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INTRODUCTION 
 

In 2020, lung cancer contributed to 2.2 million new 

cases and 1.8 million deaths globally, positioning it as 

the second most frequently diagnosed cancer (11.4%) 

and the leading cause of cancer-related mortality 

(18.0%) [1]. Non-small cell lung cancer (NSCLC) 

represents the majority, constituting 85% of all lung 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Identifying an immunogenic cell death-related gene signature 
contributes to predicting prognosis, immunotherapy efficacy, 
and tumor microenvironment of lung adenocarcinoma 
 

Xue Li1,*, Dengfeng Zhang2,*, Pengfei Guo2,*, Shaowei Ma3,*, Shaolin Gao2, Shujun Li2,  
Yadong Yuan1 
 
1Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 
Shijiazhuang 050000, China 
2Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China 
3Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, 
China 
*Equal contribution 
 
Correspondence to: Yadong Yuan; email: yuanyadong1108@163.com, https://orcid.org/0000-0002-1319-4743 
Keywords: immunogenic cell death, lung adenocarcinoma, prognosis, tumor microenvironment, immunotherapy 
Received: June 7, 2023 Accepted: March 12, 2024 Published: April 3, 2024 

 
Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Background: Immunogenic cell death (ICD) is a regulated form of cell death that triggers an adaptive immune 
response. The objective of this study was to investigate the correlation between ICD-related genes (ICDGs) and 
the prognosis and the immune microenvironment of patients with lung adenocarcinoma (LUAD). 
Methods: ICD-associated molecular subtypes were identified through consensus clustering. Subsequently, a 
prognostic risk model comprising 5 ICDGs was constructed using Lasso-Cox regression in the TCGA training 
cohort and further tested in the GEO cohort. Enriched pathways among the subtypes were analyzed using GO, 
KEGG, and GSVA. Furthermore, the immune microenvironment was assessed using ESTIMATE, CIBERSORT, and 
ssGSEA analyses. 
Results: Consensus clustering divided LUAD patients into three ICDG subtypes with significant differences in 
prognosis and the immune microenvironment. A prognostic risk model was constructed based on 5 ICDGs and it 
was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an 
immunosuppressive microenvironment characterized by low immune score, low immune status, high 
abundance of immunosuppressive cells, and high expression of tumor purity. Cox regression, ROC curve 
analysis, and a nomogram indicated that the risk model was an independent prognostic factor. The five hub 
genes were verified by TCGA database, cell sublocalization immunofluorescence analysis, IHC images and  
qRT-PCR, which were consistent with bioinformatics analysis. 
Conclusions: The molecular subtypes and a risk model based on ICDGs proposed in our study are both 
promising prognostic classifications in LUAD, which may provide novel insights for developing accurate targeted 
cancer therapies. 
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cancer diagnoses, with lung adenocarcinoma (LUAD) 

emerging as a prominent histological subtype within 

NSCLC [2]. Early-stage LUAD often presents with 

nonspecific clinical manifestations, resulting in 

challenges in early detection. As the disease progresses, 

LUAD tends to manifest local infiltration and distant 

metastases, leading to a dismal prognosis with an 

overall 5-year survival rate of less than 20% [3]. 

Targeted therapy and immunotherapy are among the 

main approaches for LUAD treatment, and although 

both have achieved good efficacy [4], the clinical 

benefit to patients remains limited [5]. The common 

clinical indicators used to predict the prognosis of 

LUAD include tumor size, metastasis, and tumor 

mutational burden (TMB); however, tumors are highly 

heterogeneous, and the treatment effects and prognosis 

still vary greatly, even in patients with the same TNM 

stage [6]. Relying on these indicators alone is not 

always sufficient to accurately predict patient prognosis. 

Therefore, it is crucial to clarify the molecular 

mechanisms and characteristics of LUAD and to 

identify biomarkers that can predict the prognosis of 

patients with LUAD. 

 

Immunogenic cell death (ICD) represents a distinct 

mechanism of cellular demise whereby a “risk signal” is 

unveiled through the release of tumor-associated 

antigens (TAAs) and tumor-specific antigens (TSAs), 

thereby inciting an immune response within the 

organism [7, 8]. Central to the phenomenon of ICD is 

the emergence and/or escalation of damage-associated 

molecular patterns (DAMPs), comprising entities such 

as adenosine triphosphate (ATP), calreticulin (CRT), 

and high mobility group box 1 (HMGB1) [9]. ICD 

occurs when multiple chemotherapeutic drugs with 

specific cytotoxicity (such as oxaliplatin and taxol) or 

physical therapy (radiation and photodynamic therapy) 

are used to treat tumors, and tumor cells change from 

non-immunogenic to immunogenic, in which they 

recruit and activate immune cells to stimulate or 

enhance the anti-tumor immune response [10–13]. As a 

critical component of antitumor immunotherapy, further 

research into and elucidation of the mechanisms 

involved in the occurrence of ICD are particularly 

important for tumor treatment, as well as the 

development of tumor vaccines. 

 

In this study, 1315 LUAD samples were divided into 

three ICD-related subtypes based on 31 ICD-related 

genes (ICDGs), and the survival and immune 

microenvironment differences among the subtypes were 

explored. Additionally, an ICD prognostic signature 

was established to predict the immune micro-
environment, prognosis, and response to immuno-

therapy in patients with LUAD. The results indicate that 

the prognostic signature can be used to evaluate 

prognosis and reflect the efficacy of immunotherapy in 

LUAD. 

 

MATERIALS AND METHODS 
 

Dataset and preprocessing 

 

Samples with survival status unavailable and an overall 

survival (OS) of fewer than 30 days were omitted from 

analysis. The RNA-Seq data pertaining to patients with 

LUAD were retrieved from the TCGA database, 

formatted in TPM, and log-transformed. This dataset 

comprised 490 tumor samples and 59 normal samples. 

Additionally, the GSE72904 and GSE68465 datasets 

were acquired from the GEO database, accompanied by 

their respective platform files for annotation, and were 

designated as validation cohorts. Subsequently, survival 

analysis encompassed 490 patients from TCGA-LUAD, 

386 from GSE72904, and 210 from GSE68465. To 

mitigate batch effects, the combat function within the 

“sva” package was employed to preprocess GSE72904, 

GSE68465, and TCGA-LUAD datasets, culminating in 

the formation of a unified cohort referred to as the meta-

cohort. Notably, IMvigor, PRJEB23709, GSE78220, 

GSE91061, GSE100797, GSE165252, GSE35640, 

GSE135222, GSE126044, Nathanson, and the VanAllen 

datasets constitute immunotherapy cohorts, en-

compassing clinical information inclusive of responses 

to immunotherapy. Immunofluorescence staining of A-

431 cells and immunohistochemistry (IHC) images 

were obtained from the HPA database. Both somatic 

mutation and copy number variation (CNV) data were 

obtained from the TCGA-LUAD cohort. In addition, 31 

ICDGs that were annotated in the TCGA cohort were 

identified from the relevant literature [14]: IFNA1, 

IFNG, CXCR3, NT5E, PRF1, IL1R1, BAX, P2RX7, 

ENTPD1, IL17RA, EIF2AK3, TNF, CASP8, 

HSP90AA1, TLR4, IL10, HMGB1, NLRP3, FOXP3, 

CALR, IFNB1, MYD88, IL17A, ATG5, LY96, PDIA3, 

IFNGR1, PIK3CA, CASP1, IL6, and IL1B. In brief, our 

literature search involved multiple databases, including 

PubMed, and Web of Science, to ensure comprehensive 

coverage. We used a combination of keywords and 

phrases related to “Immunogenic Cell Death”, “ICD”, 

and “ICD-Associated Genes”. We applied filters to 

select studies published in the last ten years, focusing on 

those that clearly identified genes associated with ICD 

in the context of cancer. 
 

Moreover, GSE127465 is a single-cell sequencing set of 

LUAD, and its processing pipeline is from the TISCH 

database. We downloaded the expression profiles and 

cell annotation files processed by the TISCH database, 

and based on the ICDGs participating in the risk 

signature, we scored each malignant cell using 

“AddModuleScore” function and used the median value 
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to obtain malignant cells with high risk scores, and then 

finally implemented the default parameters in the “cell 

chat” package to perform cellular communication 

between malignant cells and other cells.  

 

Consensus clustering 

 

Unsupervised consensus clustering analysis was 

conducted based on prognostic ICDGs (p < 0.05). 

Principal component analysis (PCA) was then utilized 

to assess the relative independence of each subtype 

from the others. The determination of the optimal 

number of clusters was carried out employing the R 

package “ConsensusClusterPlus”, with 1,000 replicates 

and a pltem parameter set to 0.8 to assess subtype 

stability. OS disparities among clusters were evaluated 

via the Kaplan-Meier (KM) method, with the log-rank 

test employed to discern survival differences. 

Distributional disparities of categorical data across 

clusters were assessed using the chi-squared test. 

Furthermore, differentially expressed genes (DEGs) 

among distinct molecular subtypes were investigated 

utilizing the “limma” package. 

 

Enrichment analysis 

 

The “clusterProfiler” package within the R software 

environment facilitated GO annotation and KEGG 

pathway analysis. Significance in pathway enrichment 

was determined based on a threshold of P-value < 0.05 

and q-value < 0.05. Distinctions in biological pathways 

among subtypes were evaluated through Gene Set 

Enrichment Analysis (GSEA). Specifically, the 

c2.cp.kegg.v7.4.symbols.gmt served as the reference 

gene set, with a FDR threshold set at < 0.05 for 

screening purposes. 

 

Immune analysis 

 

Immune cell analysis incorporated a comprehensive 

array of algorithms, including TIMER, CIBERSORT, 

QUANTISEQ, MCP-counter, XCELL, and EPIC, to 

assess the diverse immune cell infiltration across 

distinct samples. Furthermore, the ESTIMATE 

algorithm was employed to compute stromal, 

ESTIMATE, and immune scores, thereby offering 

insights into the tumor microenvironment status. 

Following the classification proposed by Thorsson 

et al. [15], which categorized solid tumors in TCGA 

into six distinct immune expression signature 

subtypes, namely wound healing (Immune C1), IFN-

gamma dominant (Immune C2), inflammatory 

(Immune C3), lymphocyte depleted (Immune C4), 

immunological quiet (Immune C5), and TGF-beta 

dominant (Immune C6), our analysis provided a 

nuanced understanding of immune dynamics within 

the tumor milieu. 

 

Construction and validation of the ICD prognostic 

signature 

 

The TCGA-LUAD cohort was utilized for modeling 

purposes, while the GSE68465 cohort was employed 

for external validation. Redundant genes within the 

ICDGs were eliminated using the least absolute 

shrinkage and selection operator (LASSO) regression 

method. Subsequently, correlation coefficients and gene 

expression values were obtained through multivariate 

Cox regression analysis to establish a risk score formula. 

Subsequent categorization of patients into high- and low-

risk subgroups was based on the median value derived 

from the risk score formula. Univariate and multivariate 

Cox regression analyses were employed to evaluate the 

prognostic significance of the risk score within both the 

primary dataset and an external validation cohort. 

Receiver operating characteristic (ROC) curves were 

generated, and the area under the curve (AUC) was 

computed utilizing the “survivalROC” package to 

ascertain the predictive performance of the clinical 

signature. Furthermore, a prognostic nomogram was 

formulated utilizing the independent prognostic factors 

discerned through multivariate Cox regression. 

Subsequently, the nomogram’s performance was verified 

through calibration analysis. 

 

Mutation and drug sensitivity analysis 

 

The semi-inhibitory concentration (IC50) values were 

determined utilizing the “pRRophetic” package within 

the R software environment, with chemotherapy agents 

sourced from the Genome of Drug Sensitivity in  

Cancer (GDSC) database. Mutational disparities were 

illustrated using the “oncoplot” function of the 

“Maftools” R package. 

 

Protein expression validation 

 

Immunohistochemistry (IHC) Validation: We used 

immunohistochemical staining images from the  

Human Protein Atlas (HPA) database, available at 

v19.3.proteinatlas.org [16], to confirm the expression  

of the critical genes under investigation in both LUAD 

and adjacent normal tissue specimens. The evaluation  

of IHC images in the HPA database involved a 

comprehensive assessment of staining characteristics, 

intensity, quantity, and location with regard to 

individual genes (Detailed information about the 

statistical methods used for analyzing IHC images  

is available at the following web address: 

https://www.proteinatlas.org/about/assays+annotation#ih_

annotation). 
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Quantitative real-time PCR (qRT-PCR) 

 

Ten tumor tissue samples and adjacent normal lung 

tissue samples were procured from patients diagnosed 

with LUAD who underwent tumor resection at the 

Thoracic Surgery Department of The Second Hospital 

of Hebei Medical University. Ethical approval  

for sample collection was granted by The Medical 

Ethics Committee of the hospital. The experimental 

methodology was adapted from our previous work [17]. 

Briefly, total RNA was isolated from LUAD tissue 

samples and their corresponding normal tissues using 

the TRIzol reagent (Invitrogen, Carlsbad, CA, USA), 

following the manufacturer’s instructions. The quality 

and quantity of the extracted RNA were evaluated 

utilizing the NanoDrop ND-1000 Spectrophotometer. 

Total RNA (1 µg) underwent cDNA synthesis 

employing the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, 

CA, USA), adhering meticulously to the manufacturer’s 

protocol. qRT-PCR assays utilized the PowerUp SYBR 

Green Master Mix (Applied Biosystems) on the 

QuantStudio 5 Real-Time PCR System (Applied 

Biosystems). Primer sequences for target ICD-related 

genes and the endogenous control (GAPDH) were 

crafted utilizing the Primer Bank database. The 2−ΔΔCT 

method was employed to compute the relative 

expression levels of the target genes, with GAPDH 

serving as the normalization control. Triplicate runs of 

each sample were executed to ensure result precision. 

Primer efficiency was validated by generating standard 

curves through serial dilutions of cDNA, and specificity 

was confirmed by analyzing melting curves post-

amplification.  

 

The primer sequences were as follows: 

 

GAPDH Forward: 5′-GGAGCGAGATCCCTCCAAA 

AT-3′, Reverse: 5′-GGCTGTTGTCATACTTCTCAT 

GG-3′, NT5E Forward: 5′-GCCTGGGAGCTTACGA 

TTTTG-3′, Reverse: 5′-TAGTGCCCTGGTACTGGT 

CG-3′, HSP90AA1 Forward: 5′-AGGAGGTTGAGA 

CGTTCGC-3′, Reverse: 5′-AGAGTTCGATCTTGTT 

TGTTCGG-3′, EIF2AK3 Forward: 5′-ACGATGAGA 

CAGAGTTGCGAC-3′, Reverse: 5′-ATCCAAGGCAG 

CAATTCTCCC-3′, PIK3CA Forward: 5′-CCACGAC 

CATCATCAGGTGAA-3′, Reverse: 5′-CCTCACGGA 

GGCATTCTAAAGT-3′, P2RX7 Forward: 5′-TATGA 

GACGAACAAAGTCACTCG-3′, Reverse: 5′-GCAAA 

GCAAACGTAGGAAAAGAT-3′. 

 

Statistical analysis  

 
Statistical analyses were conducted using R software 

(version 4.0.1). The preceding section delineates 

comprehensive statistical methodologies employed for 

transcriptome data processing. Statistical significance 

was defined as a p-value below 0.05. 

 

RESULTS 
 

Landscape of ICDGs in LUAD 

 

In this study, 31 ICDGs were identified in TCGA 

cohort, and the distribution of ICDGs on chromosomes 

was shown in Figure 1A. We investigated the mRNA 

expression levels of ICDGs between normal and LUAD 

samples; the ICDGs other than ATG5, IL10, and 

CXCR3 were significantly differentially expressed 

between different samples (Figure 1B, 1C). The CNV 

mutation frequency indicated that CNV alterations were 

prevalent in ICDGs, with NLRP3 concentrating on copy 

number amplification and IFNA1 having the highest 

frequency of CNV deletion (Figure 1D). As is evident 

from Figure 1E, 230 of 616 (37.34%) LUAD samples 

show genetic mutations, with NLRP3 showing the 

highest mutation frequency. Further analysis revealed a 

significant mutational co-occurrence relationship 

between NLRP3 and TLR4, IFNA1, and CALR (Figure 

1F). This analysis indicates that ICDGs are highly 

heterogeneous between normal and LUAD samples, 

suggesting that the expression imbalance of ICDGs 

plays a crucial role in the occurrence and progression 

of LUAD.  

 

Identification of molecular subtypes based on ICDGs 

 

The correlation network of ICDGs interactions, 

regulator relationships, and their survival significance in 

LUAD patients is presented in Figure 2A. Most ICDGs 

exhibited significant correlations and had good 

prognostic ability. The GSE72904, GSE68465, and 

TCGA-LUAD datasets were combined into a meta-

analysis using the combat algorithm, and 1315 LUAD 

patients were included. The prognostic value of 23 

ICDGs for patients with LUAD was revealed by KM 

survival analysis and log-rank test, distinguished by the 

best cut-off value of each group (Supplementary 

Figure 1).  

 

The meta-cohort underwent screening for ICDGs 

utilizing univariate Cox regression analysis, identifying 

nine genes as prognostically significant ICDGs. 

Subsequently, to elucidate the association between the 

expression profiles of ICDGs and subtypes of LUAD, a 

consensus clustering analysis was conducted to 

categorize LUAD patients based on the expression 

levels of these prognostic ICDGs. Optimal clustering 

was observed at K = 3 (Figure 2B), leading to the 

classification of LUAD patients into distinct subtypes 

labeled as A (n = 515), B (n = 460), and C (n = 430) 

across the entire cohort. A heatmap depiction 
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illustrates the distribution of clinical attributes across 

different clusters, revealing significant upregulation of 

most genes in subtypes A and B (Figure 2C). 

Subsequent prognostic evaluation demonstrated a 

noteworthy survival advantage for subtype B within 

the molecular subtypes (Figure 2D). PCA also 

confirmed the relative discreteness of the three 

molecular subtypes (Figure 2E). 

 

 
 

Figure 1. Landscape of 31 ICDGs in LUAD. (A) Circus plots of chromosome distributions of ICDGs. (B) Expression distributions of  

ICDGs between LUAD and normal tissues. (C) Heatmap shows 31 ICDGs expression profiles among normal and LUAD samples. (D) The 
CNV mutation frequency of ICDGs. (E) Somatic mutation spectrums of ICDGs. (F) Correlation between 31 ICDGs in TCGA-LUAD. *p < 0.05, 
**p < 0.01, ***p < 0.001. 

6294



www.aging-us.com 6 AGING 

Immune microenvironment and functional 

enrichment analysis in molecular subtypes 

 

The ESTIMATE algorithm unveiled a notably elevated 

immune score within subtype B (Figure 3A). 

Furthermore, our investigation elucidated the differential 

expression of HLA molecules and ICI mRNA across 

distinct molecular subtypes. Notably, subtype B 

showcased heightened mRNA expression levels across 

several ICIs, including CD27, TNFSF4, and TNFRSF14 

(Figure 3B). Similarly, subtype B exhibited increased 

mRNA expression levels across various HLAs, such

 

 
 

Figure 2. Identification of molecular subtypes based on ICDGs. (A) The interaction of expression on ICDGs in LUAD. (B) Consensus 

clustering matrix at K = 3. (C) Heatmap of the nine genes between the three clusters and the correlations of the clusters and clinical 
parameters. (D) KM curve of the survival difference between the three clusters. (E) PCA plot for the three clusters.  
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as HLA-DQA1, HLA-J, HLA-G, and HLA-DQB2 

(Figure 3C). Through GSEA, we delineated the TME 

status among the molecular subtypes, revealing subtype 

B’s inclination towards a “hot” tumor phenotype, 

characterized by a more dynamic TME (Figure 3D). 

Based on these findings, we posited that subtype B 

likely embodies hot tumor characteristics and stands to 

derive greater benefits from immunotherapeutic 

interventions. 

 

In order to elucidate the biological characteristics  

of these distinct isoforms, we conducted GSVA 

enrichment analysis. Subtype B exhibited a notably 

heightened level of enrichment when juxtaposed with

 

 
 

Figure 3. Immune microenvironment and functional enrichment analysis in molecular subtypes.  (A) The difference in stromal 

score, ESTIMATE score, and immune score between different molecular subtypes. (B) Expression of immune checkpoints between different 
molecular subtypes. (C) Expression level of HLA genes between different molecular subtypes. (D) The infiltration of immune cells in TME in 
3 subtypes. (E) The GSVA pathway enrichment analysis between different subtypes. (F) GO enrichment analysis results of 1033 DEGs. ns not 
significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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subtypes A and C. Our GSVA enrichment analysis 

unveiled that subtype B demonstrated significant 

enrichment in pathways associated with immune system 

activation, encompassing cytokine receptor interaction, 

chemokine signaling, T and B cell receptor signaling, 

natural killer cell-mediated cytotoxicity, antigen 

processing and presentation, as well as epsilon and 

JAK-STAT signaling pathways (Figure 3E and 

Supplementary Figure 2A, 2B). 

 

Furthermore, a total of 1033 DEGs were discerned 

across the three subtypes of LUAD (Supplementary 

Figure 2C and Supplementary Table 1). Subsequently, 

these DEGs underwent GO and KEGG enrichment 

analyses using the “clusterProfiler” tool (Figure 3F, 

Supplementary Figure 2D). The foremost KEGG 

signaling pathways encompassed viral protein 

interactions with cytokines and cytokine receptors, 

Th17 cell differentiation, hematopoietic cell lineage, 

Th1 and Th2 cell differentiation, and cytokine-cytokine 

receptor interactions (Supplementary Tables 2 and 3). 

These findings offer novel avenues for investigating the 

potential functions of ICDGs in LUAD. 

 

Construction and validation of the ICD prognostic 

signature 

 

The training cohort utilized in this study was derived 

from TCGA, wherein OS served as the primary 

outcome measure. Initial filtering of redundant genes 

was conducted through LASSO regression analysis 

(Figure 4A). Subsequently, multifactorial Cox 

regression analysis was employed to determine the 

coefficients associated with each gene (Figure 4B and 

Supplementary Table 4). Following these analyses, a 

distinctive signature comprising five genes was 

identified. The risk score for the ICDG signature was 

calculated using the following formula: Risk score = 

(0.1087 × expression level of NT5E) + 0.4088 × 

expression level of HSP90AA1) + (−0.5949 × 

expression level of EIF2AK3) + (0.5066 × expression 

level of PIK3CA) + (−0.3506 × expression level of 

P2RX7). 

 

In accordance with the median risk score observed 

within the TCGA cohort, we categorized patients with 

LUAD into distinct subgroups denoted as low-risk and 

high-risk. Analysis of the risk status map alongside the 

survival distribution map revealed a notably diminished 

prognosis among LUAD patients exhibiting higher  

risk scores (Figure 4C). Our investigation unveiled 

significant overexpression of NT5E, HSP90AA1, and 

PIK3CA within the high-risk subgroup, as evidenced by 
the ICD signature, while EIF2AK3 and P2RX7 

exhibited significant upregulation within the low-risk 

subgroup (Figure 4D). Furthermore, survival analysis 

coupled with ROC curve assessment illustrated the 

robust prognostic capability of the signature within  

both the TCGA-LUAD (Figure 4E, 4G) and GSE68465 

cohorts (Figure 4F, 4H), wherein patients classified 

within the high-risk subgroup displayed poorer survival 

outcomes. 

 

Construction and evaluation of novel nomogram 

 

We developed a nomogram integrating the risk score 

and stage to facilitate the clinical application of our 

findings (Figure 5A). Calibration curves demonstrated 

the robust predictive capability of the nomogram based 

on the risk score in both the TCGA-LUAD (Figure 5B) 

and GSE68465 cohorts (Figure 5C), closely aligning 

with the true curve. To assess the risk score’s 

independence as a prognostic indicator for LUAD, 

univariate and multivariate Cox regression analyses 

were conducted in the TCGA-LUAD cohort (Figure 5D, 

5E) and GSE68465 cohorts (Figure 5F, 5G). The 

analyses consistently affirmed the risk score’s status as 

an independent prognostic predictor (all p < 0.01). 

These findings underscore the efficacy of the prediction 

model in anticipating OS outcomes, thus warranting its 

utilization for guiding clinical interventions. 

 

Immune characteristics in different risk subgroups 

 

The Sankey diagram depicted a robust correlation 

between risk subgroups and molecular subtypes, with a 

notable survival trend observed among most patients 

in subtype B and low-risk subgroups (Figure 6A). To 

elucidate the discriminative capacity of the risk 

subgroup concerning the TME and its potential 

application in immunotherapeutic strategies, we 

employed a comprehensive array of algorithms 

(TIMER, CIBERSORT, QUANTISEQ, MCP-counter, 

XCELL, and EPIC) to assess the infiltration levels of 

immune cells across diverse samples. As anticipated, 

the abundance of cytotoxic immune cells, including 

CD4+ T and CD8+ T cells, exhibited a positive 

correlation with increasing risk scores (Figure 6B), 

while variations in the distribution of immune cells 

were observed among distinct risk subgroups (Figure 

6C). Furthermore, patients categorized under subtype 

B demonstrated lower risk scores (Figure 6D). 

Thorsson et al. [15] delineated six distinct immune 

expression signature subtypes by analyzing the gene 

expression profiles across all solid tumors within 

TCGA. These subtypes are characterized as follows: 

wound healing (Immune C1), IFN-gamma dominant 

(Immune C2), inflammatory (Immune C3), 

lymphocyte depleted (Immune C4), immunological 
quiet (Immune C5), and TGF-beta dominant (Immune 

C6). Our analysis revealed notable variations in the 

expression levels of the risk score across these 
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subtypes, with the lowest expression observed in the 

C6 subtype and the highest expression observed in the 

C1/C2 subtype (Figure 6E). Additionally, it was 

observed that the low-risk subgroup exhibited a 

relatively higher proportion of the C3 subtype 

(Figure 6F). Given the pivotal influence of the 

stemness index on immunotherapeutic outcomes, our 

correlation analysis revealed a positive association 

 

 
 

Figure 4. Construction and validation of the ICD prognostic signature. (A) LASSO Cox regression analysis of ICDGs. (B) Forest plot 

of the five target genes that compose the ICD signature. (C) Risk score distribution plot showed the distribution of high-risk and low-risk 
LUAD patients. Scatter plot showed the correlation between the survival status and risk score of LUAD patients. (D) Heatmap for the 
expression of five crucial genes in low-risk and high-risk subgroups. The survival analysis in TCGA cohort (E) and GSE68465 cohort (F). ROC 
curves indicated the predictive efficiency of the prognostic signature in TCGA cohort (G) and GSE68465 cohort (H). *p < 0.05, **p < 0.01, 
***p < 0.001. 
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between the risk score and DNAss as well as RNAss 

(Figure 6G). Subsequently, an investigation into the 

relationship between the risk score and the TME 

score was conducted. Our findings indicate an inverse 

correlation between the risk score and stromal and 

immune scores, while a positive correlation was 

observed with tumor purity (Figure 6H). These 

observations underscore an immune activation profile 

within the low-risk subgroup, suggesting its potential 

suitability for immunotherapeutic interventions. 

 

 
 

Figure 5. Construction and evaluation of the novel nomogram. (A) The nomogram for predicting the survival probability of LUAD 

patients. The calibration plots of the nomogram for predicting OS probability in TCGA cohort (B) and GSE68465 cohort (C). Univariate (D) 
and multivariate (E) Cox analyses for the signature-based risk score and other clinical features in TCGA cohort. Univariate (F) and 
multivariate (G) Cox analyses for the signature-based risk score and other clinical features in GSE68465 cohort. 
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Association between risk score and response to 

immunotherapy and chemotherapy 

 

Multiple investigations have underscored the 

significance of TMB as a pivotal prognostic marker for 

the tumor immune response, correlating high TMB 

levels with enhanced response rates and superior 

outcomes in immunotherapy among patients [18–20]. 

To delve into the genetic alterations of ICDGs in 

LUAD, a comprehensive TMB analysis was conducted 

 

 
 

Figure 6. Immune characteristics in different risk subgroups. (A) The sankey diagram of the relationship among the clusters, risk 
score and survival state. The correlation of tumor-infiltrating cells with risk score using 6 algorithms. (B) Heatmap. (C) lollipop plot. (D) Risk 
score levels of cluster A/B/C subtypes. (E, F) Relationships between risk score and immune subtypes. (G) The correlation between risk score 
and stemness index. (H) The correlation between risk score and TME scores. 
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on the risk score. The results delineated an extended 

survival duration within the high-TMB cohort compared 

to their low-TMB counterparts (Figure 7A). Further-

more, the amalgamation of high TMB and low risk 

scores exhibited the most pronounced survival 

advantage (Figure 7B), accentuating the synergistic 

effect of these variables. To ascertain the validity of  

the risk score in predicting survival and treatment 

 

 

 
Figure 7. Association of risk subgroup with therapy in LUAD patients. (A) KM survival analysis of TMB. (B) Effects of the risk score 

combined with TMB on the overall survival. (C, D) The survival status and immunotherapy reflection of patients in the high- and low-risk 
subgroups in three immunotherapy cohorts. Abbreviations: CR: complete response; PR: partial response; SD: stable disease; PD: 
progressive disease. (E) Tumor mutation situations in different risk score subgroups. (F) The boxplot of sensitivity of common 
chemotherapy drugs between high- and low-risk subgroups.  
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response within the immunotherapy cohort, we 

conducted separate validation analyses across two 

distinct immunotherapy cohorts. KM analysis 

demonstrated that patients with a low-risk score 

exhibited superior OS outcomes. Furthermore, a higher 

proportion of patients demonstrated responsiveness to 

treatment within the low-risk score group (Figure 7C, 

7D). Additionally, our investigation extended to  

include datasets pertaining to various ICIs and CAR-T 

therapy, namely GSE78220, GSE91061, GSE100797, 

GSE16252, GSE35640, GSE135222, GSE126044, 

Nathanson, and the VanAllen datasets. Noteworthy is 

the consistent discrimination observed between high- 

and low-risk patients across five immunotherapy 

datasets with survival follow-up, employing the risk 

score based on ICD. Moreover, the majority of 

predicted AUC values for treatment responsiveness 

surpassed 0.6 (Supplementary Figure 3). Waterfall plots 

(Figure 7E) illustrated mutant occurrences within 

distinct risk score subgroups. Within LUAD, TP53 

emerged as the most frequently mutated gene, 

predominantly exhibiting missense mutations. Notably, 

individuals with elevated risk scores manifested 

heightened mutation probabilities in pivotal genes, 

notably TP53. Additionally, IC50 values for select 

chemotherapeutic agents (doxorubicin, cisplatin, 

docetaxel, etoposide, and gemcitabine) were estimated 

among LUAD patients. Significantly, individuals 

categorized as high-risk demonstrated increased 

chemosensitivity compared to their low-risk counter-

parts (p < 0.05), implying a potentially enhanced 

response to chemotherapy interventions (Figure 7F). 

 

Validation of expression of genes involved in 

signature 

 

The five-gene signature’s expression was validated 

utilizing the TCGA database, with NT5E, HSP90AA1, 

and EIF2AK3 demonstrating elevated expression levels 

in tumor tissues, while PIK3CA and P2RX7 exhibited 

heightened expression in normal tissues (Figure 8A). 

Subsequent analysis involved immunofluorescence and 

IHC imaging to delineate the expression patterns and 

staining intensities of these genes; however, EIF2AK3 

and P2RX7 were not subjected to immunofluorescence 

analysis (Figure 8B–8F). Moreover, examination of the 

single-cell dataset revealed significant underexpression 

of all genes except HSP90AA1 in malignant cells 

(Figure 8G, Supplementary Figure 4). Subsequent 

examination of cell communication patterns revealed 

that malignancies characterized by elevated risk scores 

exhibited heightened interactions with neighboring 

cells. Subsequently, we proceeded to assess the clinical 
relevance of this signature utilizing tissue specimens 

obtained from the Second Hospital of Hebei Medical 

University. qRT-PCR was employed to evaluate the 

messenger RNA (mRNA) expression levels of the 

signature-associated ICDGs in ten fresh pairs of tissues 

from patients diagnosed with LUAD and their 

corresponding adjacent normal lung tissues. As 

illustrated in Figure 8H, our qRT-PCR analysis of 

clinical specimens obtained from our institution 

demonstrated expression profiles consistent with those 

observed in TCGA database. 

 

DISCUSSION 
 

The main challenge in current tumor immunotherapy is 

the low immunogenicity of tumors, the existence of a 

tumor suppressive immune microenvironment, and a 

series of immune escape mechanisms by which tumors 

prevent the body’s immune system from playing its 

normal anti-tumor role [21, 22]. As an immune-

responsive cell death mechanism, ICD is expected to 

break the immunosuppressive tumor microenvironment, 

initiate a T-cell-mediated adaptive immune response, 

and mobilize the systemic immune response for long-

term tumor suppression [23–25]. Therefore, it could be 

advantageous to identify ICD-related biomarkers that 

help distinguish patients premised on the benefits they 

would derive from immunotherapy.  

 

In this study, we have demonstrated a robust association 

between the expression of ICDGs and both the 

prognosis and the tumor microenvironment of LUAD. 

Utilizing consensus clustering based on ICDGs 

expression, we have discerned three distinct ICD 

subtypes. Notably, subtype B exhibits a favorable 

clinical prognosis alongside heightened levels of 

immune cell infiltration. Moreover, tumors classified 

under subtype B manifest elevated immune, stromal, 

and ESTIMATE scores compared to other subtypes. 

This subtype also displays augmented expression of ICI 

and HLA, as well as a richer array of enrichment 

pathways compared to subtypes A and C. To further 

assess the prognostic utility of ICDGs, we have devised 

an ICD prognostic signature employing a combination 

of Cox regression and LASSO regression analyses. 

Among the five identified ICDGs, NT5E, HSP90AA1, 

and EIF2AK3 exhibited heightened expression levels in 

tumor tissues, while PIK3CA and P2RX7 demonstrated 

elevated expression levels in normal tissues. To assess 

the prognostic efficacy of the developed signature, we 

stratified patients with LUAD into low- and high-risk 

categories based on the median risk score. Sub-

sequently, KM survival analysis was conducted, 

revealing that patients in the high-risk subgroup 

experienced significantly poorer OS compared to those 

in the low-risk subgroup across both TCGA-LUAD and 

GSE68465 cohorts. These findings are in concordance 

with the outcomes derived from ROC curves. 

Furthermore, we devised a nomogram by incorporating 
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the risk score and disease stage, aiming to facilitate the 

clinical application of our findings. The nomogram 

derived from the risk score exhibited strong predictive 

capability in both the TCGA-LUAD and GSE68465 

cohorts, as evidenced by the calibration curves closely 

aligning with the true curves. To assess the potential of 

the risk score as a standalone prognostic marker in 

LUAD, univariate and multivariate Cox regression 

analyses were conducted across the TCGA-LUAD and 

GSE68465 cohorts. Findings indicated that the risk 

 

 
 

Figure 8. Validation of expression of genes involved in signature. (A) The expression of the five-signature genes in TCGA database. 

(B–F) The cell sublocalization immunofluorescence plot and IHC plot of five-signature genes. (G) Graph showing cell clusters identified by 
using single-cell RNA-seq dataset GSE127465. (H) The expression levels of five ICDGs in 10 paired LUAD and matched adjacent normal 
tissues were examined by qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001. 
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score independently correlates with increased risk in 

LUAD and surpasses conventional prognostic factors 

such as age, tumor grade, and stage in prognosticating 

patient survival outcomes. 

 

Compared to conventional models that may primarily 

focus on a single aspect of tumor biology, such as genetic 

mutations or expression profiles (Autophagy related 

genes, glycolysis related genes, ferroptosis related genes, 

etc), our model encompasses a broader spectrum by 

considering the immune landscape and the implications 

of ICDGs. This approach not only contributes to our 

understanding of the molecular underpinnings of LUAD 

but also offers practical insights into patient stratification 

and potential therapeutic targets. Furthermore, the 

prognostic signature developed from five key ICDGs in 

our study provides a novel tool for predicting patient 

outcomes, surpassing traditional prognostic indicators in 

accuracy. This signature’s effectiveness is validated 

across multiple cohorts, underscoring its robustness and 

potential for clinical application. 

 

In investigating the discriminative potential of risk 

subgroups for TME and its relevance to immunotherapy, 

we applied six distinct algorithms to assess immune cell 

infiltration levels across various samples. As anticipated, 

the abundance of cytotoxic immune cells, including 

CD4+ and CD8+ T cells, exhibited a positive correlation 

with escalating risk scores. Moreover, notable 

distinctions in immune cell distribution were observed 

among different risk subgroups. Notably, patients 

afflicted with subtype B disease displayed a lower risk 

score. Previous work by Thorsson et al. [15] delineated 

six immune expression signature subtypes predicated on 

comprehensive gene expression profiles across all solid 

tumors in TCGA. Our analysis revealed that the risk 

score expression was minimal in the C6 subtype and 

maximal in the C1/C2 subtypes, while the low-risk 

subgroup exhibited a greater prevalence of C3. 

Recognizing the pivotal influence of the stemness index 

on immunotherapeutic outcomes, correlation analysis 

unveiled a positive association between the risk score 

and DNAss as well as RNAss. Subsequently, we 

investigated the relationship between the risk score and 

the TME score. Our findings indicate a negative 

association between the risk score and stromal and 

immune scores, while demonstrating a positive 

correlation with tumor purity. These results suggest  

that individuals with low-risk scores exhibit  

a favorable immune-activated TIME, potentially 

enhancing the efficacy of immunotherapy. Notably, in a 

thorough validation analysis across two distinct 

immunotherapy datasets (IMvigor and PRJEB23709), 
we observed improved OS and enhanced responses to 

immunotherapy among patients with low-risk scores. 

Thus, our study underscores the significance of the risk 

score as a promising biomarker for assessing 

immunotherapy efficacy in patients with LUAD by 

virtue of its strong correlation with the tumor micro-

environment. 
 

CONCLUSIONS 
 

In summary, this study delineated three distinct 

molecular subtypes in LUAD using ICDGs and 

formulated a prognostic risk signature based on five 

ICDGs. Notably, Subtype B and the low-risk subgroups 

exhibited markedly improved survival outcomes 

alongside a heightened immune-activated TIME. 

Moreover, the risk score emerged as a promising 

biomarker indicative of treatment efficacy in LUAD 

patients undergoing immunotherapy. These findings 

contribute valuable insights into the anti-tumor 

mechanisms of ICD and propose a novel and efficacious 

immunotherapeutic approach for further exploration in 

tumor immunology research. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The KM analysis of the 23 ICDGs. 
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Supplementary Figure 2. Identification and enrichment analysis of differential genes among the subtypes.  (A, B) GSVA of 

biological pathways between two distinct subtypes. (C) Wayne diagram was adopted to screen the difference genes in the three subtypes, 
and 1033 genes were obtained after taking the intersection. (D) KEGG enrichment analysis for DEGs between different molecular subtypes. 

 

6308



www.aging-us.com 20 AGING 

 
 

Supplementary Figure 3. The ICD predicts immunotherapeutic benefits. (A–E) KM curves for patients with high and low ICD in the 
GSE100797, VanAllen, GSE135222, Nathanson, and GSE126044 cohorts. ROC curve of the ICD in the GSE100797, VanAllen, GSE135222, 
Nathanson, and GSE126044 cohorts. (F–I) ROC curve of the ICD in the GSE78220, GSE91061, GSE16252, and GSE35640 cohorts. 
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Supplementary Figure 4. Violin plots showing the expression levels of five signature-related ICDGs in the cell clusters 
identified by the single-cell RNA-seq dataset GSE127465. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Summary of 1033 DEGs. 
 

Supplementary Table 2. Functional annotation of the differentially expressed genes between the three ICD 
subtypes. 
 

Supplementary Table 3. The activation states of biological pathways in distinct ICD subtypes. 

ID Description GeneRatio BgRatio p-value p.adjust q-value geneID Count 

hsa04060 
Cytokine-cytokine receptor 
interaction 

73/625 295/8142 2.82E-20 8.89E-18 6.98E-18  73 

hsa04640 Hematopoietic cell lineage 39/625 99/8142 7.34E-19 1.16E-16 9.07E-17  39 

hsa04061 
Viral protein interaction with 
cytokine and cytokine receptor 

38/625 100/8142 8.98E-18 9.43E-16 7.41E-16  38 

hsa04658 Th1 and Th2 cell differentiation 34/625 92/8142 1.35E-15 1.06E-13 8.32E-14  34 

hsa04659 Th17 cell differentiation 36/625 108/8142 8.31E-15 5.24E-13 4.11E-13  36 

hsa04380 Osteoclast differentiation 39/625 128/8142 1.81E-14 9.52E-13 7.48E-13  39 

hsa05321 Inflammatory bowel disease 27/625 65/8142 4.12E-14 1.85E-12 1.45E-12  27 

hsa04062 Chemokine signaling pathway 48/625 192/8142 7.93E-14 3.12E-12 2.45E-12  48 

hsa04064 NF-kappa B signaling pathway 34/625 104/8142 9.03E-14 3.16E-12 2.48E-12  34 

hsa04514 Cell adhesion molecules 41/625 149/8142 1.78E-13 5.61E-12 4.40E-12  41 

hsa04660 T cell receptor signaling pathway 33/625 104/8142 5.49E-13 1.57E-11 1.23E-11  33 

hsa05140 Leishmaniasis 28/625 77/8142 7.29E-13 1.91E-11 1.50E-11  28 

hsa04662 B cell receptor signaling pathway 28/625 82/8142 4.35E-12 1.00E-10 7.88E-11  28 

hsa05330 Allograft rejection 19/625 38/8142 4.46E-12 1.00E-10 7.88E-11  19 

hsa04650 
Natural killer cell mediated 
cytotoxicity 

36/625 131/8142 5.79E-12 1.22E-10 9.55E-11  36 

hsa05152 Tuberculosis 42/625 180/8142 3.42E-11 6.74E-10 5.29E-10  42 

hsa05340 Primary immunodeficiency 18/625 38/8142 5.28E-11 9.78E-10 7.68E-10  18 

hsa04672 
Intestinal immune network for IgA 
production 

20/625 49/8142 1.27E-10 2.23E-09 1.75E-09  20 

hsa04940 Type I diabetes mellitus 18/625 43/8142 6.63E-10 1.10E-08 8.63E-09  18 

hsa05150 Staphylococcus aureus infection 27/625 96/8142 1.54E-09 2.42E-08 1.90E-08  27 

hsa05323 Rheumatoid arthritis 26/625 93/8142 3.57E-09 5.33E-08 4.19E-08  26 

hsa05332 Graft-versus-host disease 17/625 42/8142 3.72E-09 5.33E-08 4.19E-08  17 

hsa05169 Epstein-Barr virus infection 41/625 202/8142 5.28E-09 7.23E-08 5.67E-08  41 

hsa05166 
Human T-cell leukemia virus 1 
infection 

43/625 222/8142 9.77E-09 1.28E-07 1.01E-07  43 

hsa04630 JAK-STAT signaling pathway 34/625 162/8142 4.65E-08 5.86E-07 4.60E-07  34 

hsa04612 Antigen processing and presentation 22/625 78/8142 4.84E-08 5.87E-07 4.61E-07  22 

hsa04610 
Complement and coagulation 
cascades 

23/625 85/8142 5.63E-08 6.57E-07 5.16E-07  23 

hsa05144 Malaria 17/625 50/8142 8.03E-08 9.03E-07 7.09E-07  17 

hsa04145 Phagosome 32/625 152/8142 1.08E-07 1.17E-06 9.18E-07  32 

hsa05320 Autoimmune thyroid disease 17/625 53/8142 2.12E-07 2.22E-06 1.75E-06  17 
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hsa05145 Toxoplasmosis 26/625 112/8142 2.26E-07 2.30E-06 1.81E-06  26 

hsa05235 
PD-L1 expression and PD-1 
checkpoint pathway in cancer 

22/625 89/8142 6.14E-07 6.04E-06 4.74E-06  22 

hsa05202 
Transcriptional misregulation in 
cancer 

35/625 193/8142 1.23E-06 1.18E-05 9.24E-06  35 

hsa05310 Asthma 12/625 31/8142 1.37E-06 1.27E-05 9.94E-06  12 

hsa05416 Viral myocarditis 17/625 60/8142 1.52E-06 1.37E-05 1.08E-05  17 

hsa05135 Yersinia infection 27/625 137/8142 4.09E-06 3.58E-05 2.81E-05  27 

hsa05170 
Human immunodeficiency virus 1 
infection 

36/625 212/8142 4.29E-06 3.66E-05 2.87E-05  36 

hsa04010 MAPK signaling pathway 45/625 294/8142 5.09E-06 4.22E-05 3.31E-05  45 

hsa05142 Chagas disease 22/625 102/8142 7.02E-06 5.67E-05 4.45E-05  22 

hsa04625 
C-type lectin receptor signaling 
pathway 

22/625 104/8142 9.78E-06 7.70E-05 6.05E-05  22 

hsa04670 
Leukocyte transendothelial 
migration 

23/625 114/8142 1.41E-05 0.000108 8.50E-05  23 

hsa04620 Toll-like receptor signaling pathway 21/625 104/8142 3.27E-05 0.000245 0.000192  21 

hsa04668 TNF signaling pathway 22/625 112/8142 3.34E-05 0.000245 0.000192  22 

hsa04664 Fc epsilon RI signaling pathway 16/625 68/8142 4.06E-05 0.00029 0.000228  16 

hsa05133 Pertussis 17/625 76/8142 4.71E-05 0.000325 0.000255  17 

hsa05162 Measles 25/625 139/8142 4.74E-05 0.000325 0.000255  25 

hsa05163 Human cytomegalovirus infection 34/625 225/8142 9.53E-05 0.000639 0.000502  34 

hsa04666 Fc gamma R-mediated phagocytosis 19/625 97/8142 0.000118 0.000775 0.000609  19 

hsa04014 Ras signaling pathway 34/625 232/8142 0.000175 0.001127 0.000885  34 

hsa05417 Lipid and atherosclerosis 32/625 215/8142 0.000203 0.001277 0.001003  32 

hsa05164 Influenza A 27/625 171/8142 0.000238 0.001473 0.001156  27 

hsa05221 Acute myeloid leukemia 14/625 67/8142 0.000459 0.002783 0.002185  14 

hsa04613 
Neutrophil extracellular trap 
formation 

27/625 190/8142 0.001281 0.007613 0.005979  27 

hsa04210 Apoptosis 21/625 136/8142 0.001524 0.00867 0.006809  21 

hsa05322 Systemic lupus erythematosus 21/625 136/8142 0.001524 0.00867 0.006809  21 

hsa05143 African trypanosomiasis 9/625 37/8142 0.001541 0.00867 0.006809  9 

hsa05171 Coronavirus disease - COVID-19 31/625 232/8142 0.00162 0.008953 0.007031  31 

hsa04657 IL-17 signaling pathway 16/625 94/8142 0.001949 0.010583 0.008311  16 

hsa04611 Platelet activation 19/625 124/8142 0.002742 0.014639 0.011496  19 

hsa04621 
NOD-like receptor signaling 
pathway 

25/625 184/8142 0.003536 0.018563 0.014578  25 

hsa05161 Hepatitis B 22/625 162/8142 0.006041 0.031193 0.024496  22 

hsa04151 PI3K-Akt signaling pathway 40/625 354/8142 0.008194 0.041631 0.032693  40 

hsa05134 Legionellosis 10/625 57/8142 0.010598 0.052991 0.041614  10 

hsa04142 Lysosome 18/625 132/8142 0.011819 0.05805 0.045586  18 

hsa04936 Alcoholic liver disease 19/625 142/8142 0.011979 0.05805 0.045586  19 

hsa05167 
Kaposi sarcoma-associated 
herpesvirus infection 

24/625 194/8142 0.013246 0.06322 0.049647  24 
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Supplementary Table 4. Prognostic analysis of 5 subtype-associated genes with a multifactorial Cox regression 
analysis. 

ID Coef HR HR.95L HR.95H P-value 

NT5E 0.1087 1.1148 1.003 1.239 0.0438 

HSP90AA1 0.4088 1.505 1.0901 2.0779 0.013 

EIF2AK3 −0.5949 0.5516 0.4097 0.7426 0.0001 

PIK3CA 0.5066 1.6597 1.1893 2.3161 0.0029 

P2RX7 −0.3506 0.7043 0.5827 0.8512 0.0003 
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