

screening. To identify the relevant genes associated 

with pancreatic cancer, we downloaded the  

gene data obtained from the GeneCards database 

(https://www.genecards.org/). The intersection of two 

results yields the target gene. 

 

Protein interaction PPI network 

 

We entered the predicted target proteins of Taxifolin 

from PharmMapper and GeneCards, along with the 

corresponding gene names, into the protein-protein 

interaction (PPI) online analysis database STING to 

examine the network of protein interactions of each 

drug target. The findings were then imported into 

Cytoscape 3.9 software for further analysis.  

 

Annotated analysis of key target functions and 

signaling pathways 

 

The key protein targets of Taxifolin obtained from  

PPI analysis were uploaded and mapped to the 

corresponding disease catalogues and key pathways in 

the KEGG to construct a “component-target-pathway-

disease” network. The target proteins showed different 

levels of enrichment in different pathways, and the 

enrichment level of KEGG was measured by Rich 

factor, P-value analysis in this study.  

 

Prediction of positive molecular docking of Taxifolin 

with key target proteins 

 

We employed KEGG enrichment analysis to identify 

pathways associated with cancer development. The 

target protein nodes in the target pathways were 

identified, and the corresponding target structure maps 

were downloaded from the PDB database. Dimerized 

proteins were subjected to structural preprocessing to 

obtain the 3D structures of the targeted proteins. The 

Molecular Operating Environment (MOE, Chemical 

Computing Group Inc, Quebec, Canada) docking 

software was used to conduct forward molecular 

docking between Taxifolin and the targets. The binding-

free energy value of the receptor and ligand after 

binding was calculated, with a lower value indicating  

a stronger affinity between receptor and ligand.  
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