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INTRODUCTION 
 
Prostate cancer is a leading cause of cancer-related 
deaths among men worldwide, with approximately 1.4 
million cases and over 375,000 deaths annually [1, 2].  
It is a complex disease that displays significant hetero-
geneity in terms of clinical presentation, molecular 

characteristics, and treatment response [3, 4]. While 
early detection and treatment for prostate cancer have 
improved significantly, patients with advanced prostate 
cancer still have a relatively low long-term survival rate 
[5]. An imbalance between the generation of reactive 
oxygen species (ROS) and antioxidant defense 
mechanisms is responsible for oxidative stress, which 
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ABSTRACT 
 
Background: Prostate cancer is the most common malignancy among men worldwide, and its diagnosis and 
treatment are challenging due to its heterogeneity. 
Methods: Integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we identified two 
molecular subtypes of prostate cancer based on dysregulated genes involved in oxidative stress and energy 
metabolism. We constructed a risk score model (OMR) using common differentially expressed genes, which 
effectively evaluated prostate cancer prognosis.  
Results: Our analysis demonstrated a significant correlation between the risk score model and various factors, 
including tumor immune microenvironment, genomic variations, chemotherapy resistance, and immune 
response. Notably, patients with low-risk scores exhibited increased sensitivity to chemotherapy and 
immunotherapy compared to those with high-risk scores, indicating the model’s potential to predict patient 
response to treatment. Additionally, our investigation of MXRA8 in prostate cancer showed significant 
upregulation of this gene in the disease as confirmed by PCR and immunohistochemistry. Functional assays 
including CCK-8, transwell, plate cloning, and ROS generation assay demonstrated that depletion of MXRA8 
reduced the proliferative, invasive, migratory capabilities of PC-3 cells, as well as their ROS generation capacity.  
Conclusions: Our study highlights the potential of oxidative stress and energy metabolism-related genes as 
prognostic markers and therapeutic targets in prostate cancer. The integration of scRNA-seq and bulk RNA-seq 
data enables a better understanding of prostate cancer heterogeneity and promotes personalized treatment 
development. Additionally, we identified a novel oncogene MXRA8 in prostate cancer. 
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ultimately causes cellular dysfunction and damage [6]. 
ROS generated during oxidative metabolism can induce 
DNA damage, genomic instability, and oncogenic 
signaling, promoting tumor growth and progression [7]. 
On the other hand, alterations in energy metabolism, 
such as dysregulated mitochondrial function and altered 
nutrient uptake, can also impact tumor cell survival and 
proliferation [8, 9]. 
 
Recent technological advancements in scRNA 
sequencing have allowed for the assessment of 
intratumoral heterogeneity, which refers to the diversity 
of cells within a tumor [10]. Intratumoral heterogeneity 
can drive tumor progression, resistance to therapy, and 
poor prognosis [11]. Additionally, bulk RNA 
sequencing enables the identification of differentially 
expressed genes in cancer tissue compared to normal 
tissue [12]. 
 
Given the impact of oxidative stress and energy 
metabolism on tumor development and progression, 
exploring their role in prostate cancer may yield 
valuable insights into the molecular mechanisms 
underlying disease pathogenesis and progression. 
Furthermore, identifying key prognostic factors 
associated with aggressive phenotypes and poor 
prognosis can aid in developing personalized treatment 
strategies and improving patient outcomes. Therefore, 
we aim to use scRNA and bulk RNA sequencing to 
investigate the role of oxidative stress and energy 
metabolism factors in prostate cancer prognosis. 
 
In conclusion, this study aims to provide new insights 
into the molecular mechanisms underlying prostate 
cancer progression through examining the role of 
oxidative stress and energy metabolism factors. By 
utilizing scRNA and bulk RNA sequencing, we hope to 
identify key prognostic factors that can enhance our 
understanding of prostate cancer and guide the 
development of personalized treatment strategies. 
 
RESULTS 
 
Prostate cancer and oxidative stress and energy 
metabolism dysfunction 
 
Single-cell expression heterogeneity 
Single-cell transcriptome analysis can provide deep 
insights into the cellular functions within tumor tissues, 
enabling broad applications in studying tumor cell 
heterogeneity, immunology, bone marrow trans-
plantation, and disease classification. 
 
In this study, we generated a Seurat object by 
aggregating expression data from six samples and 
obtained a total of 22,794 cells from prostate cancer 

tissue after quality control and filtering. After initial 
data reduction analysis (PCA), we selected the top 10 
PCs for further dimensionality reduction and analysis. 
We then generated clustering results with resolutions 
ranging from 0.2–1.5, and created a clustering tree as 
shown in Figure 1A. When the resolution exceeded 1.1, 
frequent crossovers between clusters appeared. Based 
on previous analyses and consensus, we used a 
resolution of 1.1 for cell subtyping. We used SingleR to 
annotate cell subtypes (Supplementary Table 1: 
Meta_info) and corrected the annotations using marker 
genes from databases to obtain nine cell clusters, 
including B cells, CD8+ T cells, Mast cells, 
macrophages, monocytes, epithelial cells, endothelial 
cells, fibroblasts, and smooth muscle cells, as shown in 
the UMAP plot in Figure 1B. The distribution of these 
nine cell types across each patient is shown in Figure 
1C, which reveals significant differences in the cell type 
composition among individuals, indicating tumor cell 
heterogeneity and complexity. We identified oxidative 
stress markers and energy metabolism markers for each 
cell cluster by identifying marker genes (Supplementary 
Table 1: Marker_Table). The number of oxidative stress 
markers and energy metabolism markers varied among 
different cell types, with macrophages having the most 
markers and immune T cells and B cells having the 
fewest, as shown in Figure 1D, 1E. Finally, we plotted 
the expression of oxidative stress and energy 
metabolism genes that intersected among cell types 
(OMG genes) as a violin plot, which showed strong 
heterogeneity in their expression across different cell 
clusters. The expression of OMG genes was highest in 
endothelial cells, macrophages, and fibroblasts, as 
shown in Figure 1F. 
 
Inter-cellular differences in oxidative stress 
We calculated the ssGSEA (single-sample gene  
set enrichment analysis) score for each cell’s  
oxidative stress gene set (Supplementary Table 1: 
OS_ssGSEA_Score) and compared the differences in 
oxidative stress function across cell populations using a 
violin plot. We calculated the ssGSEA score for each 
cell’s oxidative stress gene set (Supplementary Table 1: 
OS_ssGSEA_Score) and compared the differences in 
oxidative stress function between cell populations by 
plotting a violin plot, as shown in Figure 2A–2C. 
Macrophages showed strong responses to oxidative 
stress, oxidative detoxification, and oxidative stress-
induced cell death, while CD8+ T cells and B cells had 
low enrichment scores for all three gene sets. Therefore, 
we focused on the gene functional features of 
macrophages. The KEGG GSEA enrichment results of 
macrophage marker genes (Supplementary Table 1: 
KEGG_GSEA_Macro) showed that these genes were 
mainly enriched in pathways related to immunity, such 
as systemic lupus erythematosus, autoimmune thyroid 
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disease, antigen presentation and processing, and 
immunoglobulin production, as shown in Figure 2D. 
 
Expression characteristics of the oxidative stress active 
population 
We obtained 58 intersection genes as oxidative stress-
specific markers by taking the intersection of oxidative 
stress genes and cell subtype-specific marker genes. We 
then identified the active oxidative stress-related cell 
population based on the expression of these 58 specific 
marker genes to study the expression characteristics of 
oxidative stress-related factors at the single-cell level. 
The results are shown in Figure 3A: using the optimal 
threshold (0.26), 2959 cells were identified as the active 
oxidative stress-related population (Supplementary 
Table 2: AUC_res). They were mainly distributed 

among monocytes, macrophages, endothelial cells, and 
some fibroblasts in the single-cell UMAP plot, as 
shown in Figure 3B. We then plotted the distribution of 
active and inactive oxidative stress cells in each cell 
cluster as a column chart, as shown in Figure 3C. To 
explore the functional differences between the active 
and inactive cell populations, we identified 712 
differentially expressed genes between the active and 
inactive oxidative stress populations through differential 
expression analysis. We then performed KEGG and 
GO_BP gene set enrichment analyses based on these 
differentially expressed genes, as shown in Figure 3D, 
3E. The enriched pathways identified by KEGG 
included rheumatoid arthritis, COVID-19, phagosomes, 
antigen processing and presentation, viral myocarditis, 
transplant rejection, Staphylococcus aureus infection, 

 

 
 
Figure 1. Heterogeneity of tumor single cells. (A) Cluster dendrogram of single-cell dataset; (B) UMAP plots of cell clustering and 
annotation results for single-cell dataset, with outer circle annotations indicating cell populations and inner circles representing patient 
origins; (C) Cumulative distribution histogram of cell clusters among patients; (D) Table showing the number of oxidative stress marker 
genes in each cell population; (E) Table showing the number of energy metabolism marker genes in each cell population; (F) Violin plots of 
OMG marker gene expression in different cell populations. 
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human T-cell leukemia virus 1 infection, and type 1 
diabetes. The enriched functions identified by GO_BP 
included leukocyte-cell adhesion and regulation, 
positive regulation of leukocyte activation, leukocyte 
migration, positive regulation of lymphocyte activation, 
and biological processes involving MHC class II 
antigen processing and presentation of peptides or 
polysaccharide antigens. 
 
Expression characteristics of the active energy 
metabolism population 
Similarly, we identified the active energy metabolism 
population based on the expression of 19 specific 
energy metabolism marker genes. The results are shown 
in Figure 4A: using the optimal threshold (0.18), 2969 
cells were identified as the active energy metabolism 
population (Supplementary Table 2: AUC_res). They 
were mainly distributed among fibroblasts and some 

smooth muscle cells in the single-cell UMAP plot, as 
shown in Figure 4B. We then plotted the distribution of 
active and inactive oxidative stress cells in each cell 
cluster as a column chart, as shown in Figure 4C. 
Similarly, differential expression analysis identified 656 
differentially expressed genes between the active and 
inactive energy metabolism populations, and KEGG 
and GO_BP gene set enrichment analyses were 
performed based on these differentially expressed genes, 
as shown in Figure 4D, 4E. The enriched pathways 
identified by KEGG included COVID-19, focal 
adhesion, ECM-receptor interaction, leukocyte trans-
endothelial migration, protein digestion and absorption, 
malaria, ribosome, complement and coagulation 
cascades, and rheumatoid arthritis, as well as the 
hematopoietic cell lineage. The enriched gene sets 
identified by GO_BP included cell structure-related 
processes, wound healing, collagen metabolic processes,

 

 
 
Figure 2. Differences in oxidative stress and communication between subpopulations of cells. (A–C) Violin plots showing the 
differences in ssGSEA scores for oxidative stress response, oxidative stress-induced cell death, and cellular antioxidant defense among 
different cell populations; (D) Line plot of KEGG pathway GSEA enrichment results for all marker genes of macrophages. 
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regulation of peptidase activity, collagen fibril 
organization, negative regulation of peptidase activity, 
cell-matrix adhesion, and negative regulation of 
endopeptidase activity. 
 
Tumor expression characteristics and subtype 
identification in TCGA cohort 
 
Differential expression between tumor and normal 
samples in the TCGA cohort 
To begin, we conducted an analysis of differential gene 
expression between normal and tumor tissue samples 
within the TCGA PRAD cohort (Supplementary Table 
3: deg_res) and obtained 1974 differentially expressed 
genes, including 762 upregulated genes and 1212 
downregulated genes in tumors. Among all the 
differentially expressed genes, there were 88 oxidative 

stress-related genes, and their differential expression 
heatmap is shown in Figure 5A: among them, 28 
oxidative stress-related genes were upregulated in 
tumors, while 60 were downregulated in tumor tissue. 
Similarly, among all the differentially expressed genes, 
there were 81 energy metabolism-related genes, and 
their differential expression heatmap is shown in Figure 
5B: among them, 24 energy metabolism-related genes 
were upregulated in tumors, while 57 were down-
regulated in tumor tissue. In addition, there were 7 
OMG differentially expressed genes, and their 
expression patterns are shown in Figure 5C: they were 
all downregulated in tumor tissue. Finally, we used 
ssGSEA scores to evaluate the enrichment differences 
of oxidative stress-related pathways between tumor and 
normal tissues, as shown in Figure 5D–5F: the oxidative 
stress response, oxidative detoxification, and oxidative 

 
 

 
 
Figure 3. Identification and functional characterization of oxidative stress-activated populations. (A) AUC scores for specific 
oxidative stress marker genes; (B) UMAP color-coded plot based on cell activity scores, where brighter colors indicate higher response 
scores and activity levels to the gene set; (C) Histogram showing the distribution of active and inactive oxidative stress cell populations in 
different cell groups; (D) Bubble plot of KEGG enrichment results for differentially expressed genes, with bubble size representing the 
number of enriched genes and color indicating the significance of the enrichment result; (E) Bubble plot of GOBP enrichment results for 
differentially expressed genes. 
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stress-induced cell death in prostate cancer tissue were 
significantly weaker than those in normal tissue. 
 
Identification of potential patients based on 
differential OM genes 
Next, we performed correlation analysis between the 
differentially expressed oxidative stress-related genes 
and energy metabolism-related genes, and selected 
genes that were highly correlated with at least one gene 
from the other functional group (|correlation|>0.4 and 
p < 0.001). Finally, we obtained a set of 63 genes with 
differential associations between oxidative stress and 
energy metabolism, and used them for clustering 
analysis to identify tumor subtypes. We then plotted 
Kaplan-Meier survival curves for each cluster subtype. 
The best clustering result was achieved when using the 
KM algorithm and Euclidean distance, with a best K 
value of 2 (Figure 6A–6D), and there was a significant 
difference in survival curves between the two subtypes 
(Figure 6E–6H). The sample clustering results are 

shown in Supplementary Table 4. The consistency 
cluster cumulative distribution function (CDF) is shown 
in Figure 6I, which displays the CDF for different 
values of k. Figure 6J shows the change in the area 
under the CDF curve ask increases relative to k-1. We 
then used PCA to reduce the dimensionality of the data 
and plotted a two-dimensional scatter plot to validate 
the clustering results, as shown in Figure 6K: the two 
subtypes were clearly separated, indicating good 
clustering results. Ultimately, we identified two 
significant oxidative stress and energy metabolism 
molecular subtypes with significantly different 
prognoses, where cluster 1 (C1) had a significantly 
better prognosis than cluster 2 (C2). 
 
Differential expression between tumor subtypes 
Based on the clustering results of tumor samples, we 
performed differential expression analysis between the 
two subtypes and identified 1208 genes with differential 
expression (Supplementary Table 4: cc_deg). Among 

 

 
 
Figure 4. Identification and characterization of energy metabolism-active populations. (A) AUC scores for specific energy 
metabolism marker genes; (B) UMAP color-coded plot based on cell activity scores, where brighter colors indicate higher response scores 
and activity levels to the gene set; (C) Histogram showing the distribution of active and inactive energy metabolism cell populations in 
different cell groups; (D) Bubble plot of KEGG enrichment results for differentially expressed genes; (E) Bubble plot of GOBP enrichment 
results for differentially expressed genes. 
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them, there were 64 differentially expressed oxidative 
stress-related genes, and their volcano plot is shown in 
Figure 7A: only one oxidative stress gene was 
upregulated in C2, while the rest were upregulated in 
C1. There were also 52 differentially expressed energy 
metabolism-related genes, and their volcano plot is 
shown in Figure 7B: most genes were upregulated in C1. 
To identify functional differences between prostate 
cancer molecular subtypes, we performed KEGG and 
GOBP pathway enrichment analysis based on the 
differentially expressed genes (Supplementary Table 4) 
and plotted a bubble chart of the top 10 significantly 
enriched pathways, as shown in Figure 7C–7D: the 
differentially expressed genes mainly enriched in 
functional pathways such as cell adhesion molecules, 
ECM-receptor interaction, Staphylococcus aureus 
infection, malaria, amoebiasis, protein digestion and 
absorption, hematopoietic cell lineage, PI3K-Akt 
signaling pathway, viral myocarditis, and biological 
processes related to cell structure, cell adhesion 
regulation, leukocyte migration, and wound healing. We 

then compared the enrichment differences of six 
immune-related biological factors using the ssGSEA 
algorithm, as shown in Figure 7E: C1 had higher 
enrichment scores than C2. Similarly, we calculated the 
enrichment of four immune function gene sets, as 
shown in Figure 7F: C1 had higher immune activity 
than C2. 
 
Differences in immune infiltration between prostate 
cancer molecular subtypes 
The composition of the tumor microenvironment 
includes stromal and immune cells, which have been 
proposed as valuable components for diagnosing and 
prognosticating tumors. In this study, we estimated the 
proportions of immune infiltrating cells within each 
tumor sample using four common methods 
(Supplementary Table 5), and displayed differences in 
immune infiltration between two subtypes of prostate 
cancer via box plots. Supplementary Figure 1A depicts 
the differences in the infiltration proportions of 28 
immune cell types calculated by ssGSEA, with 25 cell 

 

 
 
Figure 5. Dysregulation of oxidative stress and energy metabolism-related genes. (A) Heatmap of significantly differentially 
expressed oxidative stress genes, with red indicating high expression and blue indicating low expression, and orange and green indicating 
tumor and normal tissue samples, respectively; (B) Heatmap of significantly differentially expressed energy metabolism-related genes; (C) 
Box plot showing the expression of commonly differentially expressed oxidative stress and energy metabolism-related genes, with orange 
and green representing tumor and normal samples, respectively; (D–F) Violin plots showing ssGSEA score differences for oxidative stress-
related gene sets in tumor and normal tissues, including oxidative stress response, cellular antioxidant defense, and oxidative stress-
induced cell death. 
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types exhibiting significant differences in infiltration 
proportions. Supplementary Figure 1B shows box plots 
indicating differences in the infiltration proportions of 
six immune cell types calculated by the TIMER 
algorithm, where all six immune cell types exhibited 
significantly higher infiltration proportions in C1 
compared to C2. Box plots shown in Supplementary 
Figure 1C display differences in scores for four metrics 
calculated using ESTIMATE, with the stromal score, 
immune score, and ESTIMATE score of C1 being 
significantly higher than those of C2, while tumor 
purity was lower in C1 compared to C2. The results for 
immune infiltrating cell proportions calculated by 
CIBERSORT and xCell are presented in Supplementary 
Figures 2 and 3. 

Construction and validation of OMR 
 
Identification of prostate cancer prognostic signature 
In the process of cancer development, oxidative stress 
and energy metabolism interact with each other and 
influence the evolution of tumor cells together. In order 
to study the impact of both on tumor prognosis, we first 
identified the intersection of differentially expressed 
genes identified by three differential analyses 
(differential expression between TCGA molecular 
subtypes, differential expression of oxidative stress 
active cell populations, and differential expression of 
energy metabolism active cell populations) using a 
Venn diagram, as shown in Figure 8A: we obtained 185 
common DEGs. Then, we analyzed these common 

 
 

 
 
Figure 6. Identification of prostate cancer subtypes. (A–D) Clustering results for k = 2, k = 3, k = 4, and k = 5; (E–H) Survival curves for 
k = 2, k = 3, k = 4, and k = 5, with different colors representing different clusters; (I) CDF curve distribution for consensus clustering; (J) 
Distribution of area under the CDF curve for consensus clustering; (K) PCA scatter plot showing the classification results, with red 
representing C1 and blue representing C2. 
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differentially expressed genes using univariate Cox 
analysis and finally identified 20 genes associated with 
prostate cancer prognosis (Supplementary Table 6: 
cox_res), as shown in the forest plot of univariate Cox 
results in Figure 8B. Subsequently, we randomly 
sampled 2/3 of the TCGA_PRAD overall set (n = 478) 
as the training set (n = 320), used Lasso linear 
regression to remove redundant genes, and set seed = 
1110. We ultimately selected 9 prognostic-related 
signatures (Supplementary Table 6) through this 
process, as shown in Figure 8C–8E. We utilized the 
median gene expression value to stratify high and low 
expression groups, and subsequently constructed 
Kaplan-Meier survival curves for the selected model 
genes within the overall TCGA cohort. Remarkably, all 
model genes exhibited significant differences in KM 
curves between high and low expression groups as 
illustrated in Figure 8F. 
 
Validation of model performance using TCGA dataset 
and external dataset 
To further evaluate the impact of the 9 signatures on the 
recurrence of the training set, we first calculated the 

RiskScore for each sample in the dataset using the 
formula RiskScore = MYLK × −0.144 + FBLN1 × 
−0.059 + PTGDS × −0.047 + TGFB1 × 0.372 + MXRA8 
× 0.151 + PTN × −0.056 + COL1A1 × 0.034 + THBS2 × 
0.082 + MT1E × −0.059 (Supplementary Table 6: 
TCGA_Train), the median value of RiskScore 
(0.4329028) was used as a critical threshold to 
categorize samples into high-risk and low-risk groups. 
The gene expression heatmap of the model genes is 
presented in Figure 9A, showing their distribution in the 
high-risk and low-risk groups of the training set. To 
observe the relationship between survival and score, 
scatter plots of survival time, survival status, 
and sample risk scores were generated (Figure 9B, 9C). 
Kaplan-Meier curves were also plotted to compare the 
prognostic differences between the two groups, 
revealing that the high-risk group had significant-
ly lower survival rates compared to the low-risk group 
(Figure 9D; p-value < 0.001). Moreover, ROC 
curves were constructed based on the risk model, 
demonstrating its good predictive capability with AUC 
values of 0.755/0.731/0.699 for 1/3/5 years (Figure 
9E). 

 

 
 
Figure 7. Differential expression and characterization of molecular subtypes in prostate cancer. (A, B) Volcano plots of 
differentially expressed genes between subtypes, with red indicating upregulation, blue indicating downregulation, and gray indicating no 
significant difference in gene expression. The labeled genes in the two plots are oxidative stress genes and energy metabolism genes, 
respectively; (C, D) Bubble plots of KEGG pathway and GOBP functional enrichment analysis results for differentially expressed genes 
between subtypes; (E, F) Box plots showing differences in enrichment scores for immune-related factor gene sets and immune function 
gene sets between subtypes. 
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To further validate the reliability of the model score in 
predicting overall survival of prostate cancer patients, 
we conducted similar analyses on the TCGA PRAD test 
and overall sets, as well as external datasets GSE70770 
and GSE70769, and obtained similar conclusions. These 
findings suggest the robustness of the model score in 
predicting overall survival of prostate cancer patients 
across different datasets (Supplementary Figures 4–7). 
 
Correlation between risk model and multiple tumor 
characteristics 
 
Independence of risk score 
To verify whether RiskScore can serve as an 
independent prognostic factor, this analysis combined 
prostate cancer Tumor_type, Age, T_Stage, N (N stage), 
M (M stage), MSI, and Race information 
(Supplementary Table 6: Clinical_stat) for single and 
multiple factor Cox regression analysis. The results  
are shown in Figure 10A: in the single-factor Cox 
regression, Riskscore, T_Stage, N, MSI, and Race was 
significantly different from the Reference. In the 
multiple-factor Cox analysis, Riskscore and T_Stage 
was significantly different from the Reference in the 
presence of other clinical features, proving that they are 
independent prognostic factors. In addition, a 
nomogram (Figure 10B) was drawn based on survival 

time, survival status, Age, and Stage, showing that 
Riskscore contributed the most as a clinical factor. Then, 
cumulative distribution plots of Age, T_Stage, and N 
grouping samples between high-risk and low-risk 
groups were drawn and Fisher’s exact test was 
performed (Figure 10C–10E): all p-values were less 
than 0.05, indicating a significant correlation between 
their distribution and the risk model grouping. We then 
studied the differences in Riskscore distribution 
between clinical feature groups, as shown in Figure 
10F–10J: Riskscore was significantly different among 
Age, T_Stage, N stage, M stage, and prostate cancer 
subtype, indicating that multiple clinical features of 
cancer are related to the risk score. 
 
Differences in immune microenvironment between 
model groups 
To determine variations in the tumor immune 
microenvironment between high-risk and low-risk 
groups, we initially computed associations between 
Riskscore, the expression of nine model genes, and 23 
immune checkpoint inhibitors (Supplementary Table 7). 
Next, we displayed these correlations as a heatmap 
(Figure 11A) for visualization purposes. Results 
demonstrated significant positive correlations between 
model gene expression and immune checkpoint 
inhibitor expression for CSF1R, CTLA4, HAVCR2, and

 

 
 
Figure 8. Lasso regression analysis results for TCGA dataset. (A) Venn diagram of differentially expressed genes between subtypes 
and active cell populations; (B) Forest plot of single-factor Cox analysis results for common differentially expressed genes; (C) Trajectory of 
changes in Lasso regression independent variables, with the x-axis representing the logarithm of the independent variable Lambda and the 
y-axis representing the coefficient of the independent variable; (D) Confidence intervals for each Lambda in Lasso regression; (E) Lasso 
regression coefficients for nine key prognostic factors; (F) KM curves for model genes, with red indicating high expression group, blue 
indicating low expression group, and p-value indicating the significance of survival curve differences. 

4478



www.aging-us.com 11 AGING 

TGFBR1. We then compared expression differences for 
23 immune checkpoint inhibitors between high-risk and 
low-risk groups, presenting box plots depicting results 
in Figure 11B: 16 immune checkpoint inhibitors 
demonstrated differential expression, with higher 
expression levels observed in the high-risk group. 
Finally, based on analysis of immune infiltrating cell 
proportions, we compared differences in immune cell 
infiltration between high-risk and low-risk groups. Box 
plots in Figure 11C illustrate a comparison of four 
ESTIMATE scores between high-risk and low-risk 
groups. Our results indicated that the high-risk group 
exhibited higher stromal score, immune score, and 

ESTIMATE score, but lower tumor purity, compared to 
the low-risk group, with significant differences 
observed. Figure 11D depicts differences in the 
infiltration proportions of 28 immune cell types 
calculated by ssGSEA between high-risk and low-risk 
groups, with infiltration proportions of 22 cell types 
exhibiting significant differences. Additional algorithm 
results are presented in the supplementary material. 
 
Enrichment differences 
Based on the HALLMARK pathway enrichment scores 
of prostate cancer samples (Supplementary Table 8), 
combined with model grouping information, 

 

 
 
Figure 9. Validation of prognostic performance of the model using TCGA training set. (A–C) Risk triad plots of TCGA training set, 
including heatmap of model gene expression in risk score groups, scatter plot of risk scores, and scatter plot of survival time, with red 
representing high-risk group and blue representing low-risk group; (D) KM curve of TCGA training set; (E) ROC curve of TCGA training set. 
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we explored the pathway enrichment differences 
between high-risk and low-risk groups, which can help 
study the relationship between cancer characteristic 
pathways and prognosis. Supplementary Figure 8A 
shows that multiple pathways have significantly 
different enrichment scores between model groups, 
including fatty acid metabolism, interferon α/γ response, 
and inflammatory response. We then calculated the 
correlation between Riskscore and model gene 
expression and HALLMARK pathway enrichment 
scores, as shown in Supplementary Figure 8B: 
RiskScore was significantly negatively correlated 
with pathways such as fatty acid synthesis, bile acid 
metabolism, cholesterol homeostasis, and fatty 
acid metabolism, and significantly positively correlated 

with pathways such as angiogenesis and G2M 
checkpoint. 
 
Correlation between risk model and prostate cancer 
genome mutations 
Genomic mutations play an important role in cancer 
progression and therapy development. To investigate 
the distribution of somatic variations between high-risk 
and low-risk groups and gene mutations among samples 
with different clinical features, we selected the top 30 
genes with the highest mutation frequency in both 
groups and created waterfall plots (Figure 12A, 12B). 
PRAD featured TP53, TTN, and SPOP as top three 
genes with the highest mutation frequency, but their 
mutation frequencies varied between high- and low-risk 

 

 
 
Figure 10. Independence of risk score with tumor clinical characteristics. (A) Forest plot of single and multiple Cox analysis results 
for Riskscore and clinical factors in TCGA cohort; (B) Column chart of the prediction model, with the square plus line segment representing 
the contribution of each clinical factor to outcome events, Total Points representing the total score obtained by adding up the scores of all 
variables, and the three lines at the bottom representing the cumulative survival probability at 5/3/1 years for each value point. (C–E) 
Cumulative distribution histogram of different clinical feature groups between high and low-risk groups, with p-value indicating the 
significance of differences; (F–J) Box plot showing differences in risk score distribution among different clinical feature groups, with 
different colors representing different groups and p-value indicating the significance of differences. 
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Figure 11. Differences in immune microenvironment among model groups. (A) Correlation coefficient heatmap between model 
and immune checkpoint expression, with point color representing the level of correlation and *indicating significance; (B) Box plot showing 
differential expression of 23 immune checkpoint inhibitors between high and low-risk groups; (C) Box plot showing differences in stromal 
score, immune score, ESTIMATE score, and tumor purity, with red and blue representing high and low-risk groups, respectively; (D) Box plot 
showing differences in immune cell infiltration proportions calculated by ssGSEA algorithm between high and low-risk groups, with red and 
blue representing high and low-risk groups, respectively. 
 

 
 
Figure 12. Genomic mutation differences among model groups. (A) Waterfall plot of the top 30 genes (mutation frequency) with 
SNV in high-risk group; (B) Waterfall plot of the top 30 genes (mutation frequency) with SNV in low-risk group; (C–F) Cumulative 
distribution histogram of frequently mutated genes with significant differences between high and low-risk groups; (G) Survival curve 
showing the difference between mutant and wild-type groups of gene TP53; (H) Box plot showing the difference in TMB between high and 
low-risk groups; (I) KM survival curve showing the difference between high and low TMB groups, with red representing high TMB group and 
blue representing low TMB group. 
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groups. Comparing mutation frequencies between the 
two groups revealed significant differences for TP53, 
FOXA1, RYR1, and PTEN, which are genes with high 
mutation rates, as shown in cumulative distribution bar 
charts (Figure 12C–12F). TP53 mutation was further 
associated with prostate cancer recurrence, resulting in 
worse prognosis (Figure 12G). Finally, we compared 
tumor mutation burden (TMB) between high- and low-
risk groups, revealing higher TMB in the high-risk 
group (Figure 12H). By dividing samples into high-
TMB and low-TMB groups based on median TMB 
value, we plotted KM survival curves for both groups 
(Figure 12I), demonstrating significantly worse 
prognosis and survival differences for patients with high 
TMB. 
 
Predicting treatment efficacy using the risk model 
 
Evaluating chemotherapy drug resistance using the 
risk model 
Using the expression data of TCGA PRAD, we 
predicted the IC50 values of 138 drugs from the GDSC 
database (Supplementary Table 9). We then performed 
statistical tests to examine whether there were 
significant differences in IC50 values between high-risk 
and low-risk groups based on the model grouping 
results and IC50 values. We selected drugs with 
significantly different IC50 values and calculated their 
correlation with Riskscore, finding that five drugs 
showed a highly positive correlation with Riskscore 
(Figure 13A–13E). Next, we plotted box plots 
displaying the distribution differences of IC50 values for 

these five drugs between high-risk and low-risk groups 
(Figure 13F–13J). These results indicated that the low-
risk group exhibited greater sensitivity to these five 
chemotherapy drugs, as evidenced by significantly 
lower IC50 values compared to the high-risk group. 
 
Predicting the efficacy of immunotherapy using the 
risk model 
We started by calculating the risk scores for each 
sample in the immunotherapy dataset and dividing them 
into high- and low-risk groups based on median 
(Supplementary Table 10: IMvigor210_res). Significant 
survival differences were observed between the two 
groups using KM curves (Figure 14A). Next, we 
compared immune response differences between  
high- and low-risk groups in the immunotherapy  
cohort, demonstrating that responsive samples were 
significantly more frequent in the low-risk group than in 
the high-risk group (Figure 14B). Further analysis 
revealed a significant difference in risk score between 
responders and non-responders depicted in Figure 14C, 
suggesting that the low-risk group is more likely to 
benefit from immunotherapy. Additionally, we used 
TIDE online analysis to predict immune response of 
samples in the TCGA_PRAD dataset and evaluated 
differences in immune response between oxidative 
stress and metabolic subtypes (Figure 14D), showing 
that the proportion of responders was significantly 
higher in C2 subtype compared to high-risk group and 
C1 subtype. We also assessed the IPS score to 
determine the tumor immunogenicity and predict 
response to immunotherapy. Analysis of four categories

 

 
 
Figure 13. Correlation between risk score and chemotherapy drug resistance. (A–E) Scatter plots showing the correlation 
between risk score and drug IC50 values, with R representing the correlation coefficient and p-value indicating the significance of the 
correlation; (F–J) Box plots showing differences in drug IC50 values between high and low-risk groups. 
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of IPS scores between the high-risk and low-risk groups 
(ips_ctla4_neg_pd1_neg, ips_ctla4_pos_pd1_neg, 
ips_ctla4_neg_pd1_pos, ips_ctla4_pos_pd1_pos) 
showed that two IPS scores were significantly higher in 
the low-risk group, while the other two did not exhibit 
significant differences between the groups, indicating 
that patients in the low-risk group are more likely to 
benefit from immunotherapy (Figure 14E, 14F). 
 
The role of MXRA8 in prostate cancer cells 
 
This study aimed to investigate the potential role of 
MXRA8 in prostate cancer cells. Firstly, we evaluated 
the expression profile of MXRA8 in both prostate cancer 
tissue and adjacent normal tissues using PCR, 

immunohistochemistry and western blot techniques, 
where we observed a significant upregulation of 
MXRA8 in prostate cancer samples as compared to their 
normal counterparts (Figure 15A, 15B, 15H). To further 
unravel the functional significance of MXRA8, we 
employed gene knockout techniques to study its effect 
on PC-3 and DU-145 cells, the transfection efficiency 
of siRNA was about 85%. Our results demonstrated that 
depletion of MXRA8 had profound effects on the 
proliferation, invasion, and migration capacities of PC-3 
cells, suggesting its critical role in driving cancer 
progression. Moreover, we observed a reduction in the 
ROS generation capacity upon MXRA8 knockdown, 
indicating its involvement in regulating the redox 
homeostasis of PC-3 cells (Figure 15C–15G). Then, we 

 

 
 
Figure 14. Prediction of patient response to immunotherapy using the risk model. (A) KM curves of high and low-risk groups in 
the IMvigor210 cohort; (B) Cumulative distribution histogram of response and non-response groups between high and low-risk groups in 
the IMvigor210 cohort; (C) Violin plot showing differences in risk score between response and non-response groups in the IMvigor210 
cohort; (D) Cumulative distribution histogram of TIDE-predicted immune response between response and non-response groups in the 
clustering subtype of the IMvigor210 cohort; (E, F) Violin plots showing differences in IPS score between high and low-risk groups, with red 
and blue representing high and low-risk groups, respectively. 
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overexpressed MXRA8 in PC-3 cells (Figure 16A, 16B), 
the proliferation, invasion and migration of PC-3 cells 
were up-regulated (Figure 16E, 16G). Next, we knock 
out MXRA8 in DU-145 cells (Figure 16C, 16D). After 
MXRA8 knockout, the proliferation, invasion and 
migration of DU-145 cells were down regulated (Figure 
16F, 16H). Taken together, our findings provide 
valuable insights into the potential therapeutic targets 
for prostate cancer treatment by targeting MXRA8. 
 
DISCUSSION 
 
Prostate cancer is a complex disease with significant 
heterogeneity in terms of clinical presentation, 
molecular characteristics, and treatment response 

[13, 14]. In this study, we aimed to investigate the role 
of oxidative stress and energy metabolism factors in 
prostate cancer prognosis using scRNA and bulk RNA 
sequencing. Our results suggest that these factors may 
play significant roles in tumor progression and patient 
outcomes. 
 
Our results highlight the importance of intratumoral 
heterogeneity in prostate cancer. The scRNA 
sequencing analysis revealed distinct cell sub-
populations within the tumors, each with unique gene 
expression profiles. This suggests that targeting specific 
cellular subsets may be important for improving 
treatment efficacy and patient outcomes. Moreover, our 
machine learning algorithms accurately predicted 

 

 
 
Figure 15. The role of MXRA8 in PC-3 cells. (A, B) PCR and immunohistochemistry results suggest that MXRA8 is highly expressed in 
prostate cancer tissues; (C) After knocking out MXRA8, the cell viability of PC-3 cells decreased; (D) After knocking out MXRA8, the ROS 
production ability of PC-3 cells increased; (E) After knocking out MXRA8, the proliferation ability of PC-3 cells decreased; (F, G) After 
knocking out MXRA8, the migration and invasion ability of PC-3 cells decreased; (H) The expression of MXRA8 in pancreatic cancer tissues 
was higher than that in normal tissues. 
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clinical outcomes in patient samples, demonstrating the 
potential of scRNA and bulk RNA sequencing in 
predicting disease prognosis. 
 
Based on bioinformatics analysis and survival data of 
prostate cancer patients from TCGA and GEO cohorts, 
a prognostic model was constructed using 9 genes 
(MYLK, FBLN1, PTGDS, TGFB1, MXRA8, PTN, 
COL1A1, THBS2, and MT1E), which was validated by 
clinical prognosis and correlation with tumor immunity. 
MYLK1 gene encodes MYLK, a Ca2+/CaM-dependent 
enzyme that has been identified as a promoter of 
prostate cancer progression [15–17]. FBLN family 
genes code for ECM proteins responsible for 
maintaining tissue structure as a component of the 

basement membrane and elastic fibers [18]. Among 
them, FBLN1 is closely associated with tumor cell 
migration, adhesion, and invasion [19, 20]. PTGDS 
belongs to the lipocalin superfamily of lipid carrier 
proteins and plays dual roles in prostaglandin 
metabolism and lipid transport [21]. It is also involved 
in various cellular processes related to tumorigenesis 
and progression of solid tumors such as prostate and 
cervical squamous cell carcinomas [22, 23]. 
Transforming growth factor β1 (TGFB1) is mainly 
expressed in human tissues and can be synthesized and 
secreted by almost all cells, often upregulated in tumor 
cells [24]. Recent studies have shown that TGFB1 is 
associated with poor prognosis and risk of progression 
in metastatic prostate cancer patients but not in 

 

 
 
Figure 16. The role of MXRA8 in PC-3 cells and DU-145 cells. (A, B) After overexpression of MXRA8, the mRNA and protein levels of 
MXRA8 were up-regulated in PC3 cells; (C, D) After MXRA8 knockout, the RNA and protein expression of MXRA8 in DU-145 cells decreased; 
(E) After overexpression of MXRA8, the proliferation ability of PC-3 cells increased; (F) After knocking out MXRA8, the proliferation ability of 
DU-145 cells decreased; (G) After overexpression of MXRA8, the migration and invasion ability of PC-3 cells increased; (H) After knocking 
out MXRA8, the migration and invasion ability of DU-145 cells decreased. 
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non-metastatic disease [25]. PTN is a heparin-binding 
growth factor that performs multiple functions in 
regulating cell proliferation, migration, and angio-
genesis in endothelial cells [26]. Recent studies have 
found that PTN may be a serum biomarker promoting 
metastatic prostate cancer, and upregulation of PTN 
leads to the migration of prostate cancer cells [27, 28]. 
Type I collagen α1 (COL1A1) is a member of the 
collagen family that participates in epithelial-
mesenchymal transition, which is closely related to 
malignant tumor development [29]. COL1A1 expression 
has been found to promote prostate cancer progression 
[30]. THBS2, which belongs to the matricellular 
thrombospondin family, interacts with cell receptors, 
growth factors, and extracellular matrices (ECM) and is 
involved in regulating processes like cell proliferation, 
adhesion, and apoptosis [31]. As THBS2 is upregulated, 
the survival rate of prostate cancer patients undergoing 
radiotherapy decreases [32]. Metallothioneins (MTs) are 
cysteine-rich small proteins that have essential functions 
in regulating metal homeostasis, protecting against 
heavy metal toxicity, preventing oxidative stress and 
DNA damage, as well as contributing to tumor 
development, drug resistance, and progression [33]. 
Studies have shown that decreased expression of MT1E 
promotes the progression of prostate cancer [34]. In 
addition, no association has been found between 

MXRA8 and prostate cancer prognosis or its role as a 
novel marker for prostate cancer. Next, we investigated 
the function of MXRA8 gene in prostate cancer. Our 
findings indicate that MXRA8 is overexpressed in 
prostate cancer tissue and its knockout leads to a 
significant reduction in proliferation, invasion, 
migration, and ROS generation capacity of PC-3 cells. 
These results suggest that MXRA8 plays a crucial role as 
an oncogene in prostate cancer. 
 
Identifying key prognostic factors associated with 
aggressive phenotypes and poor prognosis is critical for 
developing personalized treatment strategies. Our 
findings may aid in the development of new therapeutic 
targets, such as targeting glycolysis or oxidative stress-
related pathways. Additionally, the identification of 
specific molecular signatures associated with poor 
prognosis may inform clinical decision-making and 
guide treatment choices. 
 
One limitation of our study is the relatively small 
sample size. Further validation in larger patient cohorts 
is necessary to confirm our findings and identify 
additional prognostic factors. Additionally, the changes 
in gene expression observed in our study may not 
necessarily translate into functional changes at the 
protein level. Therefore, further investigation is needed 

 

 
 

Figure 17. The workflow diagram of this present study. 
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to elucidate the mechanistic links between altered 
oxidative stress and energy metabolism pathways and 
prostate cancer progression. 
 
In conclusion, our study provides new insights into the 
role of oxidative stress and energy metabolism factors 
in prostate cancer prognosis. Utilizing scRNA and bulk 
RNA sequencing allowed us to identify specific 
pathways associated with aggressive phenotypes and 
poor prognosis, as well as intratumoral heterogeneity 
that may influence treatment efficacy. Our findings 
have important implications for developing persona-
lized treatment strategies and improving patient 
outcomes. Further research is needed to validate our 
results in larger patient cohorts and investigate the 
clinical applications of scRNA and bulk RNA 
sequencing in prostate cancer diagnosis and treatment. 
 
CONCLUSIONS 
 
In this study, we characterized the heterogeneous 
expression of oxidative stress and energy metabolism-
related genes in a single-cell dataset and identified two 
functionally active cell populations and their 
corresponding differentially expressed genes. Based  
on the dysregulated oxidative stress and energy 
metabolism-related genes in tumors from TCGA 
PRAD, we identified two molecular subtypes of 
prostate cancer and analyzed their survival, immune 
function, and gene expression. Then, we constructed a 
risk score model (OMR) to evaluate the prognosis of 
prostate cancer based on the selection of common 
differentially expressed genes. The model was validated 
using internal training and testing datasets, an overall 
dataset, and two external validation datasets, 
demonstrating good and stable prognostic evaluation 
performance. We also investigated the relationship 
between the risk score model and the tumor immune 
microenvironment, genomic variations, chemotherapy 
resistance, and immune response, and found that model 
genes may serve as markers for prostate cancer immune 
response (Figure 17). 
 
METHODS 
 
Expression data download and preprocessing 
 
The TCGA PRAD dataset was utilized for survival 
analysis, with FPKM expression profiles transformed to 
log2(FPKM+1) and mutation data analyzed for genomic 
mutations (Supplementary Table 11). For analysis of 
single-cell datasets, the Seurat R package was used to 
construct objects from expression matrix and sample 
information files downloaded from GEO (accession 
number GSE137829). External validation sets for risk 
models were obtained from GEO datasets GSE70770 

and GSE70769. The IMvigor210 dataset was used as an 
immune therapy dataset; its expression and clinical 
information were downloaded from http://research-
pub.gene.com/IMvigor210CoreBiologies, and raw 
count data were standardized using DEseq2 before 
being converted to TPM values. 
 
Gene set download 
 
Three oxidative stress-related GO pathways were 
collected from the Molecular Signature Database v7.40 
(MsigDB), and 481 oxidative stress-related genes were 
obtained from three gene sets. The energy metabolism 
gene set was collected from reference PMC9262104, 
and contains 594 genes from 11 Reactome pathways 
(Supplementary Table 12). 
 
Single-cell data analysis 
 
Seurat R package was used for single-cell transcriptome 
analysis. Single-cell sequencing results of primary 
tumors and liver metastases were integrated into a 
Seurat object. Cells and genes were filtered based on 
count, doublet_cutoff, mitochondrial gene proportion, 
and red blood cell reads proportion. High variable genes 
were selected for subsequent analysis. Batch effects 
were removed using RunHarmony(). Cell subtypes were 
identified with FindClusters() and annotated using 
SingleR with BlueprintEncodeData as the reference 
database. Marker genes were identified using 
FindAllMarkers(). Data visualization was performed 
using DimPlot, DotPlot, and VlnPlot. 
 
Differential expression analysis 
 
The R package limma was used to perform differential 
expression analysis of samples from different tissue 
sources and clustering subtypes of TCGA PRAD cohort, 
with a threshold of adj.p-value < 0.05 and |log2FC| > 
0.585 (1.5 times the FoldChange value as cutoff) after 
Benjamini-Hochberg (FDR) correction for selecting 
differentially expressed genes. 
 
Unsupervised clustering analysis 
 
Prostate cancer subtypes were identified using the 
ConsensusClusterPlus R package, which employed a 
resampling rate of 80% and 1000 repetitions to ensure 
clustering stability. Consensus clustering analysis was 
conducted on PRAD samples, and KM survival curves 
were generated between subtypes with the survival R 
package. The significance of survival differences was 
determined using a Log-rank test. The final subtype 
classification was based on a clustering result that 
exhibited good performance and significant survival 
differences between subtypes. 
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Construction of OMR 
 
In this study, common differentially expressed genes 
(common_degs) were identified between different 
clusters, active and inactive oxidative stress cell 
populations, and active and inactive immune cell 
populations. Single-factor Cox analysis was performed 
on these intersection genes to screen for tumor prognosis-
related genes using a p-value threshold of < 0.05. A 
prognostic risk score model for prostate cancer was then 
constructed based on the cox-selected genes. For variable 
selection in the risk model, the Lasso (Least absolute 
shrinkage and selection operator) method developed by 
Tibshirani (1996) was employed to decrease the number 
of genes. Finally, a multivariable Cox regression model 
was employed to construct the prostate cancer risk score 
model, with the calculation formula presented below: 
 

 
0

Riskscore = βi × χi
n

i =
∑  

 
βi: The weight coefficient of each gene; χi: The 
expression level of each gene. 
 
To evaluate the predictive ability of the perturbation 
scoring model, ROC (receiver operating characteristic) 
curves were generated using the timeROC R package. 
The ggplot2 R package was employed to create scatter 
plots of survival time and status, in addition to sample 
scores. The tumor samples were categorized into high- 
and low-risk groups using the median risk score 
threshold, and prognostic survival curves were 
constructed using the Kaplan-Meier method. The log-
rank test was employed to evaluate any significant 
differences in survival between these two groups. 
 
KM curve for gene expression 
 
The Kaplan-Meier method was employed to generate 
prognostic survival curves based on gene expression 
data obtained from PRAD tumor samples. The samples 
were divided into high- and low-expression groups 
using the median expression level as the threshold, and 
differences in survival between these two groups were 
assessed via log-rank test. Genes with a p-value less 
than 0.05 were considered significantly associated with 
PRAD prognosis. 
 
Evaluation of immune cell infiltration ratio 
 
Immune cell infiltration ratios were calculated based on 
the TCGA PRAD dataset using multiple methods, 
including CIBERSORT, ESTIMATE, TIMER, xCell, 
and ssGSEA. CIBERSORT employed a leukocyte 
feature gene matrix LM22 to differentiate 22 types of 

immune cells. ESTIMATE provided immune score, 
tumor purity, stromal score, and ESTIMATE score 
calculations. TIMER estimated the abundance of six 
immune cell types via deconvolution methods. xCell 
performed cell-type enrichment analysis utilizing gene 
expression data of 64 immune cells and stromal cell 
types, with machine learning applied to reduce 
correlation between closely related cell types. 
 
Gene set enrichment analysis 
 
The ssGSEA algorithm of the R package GSVA was 
used to calculate the enrichment scores for 
HALLMARK pathways and immune-related gene sets 
based on the gene expression data of prostate cancer 
samples from TCGA. The differences in enrichment 
scores between groups were calculated using box plots 
and statistical tests. To examine the relationship 
between the Risk score and the enrichment score, we 
utilized the cor() function to calculate the correlation 
and visualized the results using the R package corrplot. 
 
Genomic SNV analysis 
 
Utilized the maf file of somatic mutation detection results 
from the TCGA PRAD cohort to generate a waterfall plot 
via the oncoplot() function of the R package maftools, 
which demonstrated differences in SNV mutations across 
different groups. Differential statistics on mutated genes 
between high- and low-risk groups were performed using 
the mafCompare() function, with a cumulative distribution 
bar graph used to visualize differences in mutations 
between these two groups. Tumor mutational burden 
(TMB) was also calculated for each sample to investigate 
the relationship between model grouping and TMB. 
 
Drug sensitivity 
 
Utilized gene expression data from the PRAD cohort 
combined with the GDSC database to predict sensitivity 
(IC50 value) of 138 drugs using the pRRophetic R 
package. Differences in IC50 values between high- and 
low-risk groups were examined via box plots and 
statistical tests. Significant drugs were selected for 
heatmap generation to explore the relationship between 
the model and chemotherapy drugs. The Spearman 
algorithm was employed to calculate correlation 
between drug IC50 value and gene expression in the 
model or Risk score, with scatter plots utilized to 
display the correlation between the IC50 value and Risk 
score for drugs exhibiting strong correlation. 
 
Prediction of immune therapy response 
 
The Tumor Immune Dysfunction and Exclusion (TIDE) 
score, available at http://tide.dfci.harvard.edu, is a 
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computational algorithm that predicts immunotherapy 
response based on pre-treatment tumor expression 
profile. This algorithm simulates various tumor immune 
escape scenarios with different levels of cytotoxic T-
cell infiltration by scoring multiple published 
transcriptomic biomarkers. The TIDE score combines 
both T-cell dysfunction and exclusion features, leading 
to superior predictive ability relative to other 
biomarkers. Additionally, the TIDE score remains 
stable across varying levels of tumor-infiltrating T-cell 
cytotoxicity. Alternatively, the Immunophenoscore 
(IPS) score is used to evaluate tumor immunogenicity 
and predict its response to immunotherapy in various 
cancer types. IPS scores for PRAD tumor samples were 
obtained from the TCGA dataset via an online website 
(https://tcia.at/home), with statistical tests employed to 
compare scores between groups. 
 
Cell culture and transfection 
 
The PC-3 cell line and DU-145 cell line (Prostate 
cancer cell line) was acquired from the Chinese 
Academy of Sciences and cultured in DMEM high-
sugar medium comprising 10% fetal bovine serum (FBS; 
GIBCO) and 1% penicillin-streptomycin. Cells were 
cultured in a humidified incubator under 5% CO2 at 
37°C. One day prior to transfection, PC-3 and DU-145 
cells were cultured in six-well plates to achieve 50–60% 
confluence. For MXRA8 overexpression, the sequence 
was cloned into the pcDNA3.1 vector and packaged 
using pMD2.G and psPAX2. Transfection of the 
MXRA8-targeted pEZ-M03 vector was carried out 
using Lipofectamine 2000 as per the provided 
guidelines [35]. 
 
Measurement of intracellular ROS levels 
 
Intracellular ROS levels were assessed using a Reactive 
Oxygen Species Assay Kit (Beyotime Biotechnology, 
China), which employed 2′,7′-dichlorofluorescein-
diacetate (DCFH-DA) as the primary component. 
DCFH-DA is rapidly oxidized by intracellular ROS to 
produce fluorescent dichlorofluorescein (DCF). To 
measure DCF levels, cells were exposed to various DET 
concentrations and time intervals, then seeded into 96-
well plates and incubated with DCFH-DA at 37°C for 
20 minutes, following established protocols. 
 
RNA isolation and RT-PCR analysis 
 
Total RNA was extracted using RNAiso Plus (9108, 
Takara, Japan). The mRNA was reversely transcribed 
into complementary DNA with PrimeScript RT Master 
Mix (RR036A, Takara, Japan). The expression levels of 
MXRA8 mRNA were detected via TB Green® Premix 
Ex Taq™ II (RR820Q, Takara, Japan). GAPDH or U6 

were applied as internal controls. The relative 
expression levels of genes were calculated with the 
2−ΔΔCt method. The primers used for upstream and 
downstream sequences of MXRA8 were 5′-
TAACTTGGCGGAGTTCGCTGTG-3′ and 5′-
CTAGGTCGATGTACTTGGCAGG-3′, respectively. 
 
Patients and tissues 
 
All of the experiments were approved by the 
Institutional Review Board and Ethics Committee of the 
First Hospital of China Medical University. And all 
patients signed an informed consent form. Prostate 
cancer tissues and corresponding adjacent tissues were 
collected and stored at −80°C. None of the patients had 
received preoperative chemotherapy or radiotherapy. 
We collected 10 pairs of prostate cancer and 
corresponding adjacent tissues. 
 
IHC (immunohistochemistry) analysis 
 
Tissue fixed in 4% paraformaldehyde, then embedded 
in paraffin. Tissue specimens were successively 
incubated with antibodies against Ki-67, a biotin-
conjugated secondary antibody and an avidin-biotin-
peroxidase complex. Visualization was performed using 
amino-ethyl carbazole chromogen. Slides were analyzed 
using the Olympus BX43 microscope system (Olympus, 
Japan). 
 
CCK8 assay 
 
CCK-8 assay was used to measure the cell 
proliferation. Cells in each group were seeded in 96-
well plates at a concentration of 2 × 103 cells per well, 
and left to adhere for 4 h. Then cells were incubated 
for 24 h, 48 or 72 h. At 0, 24, 48 and 72 h, the culture 
medium was discarded, and CCK-8 detection reagent 
was added. After incubated at 37°C for 1 h, the 
absorbance of cells was measured at 450 nm using a 
microplate reader. 
 
Colony-forming experiments 
 
The cells of each group were inoculated into a 3.5 cm 
petri dish at a density of 1000 cells/dish. After being 
cultured at 37°C, 5% CO2 for 2 weeks, the cells were 
washed using PBS, and fixed with 4% paraformaldehyde 
for 15 min. Then the cells were stained with 0.1% crystal 
violet for 30 min, and observed using optical microscope, 
or counted using ImageJ software. 
 
Cell migration and Invasion assays 
 
For transwell migration assays, cells were transferred 
to the top chamber of a noncoated membrane chamber 
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in DMEM medium containing 5% fetal calf serum. 
And for transwell invasion assays, cells were 
transferred to the top chamber of a Matrigel-coated 
invasion chamber in DMEM medium containing 5% 
fetal calf serum. DMEM containing 20% fetal calf 
serum was added to the lower chamber to act as a 
chemoattractant. After incubation for 24 h, non-invasive 
cells were removed from the upper well, and the 
remaining invasive cells were fixed with 4% 
paraformaldehyde and stained with crystal violet. The 
cells were observed and photographed using an optical 
microscope. 
 
Statistical analysis description 
 
Statistical analysis for two-group sample comparisons 
was performed using the Wilcoxon test, while the 
Kruskal-Wallis test was utilized for multiple group 
comparisons during statistical plotting. Significance 
levels were denoted as ‘ns’ (p > 0.05), ‘*’, ‘**’, ‘***’, and 
‘****’ for p-values less than or equal to 0.05, 0.01, 0.001, 
and 0.0001, respectively. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Functional and immune infiltration differences in TCGA prostate cancer subtypes. (A) Box plot 
showing differences in immune cell infiltration proportions calculated by ssGSEA algorithm; (B) Box plot showing differences in immune cell 
infiltration proportions calculated by TIMER algorithm; (C) Box plot showing differences in stromal score, immune score, ESTIMATE score, 
and tumor purity, with red and blue representing C1 and C2, respectively. 
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Supplementary Figure 2. Box plot showing differences in immune cell infiltration proportions calculated by CIBERSORT 
algorithm, with red and blue representing C1 and C2, respectively. 
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Supplementary Figure 3. Box plot showing differences in immune cell infiltration proportions calculated by xCell algorithm, 
with red and blue representing C1 and C2, respectively. 
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Supplementary Figure 4. Validation results of the model performance using TCGA testing set. (A–C) Risk triad plots of TCGA 
testing set, including heatmap of model gene expression in risk score groups, scatter plot of risk scores, and scatter plot of survival time, 
with red representing high-risk group and blue representing low-risk group; (D) KM curve of TCGA testing set; (E) ROC curve of the overall 
TCGA dataset. 
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Supplementary Figure 5. Validation results of the model performance using the overall TCGA dataset. (A–C) Risk triad plots of 
the overall TCGA dataset, including heatmap of model gene expression in risk score groups, scatter plot of risk scores, and scatter plot of 
survival time, with red representing high-risk group and blue representing low-risk group; (D) KM curve of the overall TCGA dataset; (E) ROC 
curve of the overall TCGA dataset. 
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Supplementary Figure 6. Validation results of the model performance using the GSE70770 validation set. (A–C) Risk triad 
plots of the GSE70770 dataset, including heatmap of model gene expression in risk score groups, scatter plot of risk scores, and scatter plot 
of survival time, with red representing high-risk group and blue representing low-risk group; (D, E) KM and ROC curve plots of the 
GSE70770 dataset. 
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Supplementary Figure 7. Validation results of the model performance using the GSE70769 validation set. (A–C) Risk triad 
plots of the GSE70769 dataset, including heatmap of model gene expression in risk score groups, scatter plot of risk scores, and scatter plot 
of survival time, with red representing high-risk group and blue representing low-risk group; (D, E) KM and ROC curve plots of the 
GSE70769 dataset. 
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Supplementary Figure 8. Pathway enrichment differences among model groups. (A) Differences in HALLMARK pathway 
enrichment scores between high and low-risk groups, with asterisk indicating significance of differences; (B) Correlation heatmap between 
Riskscore and model gene expression with pathway enrichment scores, with color depth representing the level of correlation and *indicating 
significance. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–10. 
 
Supplementary Table 1. Single cell data analysis clustering and expression analysis results. 

 
Supplementary Table 2. Identification and expression differences of single cell active oxidative stress and 
metabolic population. 

 
Supplementary Table 3. TCGA_ PRAD queue Tumor_ VS_ Differential expression analysis of Normal and 
differential analysis of OS gene set ssGSEA enrichment. 

 
Supplementary Table 4. Identification of oxidative stress metabolic subtypes and analysis of differential 
expression between subtypes. 

 
Supplementary Table 5. Result of proportion of immune infiltrating cells. 

 
Supplementary Table 6. Risk model construction and validation results. 

 
Supplementary Table 7. Analysis of immune checkpoint expression associated with model genes and high and 
low risk groups. 

 
Supplementary Table 8. Analysis results of ssGSEA enrichment in Hallmark gene set. 

 
Supplementary Table 9. Analysis of drug sensitivity differences in model grouping. 

 
Supplementary Table 10. Analysis results of immune therapy response between high and low risk groups. 

 
 
Supplementary Table 11. Clinical information table of TCGA PRAD cohort. 

TCGA PRAD Group information Number of samples 

PFS 0 389 
1 89 

Age 
Age <60 316 
Age ≥60 162 

T_Stage T1/2 375 
T3/4 100 

N N0 335 
N1 74 

M 
M0 437 
M1 3 

Race 
ASIAN 12 

INDIAN_AFRICAN 57 
WHITE 395 
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Supplementary Table 12. Statistical of Oxidative Stress and Energy Metabolism Gene Set. 

Related pathways PathwayID Gene Count 
Response to oxidative stress GO:0006979 444 
Cell death in response to oxidative stress GO:0036473 89 
Cellular oxidant detoxification GO:0098869 102 
Biological oxidations R-HSA-211859 221 
Metabolism of carbohydrates R-HSA-71387 292 
Mitochondrial Fatty Acid Beta-Oxidation R-HSA-77289 38 
Glycogen synthesis R-HSA-3322077 16 
Glycogen metabolism R-HSA-8982491 27 
Glucose metabolism R-HSA-70326 92 
Glycogen breakdown glycogenolysis R-HSA-70221 15 
Glycolysis R-HSA-70171 72 
Pyruvate metabolism R-HSA-70268 31 
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