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INTRODUCTION 
 

EC is a prevalent gynecological malignancy globally 

[1]. While many cases are detected early with a 

positive prognosis, the 5-year survival rate of EC has 

not greatly increased, and its incidence and mortality 

rates are increasing annually [2]. Although many 

studies have focused on biological subsets of EC rather 

than only histological types, the clinical application of 

the identified biomarkers remain difficult. Further 

exploration the development mechanism of EC is 

crucial to optimize treatment options and enhance 

patient prognosis. 

 

The development and advancement of tumors are reliant 

on their interactions with the tumor microenvironment 
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ABSTRACT 
 

Objective: Studies have firmly established the pivotal role of the immunogenic cell death (ICD) in the 
development of tumors. This study seeks to develop a risk model related to ICD to predict the prognosis of 
patients with endometrial carcinoma (EC). 
Materials and Methods: RNA-seq data of EC retrieved from TCGA database were analyzed using R software. We 
determined clusters based on ICD-related genes (ICDRGs) expression levels. Cox and LASSO analyses were 
further used to build the prediction model, and its accuracy was evaluated in the train and validation sets. 
Finally, in vitro and in vivo experiments were conducted to confirm the impact of the high-risk gene IFNA2 on EC. 
Results: Patients were sorted into two ICD clusters, with survival analysis revealing divergent prognoses 
between the clusters. The Cox regression analysis identified prognostic risk genes, and the LASSO analysis 
constructed a model based on 9 of these genes. Notably, this model displayed excellent predictive accuracy 
when validated. Finally, increased IFNA2 levels led to decreased vitality, proliferation, and invasiveness in vitro. 
IFNA2 also has significant tumor inhibiting effect in vivo. 
Conclusions: The ICD-related model can accurately predict the prognosis of patients with EC, and IFNA2 may be 
a potential treatment target. 
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(TME), specifically the immune constituents [3]. 

Immunotherapy holds great promise as a treatment 

option for diverse solid tumors and resistant 

malignancies. Recently, many studies have explored 

new biomarkers associated with the immune 

microenvironment to improve the efficacy of cancer 

immunotherapy [4, 5]. To thoroughly explore the 

potential predictive significance of immune-related 

indicators, a wealth of data concerning the interplay 

between tumor-infiltrating immune cells and patients’ 

molecular profiles is imperative. However, the dearth  

of robust evidence from clinical trials hinders a 

comprehensive understanding of immunotherapy’s 

efficacy, which currently remains confined to a select 

cohort of patients. 

 

ICD refers to a unique type of programmed  

cell death that enables individuals with functional 

immunity to initiate immunological reactions against 

antigens associated with deceased cells [6]. In the 

physiological state, when cells are stimulated or 

encounter specific conditions, they will release damage-

associated molecular patterns (DAMPs) and secrete 

cytokines, which bind to pattern recognition receptors 

on dendritic cells (DCs), leading to the initiation of 

ICD. The death of these cells will further trigger  

both innate and adaptive immune responses [3, 7]. 

Recent studies indicate that the efficacy of specific 

chemotherapeutic agents relies on their capacity to 

trigger ICD, which transforms deceased tumor cells 

into vaccines with antitumor properties [8, 9]. A 

combination of ICD inducers and immune checkpoint 

inhibitors can effectively enhance the antitumor effects, 

by improving tumor cell immunogenicity and boosting 

tumor immunotherapy [10–13]. Thus, the likelihood  

of using ICD as a primary endpoint to identify immune 

biomarkers is high. A recent study of large-scale meta-

analysis indicates that ICD-related immunological meta-

gene signatures can be used to analyze the prognosis  

of patients with lung, breast, or ovarian malignancies 

[14]. Nevertheless, the association between ICD and 

EC requires further elucidation. 

 

The primary aim of this research is to explore  

an innovative methodology, utilizing bioinformatics 

analysis of transcriptomic data obtained from TCGA 

database for patients with EC. The methodology 

employs ICD as a prognostic marker for evaluating the 

prognosis of patients with EC, while simultaneously 

presenting novel therapeutic targets for intervention.  

A novel prognostic risk model incorporating nine 

ICDRGs was developed to forecast the prognosis and 

immune microenvironment features in patients with 
EC. This model has the potential to facilitate informed 

decision-making by physicians concerning treatment 

options and patient outcomes in the foreseeable future. 

RESULTS 
 

Identification of ICDRGs and consensus clustering 
 

Figure 1 demonstrated the flow chart of this study. A 

dataset comprising 556 cancer samples and 33 normal 

samples, along with comprehensive clinical data, was 

obtained from The Cancer Genome Atlas (TCGA). 

Subsequently, 195 ICDRGs were obtained based on 

the GeneCards database. The results obtained revealed 

the top 50 significantly differentially expressed genes 

(DEGs), as shown in Figure 2A. An interaction 

network was constructed to further reveal the intricate 

relationships between these DEGs (Figure 2B). 

 

We then determined the two groups associated with 

the ICD using consensus clustering. After k-means 

clustering, all cancer samples were sorted into two 

clusters based on various ICDRGs expression patterns 

(Figure 2C, 2D). Samples with different ICDRGs 

expression levels were clustered into different clusters 

(Figure 2E). Thus, two clusters represented the ICD-

low and ICD-high groups, respectively. Furthermore, 

survival analysis demonstrated divergent clinical 

outcomes between the two groups. The ICD-high 

group displayed a poor clinical prognosis, whereas  

the ICD-low group exhibited a favorable clinical 

prognosis (Figure 2F). 

 

Identification of the DEGs and signal pathways 

between the two ICD groups 

 

To unravel the intricate molecular machinery  

driving divergent clinical prognoses in the two groups, 

we conducted a comprehensive analysis to identify 

novel genes and unravel the underlying signaling 

pathways implicated in this divergence. A total of 

2,921 DEGs were detected between the two groups 

(Figure 3A, 3B). Furthermore, we performed Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses to investigate 

the potential roles of these DEGs in the initiation  

and progression of EC. The GO enrichment analysis 

unveiled significant involvement of these DEGs in 

crucial biological processes, cellular components, and 

molecular functions; that is, they showed the highest 

upregulation in leukocyte mediated immunity, the 

external side of the plasma membrane, and receptor 

ligand activity across these three aspects (Figure 3C). 

Meanwhile, KEGG enrichment analysis indicated that 

the upregulated genes primarily enriched immune-

related pathways, including cytokine-cytokine receptor 

interaction, chemokine signaling, viral protein inter-
actions with cytokines and cytokine receptors and 

immune response-regulating signaling (Figure 3D). 

This finding suggests that the DEGs between different 
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ICD groups are associated with immune-related 

pathways within the TME. 

 

TME-related immune characteristics in the two ICD 

groups 

 

Emerging evidence indicates that immune responses 

against tumors are influenced by ICD. We employed the 

CIBERS approach with the LM22 signature matrix to 

ascertain the infiltration status of 22 distinct immune cell 

types across these cancer samples (Figure 4A). Overall, 

analysis using the Estimation of Stromal and Immune 

cells in Malignant Tumor tissues using expression  

data (ESTIMATE) algorithm demonstrated higher 

immunological scores in the ICD-low group (Figure 4B). 

In detail, regulatory T cells (Tregs), resting and activated 

 

 
 

Figure 1. The flowchart of our study. 
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Figure 2. Identification of ICDRGs and ICD subtypes by consensus clustering. (A) Heatmap shows 50 ICD gene expression profiles 

among normal and EC samples in TCGA database; (B) PPI among the ICDRGs; (C) Heatmap depicts consensus clustering solution (k = 2) for 50 
genes in 466 EC samples; (D) Delta area curve of consensus clustering indicates the relative change in area under the cumulative distribution 
function (CDF) curve for k = 2 to 10; (E) Heatmap of 50 ICD-related gene expressions in different groups. Red represents high expression and 
blue represents low expression; (F) KM curves of OS in ICD-high and ICD-low groups. *p< 0.05, **p< 0.01, ***p< 0.001, and ****p< 0.0001. 
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natural killer (NK) cells, M1 and M2 macrophages, and 

activated mast cells exhibited significant in infiltration 

levels (Figure 4C). Particularly, a notable decrease in 

M2 macrophage numbers was observed in the low-ICD 

group. Furthermore, differential expression of nine 

human leukocyte antigen (HLA) genes was observed 

between the two groups (Figure 4D). Moreover, the 

ICD-high group displayed elevated gene expression for 

 

 
 

Figure 3. Identification of DEGs and underlying signal pathways in different groups. (A) Heatmap shows the DEGs in different 
groups; (B) Volcano plot presents the distribution of DEGs quantified between ICD-high and ICD-low groups with threshold of |log2 Fold 
change| > 1 and p < 0.05 in TCGA cohort; (C) Dots plot presents the top 10 of biological processes GO terms, cellular component GO terms, 
molecular function GO terms; (D) Dots plot presents the KEGG signaling pathway enrichment analysis. The size of the dot represents gene 
count, and the color of the dot represents -log10 (p. adjust-value). 
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Figure 4. Immune landscape of ICD-high and ICD-low groups. (A) Relative proportion of immune infiltration in ICD-high and ICD-low 

groups; (B) Violin plots show the median, and quartile estimations for each immune score; (C) Violin plot visualizes significantly different 
immune cells between different groups; (D, E) Box plots present differential expression of HLA genes (D) and multiple immune checkpoints 
(E) between ICD-high and ICD-low groups. *p< 0.05, **p< 0.01, ***p< 0.001, and ****p< 0.0001. 
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four immune checkpoint genes, namely LAG3, CD274, 

HAVCR2, and PDCD1LG2, compared to the ICD-low 

group (Figure 4E). These results indicate that there are 

differences in immune infiltration between the two ICD 

groups. The ICD-low group tends to have an immune 

hot phenotype. 

 

Development and validation of an ICD-associated 

prognostic model 

 

Clustering with ICDRGs shows potential prognostic 

value. To further identify prognostic factors, of the 

195 ICDRGs, 20 prognosis-related ICD genes were 

discerned through Univariate Cox regression (Figure 

5A), namely IL6, VCAM1, IL10, FN1, BIRC5, CCL2, 

IFNA1, MMP1, HMOX1, NOTCH2, SST, SERPINE1, 

BCAP31, IFNA2, PLA2G2A, TNFRSF11B, CCL11, 

ELN, KRT4, and COL3A1. Subsequently, a Least 

Absolute Shrinkage and Selector Operation (LASSO) 

analysis was carried out to screen nine of these genes 

for constructing a risk score model (Figure 5B).  

The risk score formula for these nine ICDRGs is as 

follows: 

 

Riskscore=0.000158532788724039*IL6+0.0001238556

84328424*BIRC5+0.000163885946212593*CCL2+9.0

6120621189331e-5*HMOX1+1.18478201856726e-5*SS 

T+0.00141579757617881*PLA2G2A+2.452794739571

31e-5*ELN+7.38602868946832e-5* KRT4+5.08402512 

736631e-6* COL3A1. 

 

The patients were assigned a risk score using the 

specified formula. By leveraging the median risk score 

as a benchmark, patients were categorized into high- 

and low-risk groups. Principal component analysis 

(PCA) and t-distributed stochastic neighbor embedding 

(t-SNE) evaluations of these nine genes in the all TCGA 

set demonstrate the model’s effectiveness in grouping 

patients with EC (Figure 5C, 5D). Figure 5E displays 

the survival status, score trend, and gene expression 

level of the model’s genes in the all TCGA set. The 

analysis results were also performed in the train and 

validation sets (Figure 5F, 5G). The dot plot depicting 

the survival status reveals a reduced number of fatalities 

in the low-risk group when contrasted with the high-risk 

group. The heat map of gene expression levels reveals 

higher expression levels of the nine prognosis-related 

ICD genes in the high-risk group as opposed to the low-

risk group. 

 

In an attempt to ascertain the predictive power of  

ICD in patients with EC, we conducted the receiver 

operating characteristic curve (ROC) and overall 
survival (OS) analyses on the two groups in the TCGA 

train, validation, and all sets. The area under the curve 

(AUC) values corresponding to the 1-year, 3-year, and 

5-year survival rates in the TCGA all set were  

0.720, 0.703, and 0.752, consecutively, and the  

OS value between high- and low-risk groups were 

significant (p<0.01) (Figure 6A), with similar results 

observed in the train and validation set (Figure  

6B, 6C). Additionally, the ICD-related prognostic 

model underwent both univariate and multivariate  

Cox regression analyses, which aimed to uncover  

its potential as an independent prognostic indicator. 

Grade, stage, and risk score emerged as independent 

prognostic predictors of EC (p<0.001) (Figure 6D, 

6E). These findings highlight the accuracy of the ICD-

based prognostic model in predicting outcomes for 

both patient cohorts. 

 

Clinicopathological analysis of the ICD-related 

prognostic model in EC 

 

To uncover the intricate association between the risk 

model we established and the diverse clinicopathological 

parameters, we employed a comprehensive heat map 

analysis. Figure 7A demonstrates profound distinctions 

in total TIP and age amongst the two groups (p<0.05). 

Furthermore, Figure 7B uncovers a striking link 

between the risk score and both age and TIP, while no 

such association is observed with grade and stage. 

Stratified survival analysis reveals that the high-risk 

group demonstrated considerably poorer OS across 

various EC subtypes, including subtype of patients with 

age≤65 (p<0.001), grade 3-4 (p=0.002), stage III-IV 

(p<0.001) and TIP<50 (p<0.001) (Figure 7C). These 

findings highlight the reliable prognostic ability of the 

ICD-related model predicting EC outcomes. 

 

A nomogram for clinical application 

 

To enhance the accuracy of prognostic assessment  

in patients with EC, we developed a nomogram 

incorporating key clinical parameters: age, grade, stage, 

and risk score (Figure 8A). The calibration curves of  

the nomogram (Figure 8B) uncovers commendable 

concordance between predicted and observed values 

across various time points, including 1-, 2-, 3-, and  

5-year OS. 

 

Relationship between an ICD-related prognostic 

model and TME 

 

Recognizing the pivotal role of immune components  

in the multifaceted process of tumorigenesis and 

development, it is necessary to scrutinize the association 

of the TME with the high- and low-risk groups,  

as depicted in Figure 9A. The ssGSEA algorithm  
was employed to quantify immune infiltration levels,  

using scores. Notably, the high-risk group exhibited 

significantly higher scores for aDCs, macrophages, 
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Figure 5. Construction of ICD-related prognostic model. (A) Univariate Cox analysis evaluates the prognostic value of the ICDRGs in 

terms of OS; (B) LASSO regression analysis to develop the prognostic model; (C, D) PCA and t-SNE analysis in the all TCGA set. The nine model 
genes did a more accurate job of dividing patients into two groups; (E–G) The survival status, risk score, and model gene expression in the 
TCGA all, train and validation sets. 

4927



www.aging-us.com 9 AGING 

pDCs, Th1 cells, and Tregs in comparison to the low-risk 

group (Figure 9B). Furthermore, significant variations 

were observed in all immune function subtypes, except 

cytolytic activity, HLA, and T cell co-stimulation 

(Figure 9C). 

Gene set variation analysis (GSVA) of the two 

different risk groups 

 

GSVA analysis identified a distinct pathway discrepancy 

between the two different risk groups. In the high-risk 

 

 
 

Figure 6. Validation of ICD-related prognostic model. (A–C) The ROC and OS analysis in the TCGA all (A), train (B), and validation  
(C) set; (D, E) Univariate and multivariate Cox analyses of clinical characteristics of patients with EC. 

4928



www.aging-us.com 10 AGING 

 
 

Figure 7. Clinicopathological analysis of the ICD-related prognostic model. (A) There were significant differences in total TIP and age 
between high and low-risk groups, *p < 0.05; (B) Relationships between the risk score and clinicopathological characteristics of EC patients; 
(C) KM curves for OS prediction in EC subtypes of Age ≤ 65 years, Grade 3-4, Stage III–IV and TIP <50. 
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Figure 8. A nomogram for clinical application. (A) The nomogram based on age, grade, stage, and risk score for providing prognosis of 

patients with EC; (B) Calibration plots for the 1-year, 2-year, 3-year, and 5-year OS nomogram model. 
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Figure 9. Analysis of immune microenvironment. (A) Scatter plots show the correlation of risk score with the infiltration of B cells 

naive, Macrophages M1, Macrophages M2, Mast cells activated, T cells follicular helper, and T cells regulatory (Tregs) in full TCGA set;  
(B, C) Comparison of 16 immune cell subtypes (B) and 13 immune function subtypes (C) between patients with low-risk group and high-risk 
group in TCGA all set. *p < 0.05, **p < 0.01, ***p < 0.001 and ns p> 0.05. 
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group, there was a significant downregulation of the 

KEGG pathway linked to factory transduction, while  

the pathways associated with cell cycle and B-cell 

receptor signaling exhibited significant upregulation 

(Supplementary Figure 1A). 

 

Validation of the role of IFNA2 in vitro and in vivo 

 

IFNA2, identified as a prognostic gene through Cox 

regression analysis, exhibited the highest hazard ratio 

(HR) value, confirming its involvement in EC. In 

immune cells, IFNA2 facilitates the biological functions 

of IFNα2 in tumors by expressing and secreting it.  

To validate the functional role of IFNα2, in vitro 

experiments were conducted. Following a 48-hour 

treatment with IFNα2 at various concentration gradients 

in the Cell Counting Kit 8 (CCK8) experiments, a 

significant decrease in the proliferation capacity of both 

cell types is observed (Figure 10A). Therefore, we further 

selected two concentrations, IFNα2-1 (2×104U/mL)  

and IFNα2-2 (8×104U/mL), to treat the cells for the 

subsequent experiments. The results demonstrate a 

significant decrease in the cloning formation capacity of 

the cells after treatment in the cell cloning assay (Figure 

10B, 10C). EdU staining revealed that the cells treated 

with IFNα2 had a significantly lower rate of EdU 

positivity compared to the control group, especially the 

IFNα2-2 group (Figure 10D, 10E). In addition, there 

was a significant decrease in the proliferative capacity 

of the treated cells compared to the control group as the 

incubation time (0h, 24h, 48h, 72h, and 96h) increased 

(Figure 10F). The Transwell experiment revealed a 

significant reduction in the migratory and invasive 

capabilities of both cell types treated with IFNα2 

(Figure 10G, 10H). Finally, we established a BALB/c 

mouse subcutaneous tumor model through the injection 

of HEC-1-A cells. After tumor grouping, administration 

of IFNα2 (0 or 10000U) via intraperitoneal injection 

was initiated and continued until day 25. The tumor 

image vividly illustrates the inhibitory effects of IFNα2 

on tumor growth in vivo (Supplementary Figure 2A–

2C). These results suggest that IFNα2 has significant 

potential in the treatment of EC. 
 

DISCUSSION 
 

EC ranks as the fourth most prevalent malignancy  

in women, with survival rates remaining stable over  

the past four decades [15]. Researchers hope to find 

breakthroughs in the progression of endometrial cancer, 

and immunotherapy has showed great promise in recent 

years [16]. ICD is a type of regulatory cell death that 

can elicit an anticancer immune response and boost the 
therapeutic efficacy of standard anticancer chemotherapy 

and radiotherapy [13, 17, 18]. Additionally, the ICD has 

significant prognostic value for the survival of many 

types of tumors, such as lung cancer, ovarian  

cancer, and head and neck squamous cell carcinoma 

[19–21]. However, the regulatory mechanism of ICD in 

EC and its relationship with EC prognosis remains 

unclear. Therefore, this study explored the expression of 

ICDRGs in EC, identified 20 prognostic ICDRGs, built 

a prognostic model based on 9 ICDRGs, and finally 

verified the role of the key gene IFNA2 in EC through 

experiments. 

 

The focus of this study was to construct the  

prognostic model. In this study, we identified 50 DEGs 

of ICDRGs and categorized the patients into two  

ICD groups. Notably, the ICD-low group exhibited a  

favorable clinical prognosis and an activated immune 

microenvironment. Therefore, it is valuable to further 

identify the prognostic ICDRGs. Next, we identified  

20 ICDRGs associated with patient outcomes by  

COX analysis, and constructed a risk model based  

on 9 ICDRGs by LASSO regression analysis. Among 

the 9 ICDRGs, research has demonstrated that IL6  

plays a crucial role in tumor progression within the  

immune microenvironment [22]. BIRC5 was considered 

a biomarker for kidney cancer [23]. CCL2 has been 

reported to promote the progression of EC by regulating 

the recruitment of macrophages [24]. Some studies have 

also reported that HMOX1, SST, PLA2G2A, KRT4 and 

COL3A1 are associated with tumor progression and 

prognosis [25–29]. To validate the model’s performance, 

we generated ROC analysis for the train, validation and 

all sets. In the train and all sets, the AUC values 

exceeded 0.7 at 1, 3, and 5 years, with the highest value 

of 0.806 observed at 5 years. In the prognostic study of 

EC based on ferroptosis-associated genes, the research 

model achieved an AUC value close to 0.7 for 1-year, 

3-year, and 5-year in both the training and testing 

cohorts [30]. This indicates that our model has certain 

predictive value. Additionally, our model demonstrated 

significant prognostic value for patients aged ≤65 years 

(p<0.001), patients with grade 3-4 (p=0.002), patients 

with stage III-IV (p<0.001), and patients with TIP<50 

(p<0.001). Meanwhile, multivariable regression analysis 

further validated the risk score as an independent 

prognostic factor for EC. Despite the potential of  

risk scores in predicting clinical outcomes of EC, the 

use of a nomogram is considered a more accurate 

approach as it incorporates the significance of each 

variable. Hence, we integrated the risk score with other 

clinical characteristics to construct a highly accurate 

nomogram. These results underscore the precision of 

our methodology in forecasting the prognosis of EC 

patients. 

 
Tumor development is strongly linked to the TME, 

especially immune components, which are vital for the 

development of effective treatments and prevention 
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Figure 10. Validation of the role of IFNA2 in vitro experiments. (A) A CCK-8 assay was used to detect the effect of IFNα2 on the 

proliferation of HEC-1-A and AN3CA cells; (B, C) After treated with IFNα2 (IFNα2-1 (2×104U/mL) and IFNα2-2 (8×104U/mL)), the cloning ability 
of HEC-1-A and AN3CA cell lines decreased significantly; (D, E) EdU staining showing the effect of IFNα2 on HEC-1-A and AN3CA cells; (F) CCK-
8 assay. After treated with IFNα2, the activity of HEC-1-A and AN3CA cell lines decreased significantly; (G, H) Transwell assay. After treated 
with IFNα2, the migration and invasion abilities of HEC-1-A and AN3CA cell lines were significantly decreased. *P<0.05, **P< 0.01, 
***P<0.001. 
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strategies [31]. Tumor-associated macrophages (TAMs) 

have emerged as key regulators in shaping the TME 

[32–34]. TAMs can adopt the M2 phenotype in EC, 

promoting tumor growth and invasion through various 

mechanisms [24, 35, 36]. Conversely, polarization of 

TAMs to the M1 phenotype can inhibit tumor growth 

[37]. Previous studies have demonstrated a negative 

correlation between infiltration of M2-like TAMs and 

the prognosis of EC [38–40]. Our findings indicate  

that the ICD-high group exhibited higher infiltration  

of M2 macrophages compared to the ICD-low group, 

with a positive correlation between risk score and  

M2 macrophages. These results align with previous 

research. Tumor cells evade immune system recognition 

through pathways such the immune checkpoint pathway 

[41]. Our study revealed increased expression levels of 

immune checkpoint genes LAG3, CD274, HAVCR2, 

and PDCD1LG2 the ICD-high group. High expression 

of LAG3 and CD274 in immune cells has been 

associated with poor prognosis in EC [42, 43]. The 

discovery of the immune system’s pivotal role in the risk 

model underscores its potential as a target for enhanced 

prognostic assessment and personalized intervention in 

patients with EC. 

 

In our study, IFNA2 was identified as a prognostic  

gene for EC, with the highest HR value. IFNα2, 

expressed by IFNA2, belongs to the IFNα family and is a 

widely implicated immunomodulatory protein in tumor 

development [44]. We demonstrated the inhibitory effect 

of IFNA2 on tumor proliferation in both in vivo and  

in vitro experiments, providing further evidence for the 

role of IFNA2 in EC. Numerous previous studies have 

indicated the involvement of IFNA2 in the progression of 

various malignancies. Since it has been demonstrated that 

IFNα directly blocks cell cycle progression and triggers 

apoptosis, it was formerly considered to be a potential 

tumor therapy [45]. The effective and sustained clinical 

response of IFNα2 in the treatment of a variety of tumors 

has been expanded and confirmed [46, 47]. Recent studies 

have found that by altering glucose metabolism in the 

hepatocellular carcinoma microenvironment, IFNα can 

improve anti-PD-1 activity [48, 49]. Thus, our findings 

suggest that IFNA2 may serve as a potential factor to 

improve the effectiveness of immunotherapy for EC. 

 

Our study has several limitations. Firstly, all the data 

analyzed in our study were obtained from the TCGA 

database, and further studies with larger sample sizes 

are needed. Due to the limitations of available data,  

we were unable to perform more subgroup analyses. 

Additionally, the lack of external datasets in the 

validation cohort to confirm our findings may result in 
biased results and a higher false-positive rate. Secondly, 

we only validated the potential therapeutic role of 

IFNA2 in EC through in vivo and in vitro experiments, 

hence further research is required to explore whether 

ICDRGs can serve as diagnostic biomarkers or 

therapeutic targets. Lastly, we did not investigate the 

underlying mechanisms of different ICDRGs in EC. 

Future studies should focus on elucidating the detailed 

mechanisms between ICD and EC. 

 

CONCLUSIONS 
 

In summary, we constructed a prognosis model for EC 

based on ICDRGs. ICDRGs have demonstrated good 

reliability in prognostic prediction. We also validated 

the inhibitory effect of IFNA2 on EC proliferation, 

which could serve as a potential therapeutic target. This 

study enhances the prediction of prognosis in patients 

with EC, providing new opportunities for the diagnosis 

and treatment of EC. 

 

MATERIALS AND METHODS 
 

Data collection 

 

A dataset consisting of 556 malignant and 33 normal 

samples was assembled by retrieving transcriptome 

sequencing (RNA-seq) data and comprehensive clinical 

information from the prestigious TCGA database 

(https://portal.gdc.cancer.gov). Rigorous measures were 

taken to ensure the integrity and reliability of the data, 

and patients with incomplete clinical information, such 

as missing survival data or outcome status, were 

excluded. Due to the authoritative nature of the public 

database, this study was exempted from requiring 

approval from the ethics committee. 

 

Identification of DEGs related to ICD 

 

The “limma” R package was utilized to determine 

DEGs between malignant and normal samples, with 

screening a stringent requirement of |log2 (fold 

change)|>1 and p<0.05, facilitating the identification of 

molecular subtypes. 

 

Protein-protein interactions (PPI) network analysis 

 

A PPI network was generated using the Search Tool for 

the Retrieval of Interacting Genes/Proteins (STRING) 

database (http://www.string-db.org/) to investigate the 

relationships between DEGs [50]. 

 

ICDRGs consensus clustering 

 

Patients with EC were stratified into two clusters  

based on DEGs associated with ICD using the 
“ConsensusClusterPlus” package in R. Two groups 

were identified with different ICDRGs expression 

levels: the ICD-high group, which had high ICDRGs 
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expression levels, and the ICD-low group, which had low 

ICDRGs expression levels. Furthermore, the “survival” R 

package was used to generate OS curve across the two 

groups to assess the predictive signature of the ICDRGs. 
 

Construction of an ICD-associated prognostic model 
 

A 1:1 random split was performed to create  

train and validation sets from the available  

data. The train set was employed to formulate a 

prognostic risk model for ICD, while the validation  

set was utilized to assess the credibility of this model. 

Initially, univariate Cox regression analysis was 

employed on the train set to identify prognostic genes 

associated with ICD. Subsequently, the “glmnet” R 

package’s LASSO algorithm was utilized to select 

candidate genes (p<0.05), with a lambda value of  

1000 [51]. A multivariate Cox regression analysis  

was executed to validate the correlations, and the 

resulting coefficients were used to construct an ICD-

related model for prognostic prediction. Finally, the 

risk score for each patient with EC was determined  

by applying an algorithmic equation as follows: 
n

k 1
Risk score Coef(i) Expr(i)

=
=  . In this equation, 

Exp i denotes the degree of gene expression for 

ICDRGs associated with the patient prognosis with  

EC, while Coef i symbolizes the regression coefficient 

obtained through multivariate Cox regression analysis 

for the respective genes. Using the median risk score 

as a criterion, the patients with EC were categorized 

into groups with either high or low risk. 
 

Validation and evaluation of ICD-associated 

prognostic model 
 

Survival analyses were carried out on not only the train 

set but also the validation set to evaluate the prognostic 

model’s precision. The prognostic model’s performance 

was validated by generating ROC analysis, and AUC 

values were derived with the assistance of the 

“survivalROC” R package. To compare distribution 

associations across different groups, we employed the R 

package “ggplot2” to execute PCA and t-SNE analysis. 

Survival analysis was employed to ascertain the 

predictive significance of medical indicators in 

measuring the difference in prognosis between the two 

groups. Additionally, univariate and multivariate Cox 

regression analyses were executed to appraise the 

autonomous prognostic relevance of the risk model, 

considering variables such as age, sex, and TNM stage. 
 

Performing enrichment analyses on GO terms and 

KEGG pathways 
 

The “ClusterProfiler” R package was utilized to execute 

GO and KEGG analyses on DEGs, aiming to unveil 

latent signaling pathways that differentiate between 

various groups and employing a statistical threshold of 

p<0.05. Additionally, GSVA, implemented through  

the “GSVA” R package, was harnessed to explore the 

variation in biological processes and pathways among 

various groups. 

 

Estimation of the TME 

 

Utilizing the algorithm of ESTIMATE, we appraised 

the composition of tumor cells from four dimensions: 

ESTIMATE score, immune score, stromal score, and 

tumor purity. Immune infiltration analysis employing 

the CIBERSORT algorithm compared a set of 22 

immune cell types, HLA genes, and checkpoint genes. 

 

Developing a prognostic nomogram 

 

To enhance the accuracy of evaluating the prognostic 

model’s predictive capability, we developed a nomogram 

that incorporates the clinical parameters of patients with 

EC. This nomogram was constructed using age, grading, 

staging, and risk score derived from multivariate Cox 

regression analyses. 

 

Cell culture 

 

The EC cell lines HEC-1-A and AN3CA were procured 

from the biobank at the First Affiliated Hospital of 

Nanjing Medical University. HEC-1-A cells were 

nurtured in McCoys’ 5A medium (ProCell, Wuhan, 

China) fortified with 10% fetal bovine serum (FBS; 

VivaCell, Shanghai, China). AN3CA cells underwent 

cultivation in a medium consisting of DMEM (Gibco, 

BRL, USA) enriched with 10% FBS. All cells were 

maintained at 37° C with 5% CO2 and passaged upon 

reaching 80% confluence for subsequent experiments. 

 

CCK8 assay 

 

Upon completing the digestion, centrifugation, and 

resuspension steps, the cells were meticulously dispensed 

into a 96-well plate at a precise density of 5×103 cells per 

well. Subsequently, the plate underwent incubation, 

utilizing a 10 µL infusion of the CCK-8 labeling reagent 

(CT0001-B; Sparklade) for a duration of 2 hours. The 

cells were treated with CCK-8 (Sparklade, Shandong, 

China) for 0, 24, 48, 72, and 96 h. Finally, to determine 

the viability of the cells, we determined the optical 

density of the samples at the wavelength of 450 

nanometers employing an enzyme immunoassay reader. 

 

Colony formation assay 

 

A population of 1000 cells was distributed into  

each well of a six-well plate, followed by an 
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incubation period of 2-3 weeks. Once cell clones 

became visible, the cells were delicately rinsed  

with a phosphate-buffered saline (PBS) solution, 

ensuring gentle removal of any residual debris. 

Subsequently, they were meticulously fixed with a  

4% paraformaldehyde (PFA) solution for a precisely 

timed period of 15 minutes. Following another PBS 

rinse, the cells were subjected to staining using crystal 

violet for a duration of 20 minutes. After the staining 

process, the cells were left to air-dry before being 

counted using an appropriate method. 

 

EdU staining 

 

The experiment involved culturing cells in 96-well 

plates with a bustling population of 5000 cells per 

individual well, followed by a 48-hour treatment period. 

Negative and treated cells were then stained with EdU 

solution for 2 hours. After treating the cells with a 4% 

PFA fixative for 15 minutes, they undergo a triple wash 

in PBS solution containing 3% bovine serum albumin. 

Afterward, permeabilization was achieved by treating 

the cells with PBS enriched 0.3% Triton X-100 for  

15 minutes. Subsequently, the plates were incubated 

with freshly prepared Click reaction solution (50uL)  

for 30 minutes at room temperature in the absence of 

light exposure. EdU staining was executed using the 

BeyoClick EdU-594 kit (C0078S; Beyotime, Shanghai, 

China), while DAPI staining for nuclei was carried  

out using DAPI Staining Solution (C1005; Beyotime). 

Utilizing an inverted fluorescence microscope, the 

images were captured and recorded. 

 

Transwell assay 

 

Transwell chambers were utilized to conduct cell 

migration and invasion assays. For the invasion 

experiment, the upper chamber was coated with 

Matrigel solution. The subsequent steps were identical 

for both assays. In the upper chamber, non-serum 

cultured cells were digested after 24 hours and seeded 

at a concentration of 2×104 cells/well in 200 µL  

of non-serum medium. Simultaneously, the bottom 

chamber was filled with 600 µL of 10% serum 

medium. Upon fixation with a 4% PFA solution and 

subsequent staining with a 0.1% crystal violet solution, 

the cells were quantified. 

 

Mouse xenograft model 

 

We obtained female BALB/c nude mice (5  

weeks old) from Hangzhou Ziyuan Experimental 

Animal Technology (Zhejiang, China). The mice were 
maintained under a 12-hour light and 12-hour dark 

cycle, allowing them to freely access food and water 

throughout the dark period. 1×107 HEC-1-A cells with 

mixed PBS and Matrigel solution 1:1 were injected 

into the subcutaneous area of the right wing of  

nude mice. The tumor volume is calculated using  

the formula: volume = 1/2 (Length×Width2). Tumors 

with volumes approximately 100mm3 were randomly 

divided into two groups, with five tumors in each 

group and treated with IFNα2 (10000U) every two 

days. Tumor size was measured with a caliper every  

5 days. The mice were sacrificed 25 days later, the 

tumors were surgically removed, and the volume and 

weight of the tumors were measured. 

 

Statistical analysis 

 

The R program (version 4.1.0) was utilized for 

statistical analysis in the medical study. The Wilcoxon 

test compared two groups, while Spearman’s or 

Pearson’s correlation analyzed the correlation matrices. 

Survival differences were assessed using Kaplan-

Meier (KM) curves and the log-rank test, taking into 

account statistical significance at a p-value threshold 

of less than 0.05. 
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Supplementary Figure 1. GSVA analysis. (A) GSVA of two different risk groups based on the KEGG pathway. 
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Supplementary Figure 2. IFNA2 inhibited EC cell proliferation in vivo. (A) Tumor photos of different groups of nude mice in the NC 

group and IFNA2 treatment (10000U/2 days) group. (B, C) Average body weight (B) and tumor size (C) were used to observe the tumors.  
** p < 0.01 and *** p < 0.001. 
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