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ABSTRACT 
 

Background: Coagulation system is currently known associated with the development of ischemic stroke (IS). 
Thus, the current study is designed to identify diagnostic value of coagulation genes (CGs) in IS and to explore 
their role in the immune microenvironment of IS. 
Methods: Aberrant expressed CGs in IS were input into unsupervised consensus clustering to classify IS 
subtypes. Meanwhile, key CGs involved in IS were further selected by weighted gene co-expression network 
analysis (WGCNA) and machine learning methods, including random forest (RF), support vector machine (SVM), 
generalized linear model (GLM) and extreme-gradient boosting (XGB). The diagnostic performance of key CGs 
were evaluated by receiver operating characteristic (ROC) curves. At last, quantitative PCR (qPCR) was 
performed to validate the expressions of key CGs in IS. 
Results: IS patients were classified into two subtypes with different immune microenvironments by aberrant 
expressed CGs. Further WGCNA, machine learning methods and ROC curves identified ACTN1, F5, TLN1, JMJD1C 
and WAS as potential diagnostic biomarkers of IS. In addition, their expressions were significantly correlated 
with macrophages, neutrophils and/or T cells. GSEA also revealed that those biomarkers may regulate IS via 
immune and inflammation. Moreover, qPCR verified the expressions of ACTN1, F5 and JMJD1C in IS. 
Conclusions: The current study identified ACTN1, F5 and JMJD1C as novel coagulation-related biomarkers 
associated with IS immune microenvironment, which enriches our knowledge of coagulation-mediated 
pathogenesis of IS and sheds light on next-step in vivo and in vitro experiments to elucidate the relevant 
molecular mechanisms. 
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INTRODUCTION 
 

The mortality and disability rate of patients with 

ischemic stroke (IS) is high, thus greatly threatening the 

life of IS patients [1]. Early diagnosis, treatment and 

actively controlling the complications of IS patients are 

the basis for improving their prognosis [2]. However, it 

remains unclear what causes high incidence of IS. In 

addition to the traditional risk factors such as hyper-

tension, heart disease, diabetes and hyperlipidemia [3–

5], it is believed that IS a polygenic complex disease 

from the genetic perspective, and genetic factors play an 

important role in the pathogenesis of IS [6, 7]. 

 

Coagulation is a complex process mediated by multiple 

genes and pathways [8]. In recent years, with the 

deepening understanding of the physiological and 

pathological functions of the members of the 

coagulation system, it has been found that the members 

of the coagulation system play an important role in the 

pathogenesis of IS [9–11]. Moreover, studies have 

shown that polymorphisms of coagulation genes (CGs) 

are associated with the risk of IS. For example, Casas et 

al. found that a mutation on prothrombin (20210G>A) 

was positively associated with IS [12]. Xu et al. found 

in Han Chinese population that -455A/G mutation on 

beta-fibrinogen was correlated with the risk of IS [13]. 

In addition, multiple coagulation factors, such as 

serotonin [14], GPIb and GPVI [15], are involved in 

both thrombosis and inflammation, suggesting that there 

is a crosstalk between coagulation and inflammation, 

which may contribute to the occurrence of IS via 

immunothrombosis. Therefore, a comprehensive and 

systematic study on the role of CGs in IS will 

strengthen our understanding of the coagulation-related 

genetic background of IS and further provide novel 

theoretical basis for the treatment of IS. 

 

Machine learning has become a powerful tool for disease 

diagnosis, classification, and prediction. Generally, 

machine learning is classified into deep, unsupervised 

and supervised learning based on different purposes 

[16]. In the context of supervised learning, different 

algorithms have been developed, such as random forest 

(RF), support vector machine (SVM), generalized linear 

model (GLM) and extreme-gradient boosting (XGB). 

Each method has its own strength and limitations as 

reviewed by Jiang et al. [17] and Uddin et al. [18]. Thus, 

using different machine learning methods to analyze big 

data could help us identify key diagnostic biomarkers. 

 

To achieve above purpose, we utilized public sequencing 

data for mining key CGs in IS via weighted gene co-
expression network analysis (WGCNA) and machine 

learning, and analyzed the relationship between key CGs 

and immune environment of IS by single sample gene 

set enrichment analysis (ssGSEA), consensus clustering 

and correlation analyses. In addition, we explored the 

potential molecular mechanisms of key CGs in 

regulating IS by GSEA. Furthermore, the diagnostic 

potential of key CGs was explored and a coagulation-

related diagnostic nomogram was established in IS. The 

pipeline and key findings of the current study were 

displayed in Supplementary Figure 1. We hope our study 

could facilitate the diagnosis, treatment and further 

unveiling the pathogenesis of IS. 

 

RESULTS 
 

Ten differentially expressed CGs (DECGs) were 

identified between IS and healthy controls (HC) 

 

By limma, ten DECGs, including talin 1 (TLN1), protein 

S (PROS1), myosin heavy chain 9 (MYH9), coagulation 

factor V (F5), coagulation Factor XIII A Chain (F13A1), 

actinin alpha 1 (ACTN1), purinergic receptor P2X 1 

(P2RX1), inositol-tetrakisphosphate 1-kinase (ITPK1), 

WASP actin nucleation promoting factor (WAS) and 

Jumonji domain containing 1C (JMJD1C), were found 

to be significantly upregulated in IS group compared 

with those in HC group (Figure 1A, 1B). In the predicted 

PPI network, we observed that TLN1, PROS1, MYH9, 

F5, F13A1, ACTN1, P2RX1 and WAS had direct and/ 

or indirect interactions with each other (Figure 1C). 

ClueGO analysis revealed that the DECGs were 

clustered into six interacted functional groups, including 

hemostasis, regulation of body fluid levels, blood 

coagulation, wound healing, response to wounding and 

coagulation (Figure 1D). Further functional analysis on 

those DECGs showed that they were remarkably 

enriched in the pathways of complement and coagulation 

cascades, tight junction and adherent junction (Figure 

1E). In consideration that all those functional groups  

and pathways are closely associated with immune  

and neuroinflammation [19–21], we next investigated 

whether there was crosstalk between DECGs and 

immune/ inflammation of IS. 

 

DECGs had close relationship with immune 

environment of IS 

 

Immune cells are the main players in the immune and 

inflammatory system. Therefore, we first explored 

whether the infiltration of immune cells between IS and 

HC were different by calculating the proportions of 

infiltrating immune cells in IS and HC samples by 

ssGSEA (Supplementary Table 1). By comparison, we 

found significantly lower levels of B cells, CD8 T cells, 

cytotoxic cells, T cells, helper T cells, Tcm, Tgd, Th1 

cells and Th2 cells and higher levels of macrophages, 

neutrophils and NK cells in IS group (Figure 2A), 

indicating that immune environment is altered in IS. 
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Figure 1. Identification and functional enrichment analysis of differentially expressed coagulation genes (DECGs). (A) Volcano 

plot demonstrating an overview of DECGs, in which red dots indicate upregulated CGs in IS. (B) Heatmap showing the increased or decreased 
expressions of DECGs with the hierarchical clustering for ischemic stroke (IS) and healthy control (HC) groups. The colored column sidebar at 
the top indicates the type of samples (coral- IS; cyan-HC). (C) Visualization for the predicted results of protein-protein interaction (PPI) 
network among DECGs via STRING and Cytoscape. Each node represents a protein, and each line refers an interaction. Line thickness 
indicates the strength of interaction. (D) A functionally grouped network of enriched GO terms and pathways was generated for DECGs by 
ClueGO. GO terms and pathways are represented as nodes, and the node size is proportional to the enrichment significance. The most 
significant term (hemostasis) is considered to be the leading term and it is highlighted in the network. (E) Bar chart showing that DECGs were 
significantly enriched in KEGG pathways of complement and coagulation cascades, tight junction and adherens junction. 
 

 
 

Figure 2. Interactions between DECGs and immune cells. (A) Box plot showing the difference of the proportions of 28 immune cells 
between IS and HC samples. In the x-axis, the significant differentially infiltrated immune cells were marked in red color. The value shown in 
the y-axis was the enrichment score of immune cells calculated by ssGSEA. *p <0.05, **p <0.01, ****p <0.0001, nsp > 0.05. (B) Heatmap 
demonstrating the correlation results between the expressions of DECGs and 28 immune cells. The immune cells in red color at the bottom 
are significant differentially infiltrated immune cells between IS and HC. The color of each tiny box indicates if they are positive-correlated 
(red) or negative-correlated (blue). *p <0.05, **p <0.01. 
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Further Spearman analysis partially supported our 

hypothesis that DECGs had a close relationship with the 

immune microenvironment of IS. In detail, PROS1, 

P2RX1, ITPK1, F5 and ACTN1 were significantly 

negatively correlated with B cells. TLN1, PROS1, 

P2RX1, F5, F13A1 and ACTN1 had remarkably 

negative associations with CD8 T cells and cytotoxic 

cells. Except ITPK1, the other 9 DECGs were positively 

correlated with macrophages (p <0.05). As for 

neutrophils, they have positive relationship with DECGs 

except JMJD1C and F13A1 (p <0.01). NK cells were 

only positively correlated with ITPK1 (p <0.05). Also, 

we observed that TLN1, PROS1, P2RX1, F5, F13A1 

and ACTN1 had significantly negative correlations with 

T cells and T helper cells. In addition, PROS1, P2RX1 

and JMJDC1 were remarkably correlated with Tcm. Tgd 

was only significantly related to the expression of 

PROS1. Th1 cells had significant correlations with 

TLN1, PROS1, P2RX1, MYH9 and F5, while Th2 cells 

were remarkably correlated with PROS1, JMJD1C and 

ACTN1 (Figure 2B). Collectively, DECGs may be 

involved in IS immune microenvironment by interacting 

with common and/ or specific immune cells. 

 

IS patients were divided into two clusters with 

different characteristics based on DECGs 

 

Next, we performed consensus clustering, and found that 

those DECGs could divide IS patients into two subgroups 

(cluster 1 and cluster 2, Figure 3A–3C). Furthermore, we 

 

 
 

Figure 3. Consensus clustering of IS patients based on DECGs. (A) Delta area plot displaying the relative change in area under CDF 

curve between K and K-1. (B) Cumulative distribution function (CDF) plot showing consensus clustering under K = 2, 3, 4, 5, 6, and when K = 2, 
the classification is stable. (C) Consensus matrix at K = 2. The values of the consensus matrix are shown in white to dark blue from 0 
(impossible to be clustered together) to 1 (always clustered together), and the consensus matrix was arranged according to the consensus 
clustering (dendrogram above the heatmap). The bars between the dendrogram and heatmap represent the molecular subtypes. All results 
in A-C indicate that the sample clustering was stable and robust that the boundary of the consensus matrix was clear. (D) Box plot showing 
the difference of the proportions of 28 immune cells between cluster 1 and cluster 2. In the x-axis, the significant differentially infiltrated 
immune cells were marked in red color. The value shown in the y-axis was the enrichment score of immune cells calculated by ssGSEA.  
*p <0.05, nsp > 0.05. 
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analyzed and compared the characteristics of two 

clusters. We observed that cluster 1 had less neutrophils 

and more iDC and macrophages compared to cluster 2 (p 

<0.05, Figure 3D). In addition, gene set variation analysis 

(GSVA) results revealed that physiological function 

related to GO terms of lipid binding, neurogenesis, 

microbody, nuclear body, cell cycle (Figure 4A), and 

pathways associated with metabolism, cell behavior  

and immune, such as adipocytokine pathway, 

glycosaminoglycan biosynthesis, nucleotide excision 

repair, antigen processing and presentation, glycolysis/ 

gluconeogenesis, non-homogenous end joining and  

T cell receptor signaling pathway (Figure 4B) were 

differentially enriched between two clusters, indicating 

 

 
 

Figure 4. Difference of functional enrichment of genes in cluster 1 and cluster 2. Heatmap displaying differentially enriched GO 
terms (A) and KEGG pathways (B) between cluster 1 and cluster 2 by calculating enrichment score using GSVA. The tiny boxes in the heatmap 
are colored by mean GSVA scores from dark red to dark blue. (C) Bar chart displaying GO terms sorted by adjusted p value in the category of 
biological process (BP), cellular component (CC) and molecular function (MF) that DEGs between cluster 1 and cluster 2 are enriched in.  
(D) Bar chart showing that DEGs between cluster 1 and cluster 2 were significantly enriched in nine KEGG pathways using p <0.05 as cutoff. 
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that IS patients in two clusters may vary in metabolism, 

cell behavior and immune system. Similar to GSVA 

results, biological function analysis showed that DEGs 

between two clusters (Supplementary Table 2) were 

significantly enriched in the BPs of cellular catabolic 

process, ncRNA processing, cytoplasmic translation, CCs 

related to ribosome, endoplasmic reticulum membrane, 

MFs of immunoglobulin binding, structural constituent of 

ribosome and IgG binding (Figure 4C) and pathways of 

ribosome, COVID-19, RNA degradation and phagosome 

(Figure 4D), which also had close relationship with 

metabolism, cell behavior and immune. 

 

Five key CGs were identified in IS by WGCNA and 

machine learning 

 

Thereafter, WGCNA and machine learning were carried 

out to identify key CGs involved in IS. Firstly, we 

performed WGCNA to detect DECGs associated with 

IS. Sample clustering result showed that there was no 

outlier in the dataset (Figure 5A). Then according to 

WGCNA package of R, we selected 38 as the optimal 

soft-threshold to construct the scale-free network (Figure 

5B). Subsequently, a total of 20 modules were divided 

by dynamic tree cutting, and 5 modules (green, grey60, 

light green, tan and grey) were finally obtained after 

modular merging (Figure 5C). Among the five modules, 

the green module had the strongest positive correlation 

with IS (R2 = 0.43, p-value < 0.001) (Figure 5D). Then 

genes in the green module were further filtered by |gene 

significance (GS)| > 0.4 and |module membership (MM)| 

> 0.65, and a total of 232 genes were selected and 

defined as IS-related genes (Figure 5E). Thus, six 

candidate genes (TLN1, F5, ACTN1, ITPK1, WAS and 

JMJD1C) were obtained by intersecting DECGs with 

WGCNA modular genes (Figure 6A). 

 

 
 

Figure 5. Identification of IS-related genes by WGCNA. (A) The clustering dendrogram of samples shows that samples were well 

divided into two groups with no outlier. (B) Determination of the soft-threshold to achieve the scale-free network. The left panel shows the 
influence of soft-threshold power on the scale-free fit index, and the right panel shows the impact of soft-threshold power on the mean 
connectivity. (C) Gene dendrogram obtained by hierarchical clustering and modules with different colors assigned by dynamic tree cutting. 
(D) Heatmap displaying the correlation between modules and IS. Each row correlates to a module eigengene, and each cell includes the 
corresponding correlation and p-value. (E) The scatterplot of gene significance (GS) versus module membership (MM) in the green module. 
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Moreover, those six candidate genes were input into RF, 

SVM, GLM and XGB algorithms to evaluate their 

importance. We found that RF algorithm was the most 

accurate one with the lowest residual value (Figure 6B, 

6C), in which the rank order of feature importance was 

ACTN1, F5, TLN1, JMJD1C, WAS and ITPK1 (Figure 

6D). Moreover, RF model had the best performance to 

distinguish IS from HC samples with the AUC of 0.89 

(Figure 6E). Furthermore, we investigated the 

diagnostic potential of ACTN1, F5, TLN1, JMJD1C, 

WAS and ITPK1 in IS by receiver operating 

characteristic (ROC) curves, which showed that TLN1, 

F5, ACTN1, WAS and JMJD1C may be potential 

diagnostic biomarkers in both testing (GSE16561, 

Figure 7A) and validation (GSE58294, Figure 7B) 

cohorts. Therefore, TLN1, F5, ACTN1, WAS and 

JMJD1C were considered as key CGs in IS. We found 

that the expression patterns of TLN1, F5, ACTN1, 

WAS and JMJD1C were consistent in the testing and 

validation cohorts (Figure 7C, 7D), further suggesting 

their importance in IS. Finally, TLN1, F5, ACTN1, 

WAS and JMJD1C were used to construct the 

nomogram to predict the risk of IS onset (Figure 8A). 

Both calibration curve (Figure 8B) and decision curve 

(Figure 8C) demonstrated the good performance of 

nomogram to predict IS. 

 

GSEA revealed the potential mechanisms of key 

CGs in regulating IS 

 

To further explore the potential mechanisms of TLN1, 

F5, ACTN1, WAS and JMJD1C in regulating IS, we 

performed GSEA analysis. As for GO terms, ACTN1 

was more related to protein synthesis and processing, 

such as translation termination and cytosolic ribosome 

(Figure 9A), while TLN1, F5, WAS and JMJD1C were 

more involved in immune-related function, such as 

myeloid leukocyte mediated immunity, activation of 

innate immune response, antigen processing and 

presentation (Figure 9B–9E). As for KEGG pathways, 

 

 
 

Figure 6. Construction and evaluation of different machine learning models. (A) Venn diagram showing the intersection between 

DECGs and WGCNA modular genes. (B) Reverse cumulative distribution of residuals in four machine learning models. (C) Boxplots of residuals 
in four machine learning methods. (D) The feature importance of CGs in each machine learning model. (E) ROC curves of four machine 
learning models for IS diagnosis. 
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ACTN1, TLN1, F5 and WAS were mainly enriched in 

immune-related pathways, such as chemokine signaling 

pathway, B cell receptor signaling pathway, Fc gamma 

R-mediated phagocytosis, antigen processing and 

presentation (Figure 10A–10D), while JMJD1C was 

more likely participated in pathways related to 

neuroinflammation, such as Alzheimer’s disease, 

Huntington’s disease and oxidative phosphorylation 

(Figure 10E). Taken together, those findings suggest 

that TLN1, F5, ACTN1, WAS and JMJD1C may 

regulate the development of IS mainly by immune and 

inflammation. 

 

The expression patterns of ACTN1, F5 and JMJD1C 

were validated in vivo 

 

At last, a mRNA-miRNA-lncRNA network was 

constructed, which was composed of 4 key genes (TLN1, 

 

 
 

Figure 7. ROC curves and expressions of key CGs in IS. ROC curves display the performance (sensitivity and specificity) of key CGs in IS 
diagnosis in GSE16561 (A) and GSE58294 (B). Comparison of key CRGs’ expressions between IS and HC samples in GSE16561 (C) and 
GSE58294 (D). ***p <0.001, ****p <0.0001. 
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ACTN1, WAS and JMJD1C), 6 miRNAs (mir-138-5p, 

mir-140-5p, mir-133a-3p, mir-210-3p, mir-326, mir-

331-3p) and 4 lncRNAs (CYTOR, MEG3, HOTAIR, 

XIST) (Figure 11A). In the mRNA-miRNA-lncRNA 

network, multiple regulatory relationships were 

predicted, for instance, MEG3 and HOTAIR may 

regulate the expression of ACTN1 by interacting with 

hsa-miR-133a-3p and hsa-miR-326, respectively. 

Moreover, we validated the expressions of TLN1, F5, 

ACTN1, WAS and JMJD1C using clinical IS samples 

and control samples. The qPCR results showed that 

ACTN1, F5 and JMJD1C were significantly up-

regulated in IS (Figure 11B–11D), which were 

consistent with sequencing results. However, the 

expression patterns of TLN1 and WAS conflicted with 

sequencing results (Figure 11E, 11F). 

 

DISCUSSION 
 

Given the importance of coagulation in IS development, 

our current study was designed to identify key CRGs 

and to explore related mechanisms in IS. Based on the 

above goals, we first identified 10 DECRGs between IS 

and HC samples, which were enriched into biological 

functions of immune, inflammation, coagulation and 

wound healing. Coagulation is one of programmed 

phases in wound healing [22], and both coagulation and 

wound healing are strongly associated with 

inflammation and immune [19, 20, 23, 24]. Immune 

cells are a major part in immune system that they 

establish an immune microenvironment with other cells 

and factors. In the current study, by comparing the 

proportions of 28 immune cells, we found the alteration 

of immune microenvironment in IS. More interestingly, 

the expressions of 10 DECRGs were significantly 

correlated with immune cells, especially macrophages, 

neutrophils, and T cells. Macrophages can be observed 

in cerebral 4 days after the onset of cerebral ischemia, 

and after 7 days, macrophages reached the peak and then 

reduced, but microglia in the brain were activated and 

obtained the phenotype of M1 or M2 macrophages to 

execute pro- or anti-inflammation functions by various 

 

 
 

Figure 8. Construction and evaluation of the nomogram in IS. (A) The nomogram constructed based on key CGs for IS diagnosis. The 

line segment corresponding to each variable is marker with a scale, which represents the possible value range of the variable, and the length 
of the line segment reflects the contribution of the variable to the outcome event. The value of each variable was given a score on the point 
scale axis. (B) Calibration curve displaying the accuracy of the nomogram. The x-axis represents the predicted IS risk. The y-axis represents the 
actual diagnosed IS. The solid line represents a perfect prediction by an ideal model. The dot line represents the performance of the 
nomogram, of which a closer fit to the solid line represents a better prediction. (C) The decision curve showing the clinical utility of the 
nomogram. 
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cytokines [25, 26]. Neutrophils appeared very early at 

the onset of IS [27], and neutrophils can produce MMP9, 

which can damage blood-brain barrier (BBB) and cause 

hemorrhagic transformation of IS [28]. In addition, 

neutrophil to lymphocyte ratio (NLR) has recently been 

reported as potential novel biomarkers of baseline 

inflammatory process and could serve as an outstanding 

predictor in patients with IS [29]. Invasion and 

infiltration by peripheral T cells play an important role in 

the progress of IS [30]. In the study of cerebral ischemia, 

the cerebral infarct area was reduced in mice devoid of T 

cells [31]. The importance of macrophages, neutrophils 

and T cells in IS has been recently reviewed by Takashi 

et al. [32]. Moreover, the infiltrations of macrophages 

and neutrophils were significantly different between two 

IS subtypes divided by DECGs, further demonstrating 

that DECGs may affect the immune microenvironment 

of IS via interacting with immune cells. 

 

Next, to further select key DECRGs involved in IS, we 

performed WGCNA and identified six key DECRGs, 

including TLN1, F5, ACTN1, ITPK1, WAS and 

JMJD1C. By ROC curves in both training and 

validation sets, we found that TLN1, F5, ACTN1, WAS 

and JMJD1C had good performance in distinguishing IS 

from HC samples, indicating their ability to use as IS 

diagnostic biomarkers. TLN1 affects cell behaviors 

mediated by integrins, such as adhesion, proliferation, 

survival, migration and remodeling of cytoskeleton  

[33–35]. Those processes are also associated with the 

formation and stability of plaque, which contributes to 

the increased risk of IS. Wei et al. found that the 

expression of TLN1 between stable and unstable 

plaques from symptomatic carotid stenosis patients 

were significantly different [36], indicating that TLN1 

may be involved in regulating plaque stability. In 

addition, a recent bioinformatic study also showed that 

TLN1 was a promising diagnostic marker correlated 

with neutrophils and M0 macrophages in IS [37], which 

was consistent with our findings. However, so far to our 

knowledge, the potential mechanisms of TLN1 in 

regulating IS remain unclarified. In our study, by GSEA 

 

 
 

Figure 9. GSEA enrichment analysis on each key CGs based on “GO term” reference gene sets. GSEA plot was based on the gene 
expression profiles of key CG-high expression group compared with key CG-low expression group. The vertical colorful lines represent the 
running enrichment scores as the projection of individual genes onto the horizontal ranked gene list. The bottom ranking matric in gray, 
moving from above zero (positively correlated) to below zero (negatively correlated), measures a gene’s correlation with the phenotype 
profile. (A) Actinin alpha 1 (ACTN1). (B) Talin 1 (TLN1). (C) Coagulation factor V (F5). (D) WASP actin nucleation promoting factor (WAS).  
(E) Jumonji domain containing 1C (JMJD1C). 
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Figure 10. GSEA enrichment analysis on each key CGs based on “KEGG pathway” reference gene sets. GSEA plot was based on 

the gene expression profiles of key CG-high expression group compared with key CG-low expression group. The vertical colorful lines 
represent the running enrichment scores as the projection of individual genes onto the horizontal ranked gene list. The bottom ranking 
matric in gray, moving from above zero (positively correlated) to below zero (negatively correlated), measures a gene’s correlation with the 
phenotype profile. (A) Actinin alpha 1 (ACTN1). (B) Talin 1 (TLN1). (C) Coagulation factor V (F5). (D) WASP actin nucleation promoting factor 
(WAS). (E) Jumonji domain containing 1C (JMJD1C). 

 

 
 

Figure 11. Regulatory network and qPCR validation. (A) The lncRNA-miRNA-key CGs regulatory network. The coral, green and yellow 
circle represents mRNA, lncRNA and miRNA, respectively. The lines between circles mean that there are predicted regulatory pairs. The 
expressions of ACTN1 (B), F5 (C), JMJD1C (D), TLN1 (E) and WAS (F) were detected and compared between IS and HC samples by qPCR. The 
results were shown as mean ± S.D. *p <0.05, ***p <0.001, nsp > 0.05. 
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method, we investigated the molecular mechanisms of 

TLN1 that TLN1 is involved in many immune and 

inflammation related pathways, such as chemokine 

signaling, toll-like receptor signaling and insulin 

signaling, which are key signaling pathways in IS 

development [38–40]. Multiple studies have reported 

that the polymorphisms of F5 were correlated with 

thrombosis and IS, such as c. 1691G>A [41] and 

c4970A>G [42]. But the study on the role of F5 

aberrant expression in regulating IS remains limited. 

There is no report between ACTN1 and IS. ACTN1 is 

mainly expressed in platelets, and its variants are 

associated with thrombocytopenia [43, 44]. Platelets 

play important roles in the development of IS, including 

but not limited to by inducing the expressions of 

ICAM1, E-selectin and P-selectin [45], formation of 

platelet-leukocyte aggregates [46] and interacting with 

neutrophils [47]. Thus, it is suggested that ACTN1 may 

regulate IS via platelets, which need to be further 

explored. JMJD1C is a histone H3 lysine 9 (H3K9) 

demethylase, which is tightly related to lipogenesis [48] 

and epigenetic regulation of steroidogenesis [49] and 

adipogenesis [50]. One of the most important causes of 

cerebral ischemia is the deposition of lipids on the inner 

wall of blood vessels, which leads to the formation of 

plaque and affects blood flow. In vitro and in vivo 

experiments are needed to investigate whether JMJD1C 

regulates IS via adipogenesis or not. As for WAS, it 

encodes WASP and participates in acting network 

assembly [51], which is also associated with cell 

behaviors [52–54], however, how it functions in IS  

are not elucidated. In addition, we also try to explain  

the molecular mechanisms of those biomarkers by 

bioinformatic analysis. Interestingly, we again found  

that those genes were all related to immune and 

inflammation pathways, further supporting our 

hypothesis that those biomarkers may affect IS via 

immune and inflammation. Thus, our study identified 

novel coagulation marker genes and explored their 

potential mechanisms in IS. Those findings shed novel 

lights on our understanding of IS pathogenesis and may 

benefit the development of auxiliary diagnosis in IS  

and new drugs targeting those marker genes for IS 

treatment. 

 

Some limitations have to be acknowledged in our study. 

First, our study is mainly based on public transcriptome 

datasets, which are relatively small sample sizes. Larger 

clinical cohorts should be enrolled to determine and 

validate the diagnostic performance and clinical utility 

of key CGs in future. Second, in consideration of small 

sample size of the dataset and the number of CGs, we 

used |log2FC| > 0.5 and adjusted p-value <0.05 to filter 
DECGs. Thus, the biological relevance and the 

molecular mechanisms of F5, ACTN1 and JMJD1C in 

regulating IS needs to be explored by in vitro and  

in vivo experiments. Among them, we are most 

interested in F5. Thus, based on above limitations, we 

plan to (1) collect more samples at different stages of IS 

to examine the expressions and locations of F5 by using 

qPCR and immunofluorescence; (2) treat human 

umbilical vein endothelial cells (HUVECs) by OGD/R 

method to mimic IS in vitro, and then overexpress F5 to 

see whether it affect cellular behaviors (proliferation, 

apoptosis, migration, angiogenesis) and expressions of 

IL-1β, IL-6 and TNF-α; (3) deliver F5 overexpressing 

lentivirus into I/R mice and detect infarct size and 

neuroinflammation. 

 

In summary, for the first time, we identified novel CGs 

as potential IS biomarkers and investigated their 

relationship with immune microenvironment of IS. We 

hope that our findings can provide fundamental 

information in the pathogenesis of IS from coagulation 

and inflammation perspective, and support for diagnosis 

and treatment in IS patients in future. 

 

MATERIALS AND METHODS 
 

Date sources 

 

All expression profiling data used in the current  

study were downloaded from GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) with the following 

inclusion criteria: (1) more than 30 peripheral blood 

samples from Homo sapiens; (2) concurrent inclusion of 

both IS patients and non-stroke healthy controls (HC). 

Accordingly, two GEO datasets were obtained, including 

GSE16561 (IS = 39, HC = 24) from GPL6883 platform 

of Illumina HumanRef-8 v3.0 expression BeadChip as 

the training set and GSE58294 (IS = 69, HC = 23) from 

GPL570 platform of Affymetrix Human Genome U133 

Plus 2.0 Array as an external verification set. The “oligo” 

R package was used to preprocess (background 

correction, log transformation and normalization) the raw 

gene expression profiles for downstream analyses. 

Besides, 185 human CGs were sourced from AmiGO2 

database (http://amigo.geneontology.org/amigo) [55]. 

 

Differential expression analysis and enrichment 

analysis 

 

Limma (version 3.48.3) package [56] was used to 

obtained DECGs between IS and HC groups (|log2FC| 

> 0.5, adj.P.Val<0.05). Ggplot2 (version 3.3.5) and 

pheatmap (version 1.0.12) were performed to draw 

volcano and heat map, respectively. Then, GO and 

KEGG enrichment analysis of DECGs were performed 

by ClusterProfiler (version 4.4.4) [57] to obtain the 

function items and related pathways (p.adjust < 0.05 

and count > 1). Finally, functional networks of DECGs 

were performed by the ClueGO plug-in of Cytoscape. 
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The construction of a protein-protein interaction 

(PPI) network and immune infiltration analysis 

 

The PPI network was constructed based on the STRING 

database (https://string-db.org/). Cytoscape was used to 

visualize the PPI network of DECGs. Based on 24 

immune cell gene sets, the proportion of infiltrating 

immune cells in each sample was calculated by ssGSEA 

algorithm. The box plot of the proportion of infiltrating 

immune cells in IS and HC groups was drawn according 

to the calculation results, and the Wilcoxon test was 

used to analyze the difference of immune cell 

infiltration between IS and HC groups (p < 0.05). 

Ggplot2 (version 3.3.5) [58] was used to draw box plot. 

The correlation between DECGs and immune cells was 

calculated by Spearman analysis. 

 

Identification and analysis of coagulation-related 

subtypes 

 

Firstly, in order to evaluate the stability of clustering and 

determine the optimal number of clusters, consensus 

clustering was performed on 39 IS samples in the data 

set GSE16561 based on DECGs. According to the 

consensus clustering results, the box plot of proportion 

of infiltrating immune cells in different clusters was 

plotted by ggplot2 package, and the Wilcoxon test was 

used to analyze the difference in immune cell infiltration 

(p < 0.05). Then, to study the genetic mechanisms 

involved in CG-mediated regulation, we compared 

DEGs between different subtypes (|log2FC| > 1 and  

p-value < 0.05), and GO and KEGG enrichment 

analyses were performed on DEGs. Finally, to further 

explore the pathways activated in different clusters, the 

msigdbr (version 7.4.1) package was used to download 

the GO and KEGG pathway gene sets as reference gene 

sets. Then, ssGSEA algorithm was performed by GSVA 

(version 1.40.1) package to obtain the ssGSEA score for 

each GO terms and pathways, and the limma package 

was used to compare the enrichment differences of GO 

terms and pathways between different subtypes. 

 

Screening of module genes 

 

WGCNA (version 1.70-3) package [59] was performed 

to construct a co-expression network to find the gene 

module most related to IS. Firstly, the clustering of the 

IS samples was carried out to detect outlier samples to 

ensure the accuracy of the subsequent analysis. The soft 

threshold of the data was determined to achieve a scale-

free topology. Based on optimal soft thresholds, we set 

a minimum number of genes in per module as 100 

according to dynamic tree cutting algorithm. The 
correlation between module and IS was calculated to 

obtain the key module. A scatter plot was drawn for key 

module to show the correlation between GS and MM. 

Identification of key CGs in IS 

 

Firstly, candidate genes were obtained by intersection 

of DECGs with key modular genes. Then, to further 

assess the importance of candidate genes in IS, 4 types 

of machines learning method, including RF, SVM, 

GLM and XGB were performed, respectively. Four 

models were calculated using the DALEX (version 

2.3.0) package to draw the residual distribution map  

to obtain the best model. Next, the discriminant 

performance of four machine learning algorithms in 

GSE16561 data set was evaluated by ROC curves. 

Genes obtained by the algorithm with the best 

evaluation effect were selected as candidate key  

CGs for further analysis. Finally, to study the ability  

of candidate key CGs to distinguish between IS 

samples and HC samples, ROC curves of candidate 

key genes were drawn by pROC package [60].  

The area under curve (AUC) value ≥ 0.7 was selected 

as diagnostic CGs. The ggplot2 (version 3.3.5) 

package [58] was used to show the expressions of 

diagnostic CGs in GSE16561 and GSE58294 data set, 

respectively. 

 

Clinical value and enrichment analysis of key CGs 

 

Rms (version 6.1-0) package was used to construct the 

nomogram of key CGs, and calibration curves were 

drawn to assess the accuracy of the model. GSEA were 

performed to explore the related pathways and 

molecular mechanisms of key genes by ClusterProfiler 

(version 4.0.2) package [57] and org.Hs.eg.db package 

(version 3.13.0). 

 

Construction of ceRNA network 

 

Firstly, miRNA targeting key CGs were predicted  

by miRWalk database (http://mirwalk.umm.uni-

heidelberg.de). The criterion for screening miRNA was 

energy < -30. Then, lncRNAs interacting with selected 

miRNAs were predicted using the miRTarBase database 

(https://ngdc.cncb.ac.cn/databasecommons/database/id/

167). Finally, ceRNA network was constructed based 

on key CGs, miRNA and lncRNA. Cytoscape was used 

to generate the ceRNA network. 

 

Experimental verification 

 

Human peripheral blood samples were obtained from IS 

patients (N = 5) and healthy individuals (N = 5), who 

agreed to participate in the current study with written 

consent. This study was approved by the ethics 

committee of Shandong Provincial Qianfoshan 
Hospital. Firstly, the total RNA of samples was isolated 

and purified by TRIzol reagent following the instruction 

manual. The concentration of RNA was quantified by 
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Table 1. Primers used for qPCR. 

Gene name Forward primer sequence Reverse primer sequence 

ACTN1 CCTCCCTGATGCCGACAAG CCTGAGGCGTGATGGTTGT 

F5 TAAGCCCTTGAGCATCCATCC TGGGTCCACTGTCCTCACTGATA 

JMJD1C CCAACTCTAATACCCGAACCAA CCATAGCAGCCTGTAACTTTCC 

TLN1 CGTGCAAACCAGGCAATTCA ATTGGTGGTACGGGCAGAAG 

WAS GCGACTCTTTGAGATGCTTGG CGTAAAGGCGGATGAAGTAGGA 

GAPDH CGAAGGTGGAGTCAACGGATTT ATGGGTGGAATCATATTGGAAC 

 

NanoPhotometer N50. Then, reverse transcription of 

mRNA was carried out using the SureScript-First-

strand-cDNA-synthesis-kit (Servicebio, China). Next, 

the reverse transcription product cDNA was used as 

template to run 40 cycles of reaction, including 1 min at 

95° C (pre-denaturation), followed by at 95° C for 20 s 

(denaturation), 55° C for 20 s (annealing) and 72° C for 

30 s (elongation) on the CFX96 real-time quantitative 

PCR instrument. Primer sequences were shown in  

Table 1. 

 

Data availability statement 

 

The datasets GSE16561 and GSE58294 for this study 

can be downloaded in the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). The processed 

data are available from the corresponding author upon 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. The schematic workflow of the current study. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. The proportions of immune cells calculated by ssGSEA in ischemic stroke and control 
samples. 

 

Supplementary Table 2. The differentially expressed genes between Cluster 1 and Cluster 2. 
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