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INTRODUCTION 
 

Complement fragments play a pivotal role in the 

defense against foreign pathogens, representing a 

cornerstone of the innate immune system [1]. Moreover, 

the activation of the complement system contributes 

significantly to anticancer defense mechanisms, with 

Sushi domain-containing protein 4 (SUSD4) emerging 

as a notable regulatory player within this context. 

Structurally akin to the membrane complement inhibitor 

CD46, the immunological significance of SUSD4 

warrants particular scrutiny, given the pivotal role of its 

analogous protein, CD46, in T cell functions [2]. 

Additionally, CD46 is closely associated with IL-10 and 

TH1 cells, suggesting that SUSD4 may have a similar 

function to CD46 [3, 4]. Emelie et al. demonstrated that 

downregulation of SUSD4 in breast malignancy cells 

was related to a poor prognosis, and knockdown of 

SUSD4 in breast malignancy cell lines reduced cell 

migration and invasion [5, 6].  

 

Nevertheless, the exploration of SUSD4’s involvement 

in tumor immunity and prognostic implications across 

various cancer types remains limited in prior research 

efforts. Adopting a systematic pan-cancer approach, the 

present investigation aims to elucidate the multifaceted 

dynamics of SUSD4 expression levels vis-à-vis cancer 

prognosis. Leveraging data extraction from diverse 

databases, coupled with bioinformatics analyses, we 

endeavor to delineate the intricate interplay between 

SUSD4 expression and the immune microenvironment, 

along with its ramifications on immune-related genes. 
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ABSTRACT 
 

Sushi domain-containing protein 4 (SUSD4) is a complement regulatory protein whose primary function is to 
inhibit the complement system, and it is involved in immune regulation. The role of SUSD4 in cancer 
progression has largely remained elusive. SUSD4 was studied across a variety of cancer types in this study. 
According to the results, there is an association between the expression level of SUSD4 and prognosis in 
multiple types of cancer. Further analysis demonstrated that SUSD4 expression level was related to immune 
cell infiltration, immune-related genes, tumor heterogeneity, and multiple cancer pathways. Additionally, we 
validated the function of SUSD4 in colorectal cancer cell lines and found that knockdown of SUSD4 inhibited cell 
growth and impacted the JAK/STAT pathway. By characterizing drug sensitivity in organoids, we found that the 
expression of SUSD4 showed a positive correlation trend with IC50 of Selumetinib, YK-4-279, and 
Piperlongumine. In conclusion, SUSD4 is a valuable prognostic indicator for diverse types of cancer, and it has 
the potential to be a target for cancer therapy. 
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Additionally, we employ a pharmacological lens to 

identify potential therapeutics targeting SUSD4. 

 

In sum, our study provides pioneering insights into the 

prognostic and immunological significance of SUSD4, 

offering a valuable foundation for the exploration of 

novel immunotherapeutic targets and informing the 

development of more efficacious treatment modalities 

by aiding clinicians in optimizing therapeutic strategies. 

 

RESULTS 
 

SUSD4 expression level in normal and tumor 

samples 

 

SUSD4 expression levels in normal and tumor samples 

were compared using the TCGA database (Figure 1A). 

It was observed that SUSD4 expression was 

significantly upregulated in 9 tumors, such as BRCA, 

CESC, CHOL, LIHC, LUAD, LUSC, PCPD, THCA, 

and UCEC. Conversely, significant downregulation of 

SUSD4 expression was observed in COAD, COREAD, 

GBM, HNSC, KICH, KIPAN, KIRP, KIRC, PRAD, 

STAD, STES, and READ. Comparison of SUSD4 

expression levels in normal and tumor samples was also 

performed using data obtained from the GTEx database 

(Figure 1B). Significant upregulation of SUSD4 

expression was noted in 12 tumors, including BRCA, 

CESC, CHOL, LGG, LIHC, LUAD, LUSC, PAAD, 

PCPG, THCA, UCEC, and UCS. In the other 13 tumors 

(ACC, COREAD, GBM, HNSC, KICH, KIRC, KIPC, 

LAML, OV, PRAD, SKCM, STAD, and TGCT), 

SUSD4 expression was downregulated. 

 

We obtained the expression matrix of SUSD4 in various 

cancer cell lines through the CCLE database and found 

that the expression level of SUSD4 was highest in 

breast cancer, while it was lowest in lymphoma, 

rhabdoid, and myeloma (Figure 1C). However, overall, 

the expression level of SUSD4 is not high across 

multiple cell lines. 

 

Survival and prognosis analyses 

 

We evaluated the prognostic significance of SUSD4 

expression levels in various tumor types using the log-

rank test. Our analysis revealed notably high SUSD4 

expression in KIRP (p=1.2e-3, hazard ratio (HR)=1.48 

(1.16,1.89)), KIPAN (p=4.4e-3, HR=1.17 (1.05,1.31)), 

KIRC (p=0.01, HR=1.18 (1.04, 1.34)), COADREAD 

(p=1.8e-3, HR=1.85 (1.25, 2.74)), THYM (p=4.4e-3, 

HR=2.18 (1.22, 3.89)), LIHC (p=0.04, HR=1.10 

(1.00,1.22)), and DLBC (p=0.03, HR=2.59 (1.05,6.38)), 

which was associated with shorter overall survival (OS). 

In contrast, low SUSD4 expression levels were 

observed in five tumors (GBMLGG (p=2.5e-25, 

HR=0.56(0.50,0.63), LGG (p=8.6e-9, HR=0.57 

(0.47,0.69), CESC (p=0.02, HR=0.86 (0.76,0.98), 

LUSC (p=0.01, HR=0.89 (0.82,0.98), and PAAD 

(p=4.8e-3, HR=0.79 (0.67,0.93)), which was 

accompanied by a poor prognosis (Figure 2A). 

Interestingly, high expression of SUSD4 in LGG is a 

prognostic protective factor, while in GBM, the 

expression level of SUSD4 is not significantly 

associated with survival. 

 

Based on the optimal cutoff value, patients were divided 

into two groups, and the prognostic differences were 

further analyzed using the ‘survfit’ function of the 

‘survival’ R package. Differences in prognostic 

significance were assessed using the log-rank test,  

and the Kaplan-Meier (KM) survival curves were 

plotted (Figure 3B–3N). Overall, SUSD4 exhibits a 

dichotomous relationship with prognosis in different 

types of cancer.  

 

Immunological genes and SUSD4 

 

SUSD4, a complement regulator, is associated with a 

variety of immune-related genes. Therefore, a 

correlation was found between SUSD4 expression 

levels and the expression levels of multiple immune-

related genes in different tumor tissues (Figures 3, 4). 

The correlation of SUSD4 expression level with 

expression levels of immunoinhibitory and immuno-

stimulatory genes is shown using a heatmap in Figure 

3A, 3B. 

 

Among the immunoinhibitory genes, VTCN1 

expression level was positively correlated with SUSD4 

expression level in many types of cancer (Figure 3A). 

However, SUSD4 expression level was negatively 

correlated with the expression levels of LGG, SARC, 

BRCA, LUSC, and BLCA. Conversely, SUSD4 

expression level was positively correlated with the 

expression levels of KIRP, COADREAD, PRAD, OV, 

THCA, HNSC, UVM, THYM, and LIHC. Interestingly, 

in CHOL, there was no statistically significant 

correlation between the expression level of SUSD4 and 

inhibitory-related genes. Similarly, in UCS, only the 

expression levels of VTCN1 and SUSD4 showed a 

positive correlation. Additionally, in cancers with poor 

prognosis and high SUSD4 expression (including 

DLBC, THYM, COADREAD, KIRP, LIHC), a positive 

correlation trend was observed with inhibitory-related 

genes. 

 

Figure 3B shows the correlation between the expression 

levels of stimulatory genes and SUSD4. We found a 
positive correlation in UVM, DLBC, LAML, THYM, 

KIRP, PCPG, PRAD, THCA, and COADREAD. 

Conversely, there is a general trend of a negative 
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Figure 1. The expression of SUSD4 in pan-cancer. (A) Pan-cancer analysis of SUSD4 expression across cancers from TCGA.  
(B) Expression profiles across GTEx tissues and TCGA. (C) Expression of SUSD4 in cell lines from CCLE dataset. *p < 0.05, **p < 0.01, ***p < 
0.001, and ****p < 0.0001. Abbreviation of cancers are available in the Supplementary Table 1. 
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Figure 2. Pan-cancer survival analysis of SUSD4. (A) Forest plot of the pan-cancer survival analysis. (B–N) The Kaplan-Meier 
plot of TCGA pan-cancer survival profiles with significant differences. The red and blue line represents high and low SUSD4 
expression group respectively. HR, hazard radio. CI, confidence interval. 
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Figure 3. The relationship between SUSD4 and immune checkpoint genes in pan-cancer. Correlation Heatmap of SUSD4 with Two 

Types of Immune Checkpoint Pathway Genes: (A) Inhibitory and (B) Stimulatory. *p < 0.05, **p < 0.01, ***p < 0.001. P-values were adjusted 
by false discovery rate (FDR) method. 

6421



www.aging-us.com 6 AGING 

correlation in SARC, LGG, MESO, LUSC, BLCA, and 

BRCA. The correlation is relatively weak in other types. 

 

The use of immune checkpoint inhibitor-based 

immunotherapy is exponentially increasing in the 

treatment of patients with advanced cancer. It was 

revealed that SUSD4 expression level was positively 

correlated with immune checkpoints by analyzing the 

correlation of SUSD4 expression level with the 

expression levels of immune checkpoint-related genes 

in PCPG, LIHC, OV, PRAD, THCA, COADREAD, 

UVM, DLBC, and LAML (Figure 4A, 4B). The 

expression levels of immune checkpoint-related genes 

were negatively correlated with SUSD4 expression 

level in GBM, LGG, SARC, BRCA, LUSC, and BLCA.  

 

Chemokines and their receptors recruit different 

subpopulations of immune cells into the TME, which 

are associated with tumor progression and 

immunotherapeutic outcomes [7]. We analyzed the 

correlation of chemokines with SUSD4 expression level 

and found a positive correlation of chemokines with 

SUSD4 expression level in COREAD, THYM, UVM, 

THCA, and LIHC. CXCL17 and CX3CL1 were 

positively correlated with SUSD4 expression level in 

most types of cancer (Figure 4C). Genes of the major 

histocompatibility complex (MHC) are essential for 

immune response to infections. We evaluated the 

correlation between the expression levels of MHC-

related genes and SUSD4 expression level in tumor 

cells and found that the expression levels of MHC-

related genes were negatively correlated with SUSD4 

expression level in LGG, MESO, BLCA, LUSC, ESCA, 

SARC, HNSC, BRCA, and KIRC (Figure 4D). 

However, the expression levels of MHC-related genes 

were positively correlated with SUSD4 expression level 

 

 
 

Figure 4. Relationship of SUSD4 expression with immune-related genes. The correlation of SUSD4 expression level with 
immunostimulatory (A) and immunoinhibitory genes (B). Correlation of chemokine genes (C), MHC genes (D) and receptor genes (E) and 
SUSD4. *p < 0.05, **p < 0.01, ***p < 0.001. P-values were adjusted by false discovery rate (FDR) method. 
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in UVM, COADREAD, LIHC, OV, THCA, LAML, 

PRAD, and PCPG. 

 

Finally, we examined the correlation between the 

expression level of an immunoreceptor gene and 

SUSD4 expression level and found similarities with 

previous results. In THCA, KIRP, HNSC, LAML, 

LIHC, COADREAD, OV, PCPG, and PRAD, the 

correlations were positive, while in ESCA, LUSC, 

BLCA, and BRCA, the correlations were mainly 

negative. 

 

Through correlation analysis between SUSD4 

expression and immune-related genes, we found a 

general positive correlation between SUSD4 and 

immune-related genes in cancers where high 

expression of SUSD4 is a poor prognostic factor. 

Conversely, a significant negative correlation trend 

was observed in cancers with a better prognosis 

associated with high SUSD4 expression. Based on 

these findings, we propose that SUSD4 may have a 

mechanism that affects immune regulation and thus 

influences tumor prognosis. 

 

TME and immune cell infiltration analysis 

 

Malignant tumor tissues encompass not only tumor cells 

but also normal epithelial and stromal cells, immune 

cells, and vascular cells associated with the tumor. 

Stromal cells are closely linked to tumor growth, 

disease progression, and tumor resistance. We utilized 

the ESTIMATE algorithm, which includes stromal 

score, immune score, and ESTIMATE score, to assess 

the relationship between SUSD4 expression level and 

the TME (Supplementary Figure 1A). We observed a 

positive correlation between SUSD4 expression and 

three immune scores in LAML, UVM, COADREAD, 

and THCA. However, it is noteworthy that the immune 

score and ESTIMATE score in UVM did not exhibit 

statistical significance, consistent with the previously 

mentioned correlation results with immune-related 

genes. Conversely, in LGG, SARC, MESO, BLCA, 

UCEC, LUSC, and BRCA, a significant negative 

correlation was noted between SUSD4 expression and 

the three immune scores.  

 

Furthermore, we conducted an analysis of the 

correlation between SUSD4 expression and immune-

infiltrating cells using three different algorithms. 

Supplementary Figure 1B displays the correlation 

between SUSD4 expression, calculated using the EPIC 

algorithm, and immune-infiltrating cells. We observed a 

positive correlation between CD4 T cells and SUSD4 
expression in multiple cancers. Conversely, cancer-

associated fibroblasts showed a negative correlation 

with SUSD4 in THYM, LUSC, BLCA, GBM, and 

SARC. Interestingly, in these particular types of cancer, 

higher expression of SUSD4 was associated with better 

prognosis. However, no statistically significant 

correlation was found in CHOL, LUAD, UCEC, ACC, 

STAD, and KICH. Supplementary Figure 1C, 1D 

present the correlation analysis between SUSD4 

expression and tumor immune-infiltrating cells using 

the TIMER algorithm and MCP counter algorithm, 

respectively. Similar results were also observed in 

THYM, LGG, SARC, LUSC, BLCA, and BRCA, 

where a negative correlation was observed with various 

immune cell infiltration scores. Conversely, significant 

positive correlations were found in COADREAD, 

LAML, PRAD, LIHC, and KIRP. These results suggest 

that SUSD4 may influence tumor immune infiltration, 

and there is a trend that cancers with high infiltration 

scores and high SUSD4 expression may have a poorer 

prognosis. 

 

Tumor heterogeneity analysis 

 

Cancer therapy has made significant advances, but the 

persistence of tumor heterogeneity poses a barrier to 

successful treatment. We evaluated the correlation 

between the expression level of SUSD4 and tumor 

heterogeneity using four metrics: microsatellite 

instability (MSI), tumor mutational burden (TMB), 

mutational burden-assessed tumor heterogeneity 

(MATH), and homologous recombination deficiency 

(HRD). Homologous recombination is a crucial 

process involved in DNA repair and replication. When 

DNA damage cannot be repaired through homologous 

recombination repair, it results in homologous 

recombination deficiency [8]. As displayed in Figure 

5A, SUSD4 expression level was negatively 

correlated with HRD in SARC and TGCT, while 

positively correlated in STAD, HNSC, KIRC, ESCA, 

STES, UCEC, LIHC, and THYM. MATH is an 

algorithm used to calculate intratumor genetic 

heterogeneity, where higher values indicate a worse 

prognosis [9, 10]. The relationship between MATH 

and SUSD4 expression level was significantly 

correlated in 13 tumors, with a positive correlation in 

11 tumors and a negative correlation in 2 tumors 

(Figure 5B). Microsatellite instability (MSI) arises 

from defects in the mismatch repair system, leading to 

hypermutation patterns. MSI is frequently utilized to 

guide treatment decisions, such as in colorectal 

cancer, where immune checkpoint blockade treatment 

decisions are made based on a patient’s MSI status 

[11]. Figure 5C, 5D display the relationship between 

SUSD4 expression level and MSI and TMB, 

respectively. A correlation was found between MSI 
and SUSD4 expression level in 10 tumors. However, 

there were negative and positive correlations between 

SUSD4 expression level and TMB in only 3 tumors.
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Figure 5. Relationship between tumor heterogeneity and SUSD4 expression. Lollipop plot illustrating the relationship between  

(A) Homologous recombination deficiency, (B) mutant-allele tumor heterogeneity, (C) Microsatellite Instability, and (D) Tumor mutational 
burden and SUSD4 expression. The color of dots is used to distinguish significance, and red represents P < 0.05.  HRD, Homologous 
recombination deficiency. MATH, mutant-allele tumor heterogeneity. MSI, Microsatellite Instability. TMB, Tumor mutational burden.  
P-values were adjusted by Benjamini Hochberg (BH) method. 
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Genetic alteration analysis 

 

Our analysis of SUSD4 genetic alterations in pan-

cancer datasets from TCGA was conducted using the 

cBioPortal. The results revealed a relatively high overall 

frequency of SUSD4 alterations in various types of 

cancer, primarily driven by copy number variations 

(CNVs). Notably, fibrolamellar carcinoma exhibited the 

highest frequency, surpassing 30% (Figure 6A). 

Considering that CNAs may be associated with cancer 

progression, we investigated the association between 

SUSD4 expression level and CNV. Our analysis 

demonstrated a positive correlation between CNV and 

SUSD4 expression level across diverse types of cancer 

(Figure 6B). Furthermore, we assessed the relationship 

between SUSD4 expression level and DNA 

methylation, as DNA methylation is known to play a 

role in the epigenetic mechanisms of cancer. 

Interestingly, we found a negative correlation between 

SUSD4 expression level and DNA methylation 

mutations in 18 types of cancer (Figure 6C). 

Additionally, our analysis revealed strong correlations 

between SUSD4 expression level and both CNV and 

DNA methylation in various cancers (Figure 6D, 6E). 

 

Drug sensitivity analysis 

 

Through tumor heterogeneity analysis, it was 

hypothesized that SUSD4 has the potential to be an 

immunotherapeutic target. We used the GDSC database 

to analyze potential drugs. Figure 7A, 7B demonstrate 

that the drugs in CTRP and GDSC databases are 

strongly correlated with SUSD4 expression level. Three 

drugs were correlated with SUSD4 expression in both 

drug databases through correlation analysis, including 

Selumetinib, YK-4-279, and piperlongumine (Figure 

7C). Selumetinib is a selective, non-ATP-competitive 

MEK1/2 inhibitor used for the treatment of 

neurofibromatosis. YK-4-279 functions by blocking the 

interaction of the oncogenic protein EWS-FLI1 and is 

thought to have anti-tumor effects and induce apoptosis 

[12]. Piperlongumine, a derivative from Piper longum, 

is reported to have antitumor activities [13]. To verify 

the correlation between SUSD4 expression and the 

three drugs, colorectal cancer samples were harvested, 

and organoid cultures were performed. Figure 7D 

illustrates the colorectal cancer organoids, with the left 

panel showing normal growth and the right panel 

indicating changes observed one day after delivering 

Selumetinib. We conducted IC50 characterization of the 

three drugs in 12 organoids, revealing substantial 

heterogeneity in drug sensitivity among different 

patient-derived organoids. For Selumetinib, the lowest 
IC50 was observed in PDO#3 at 0.44 μM, while the 

highest IC50 was recorded in PDO#6 at 10.54 μM. 

Among the 12 organoids, relative insensitivity to YK-4-

279 was noted, with the lowest IC50 being 1.42 μM for 

PDO#11 and the highest IC50 recorded at 42.16 μM for 

PDO#02. There was a trend towards resistance to 

piperlongumine in colorectal organoids, with the lowest 

IC50 measured at 4.04 μM for PDO#11 and the most 

resistant being PDO#07 with an IC50 of 91.45 μM.  

 

To verify the relationship between SUSD4 expression 

and the sensitivity of the above drugs, a correlation 

analysis was performed based on the SUSD4 expression 

levels of the samples and IC50 values. As depicted in 

Figure 7F, the IC50 of both Selumetinib and YK-4-279 

tended to increase statistically as the expression of 

SUSD4 increased. However, in the correlation analysis 

of piperlongumine with SUSD4 expression, the FDR 

value was not statistically significant, although the R 

value reached 0.5175. Additionally, we found that all 

three drugs exhibited lower IC50 values and higher 

sensitivity to drug treatment in organoids with the 

lowest relative expression of PDO#02 and PDO#12. 

 

Enrichment and pathway analyses 

 

Results showed that the expression level of SUSD4 was 

associated with prognosis, immunity, and heterogeneity 

in some types of cancer, and we attempted to utilize 

enrichment analysis to predict the possible mechanism 

of SUSD4. First, we constructed the PPI network using 

the STRING database and visualized it using Cytoscape 

software (Figure 8A). Figure 8B displays the results of 

the KEGG pathway analysis, revealing that the main 

functions of the proteins interacting with SUSD4 were 

related to cancer and immune-related pathways. Figure 

9C–9E illustrate the results of the GO enrichment 

analysis, including biological processes, cellular 

components, and molecular functions, which are similar 

to the outcomes of the KEGG pathway analysis. 

 

COREAD was prominent in previous results, both in 

terms of immune correlation, survival prognosis, and 

tumor heterogeneity in association with SUSD4 

expression level. We performed GSEA using 

COADREAD RNA expression matrix and clinical 

information from TCGA. Figure 8F, 8G show the 

enriched immune-related pathways and cancer-related 

pathways, respectively. 

 

We hypothesized that SUSD4 expression level could be 

closely associated with colorectal carcinogenesis 

progression, and the enrichment scores of each sample 

on common cancer-related pathways were calculated 

sequentially according to the ssGSEA algorithm to 

obtain the association between samples and pathways. 
The results discovered that SUSD4 expression level was 

positively correlated with tumor inflammation, 

extracellular matrix (ECM), angiogenesis, epithelial–
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Figure 6. Relationship between SUSD4 expression and gene alterations. (A) The stacked bar plot shows the type and frequency of 
genetic changes in SUSD4. (B) Heatmap of correlation between methylation and copy number variation and SUSD4 expression.  
(C) Correlation between SUSD4 expression and CNV in THYM, CHOL, SARC and HNSC. (D) Correlation between SUSD4 expression and 
methylation in DLBC, GBM, THCA and USC. *p < 0.05, **p < 0.01, and ***p < 0.001. CNV, copy number variation.  P-values were adjusted by 
false discovery rate (FDR) method. 

6426



www.aging-us.com 11 AGING 

 
 

Figure 7. Drug sensitivity analysis based on SUSD4 expression. (A) CTRP database and (B) GDSC database. (C) Venn diagram between 
two drug datasets. (D) Colorectal cancer organoids under a 4X microscope, the length of the bar is 100μM. (E) IC50 for three drugs in 12 
organoids. (F) Spearman correlation between mRNA level of SUSD4 and IC50 of three drugs, the size and color of the dots represent IC50 and 
organoids’ ID respectively. CTRP, cancer therapeutics response portal. GSDC, genomics of drug sensitivity in cancer. IC50, half maximal 
inhibitory concentration. P-values were adjusted by false discovery rate (FDR) method. 
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Figure 8. Enrichment analysis result of SUSD4. (A) Protein-protein interaction analysis of SUSD4 replotted by Cytoscape. (B) Sankey plot 

of KEGG enrichment analysis result. Biological process (C), cellular competent (D) and molecular function (E) result of GO enrichment analysis. 
Immune-related pathways (F) and cancer pathways (G) were enriched by GSEA in colorectal cancer.  KEGG, Kyoto encyclopedia of genes and 
genomes. GO, gene ontology. GSEA, gene set enrichment analysis. P-values of KEGG and GO were adjusted by Benjamini Hochberg (BH) 
method. 
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mesenchymal transition (EMT), p53 pathway, collagen 

formation, apoptosis, IL-10, inflammatory response, 

TGF-β pathway, and degradation of ECM (Figure 9A–

9K). In addition, SUSD4 expression level was 

negatively associated with cancer proliferation, DNA 

repair, cellular response to hypoxia, DNA replication, 

MYC target genes, and G2M DNA damage checkpoint 

(Figure 9L–9Q). 

 

Exploring the impact of SUSD4 knockdown in vivo 

and in vitro 

 

Given that patients with high SUSD4 expression in 

CRC exhibit a poorer prognosis, despite its expression 

levels not being higher in CRC tissues, we proceeded to 

knock down and interfere with SUSD4 using CRC cell 

lines. Firstly, we verified the expression of SUSD4 in 

various colorectal cancer cell lines and found the 

highest expression in DLD1 and LOVO (Figure 10A). 

Therefore, we performed knockdown validation using 

DLD1 and LOVO. As shown in Figure 10B, 10C, the 

knockdown efficiency of si1 was higher in both cell 

lines, thus si1 was used for the next experiment.  

 

By clone formation assay, we found that the colony area 

was lower after knockdown of SUSD4 (Figure 10D). 

CCK8 further corroborates the results of clone 

formation, with significant differences occurring on 

days three and four after knockdown of the target gene 

(Figure 10F, 10G). Further, we conducted subcutaneous 

tumor implantation experiments in nude mice. 

Supplementary Figure 2A illustrates the expression 

levels in DLD1 cells post-shRNA knockdown, and 

Supplementary Figure 2B presents images comparing 

tumors from sh-SUSD4 and sh-NC groups. When 

evaluating tumor volume and weight, mice with sh-

SUSD4-derived subcutaneous tumors exhibited smaller 

tumor volumes and lighter weights compared to the 

control group (Supplementary Figure 2C, 2D). Given 

the effect of knockdown of SUSD4 on cell proliferation, 

we speculate that cell cycle changes also occur when 

SUSD4 is knocked down. Figure 10E reveals the cell 

cycle changes following knockdown of SUSD4, with an 

increased proportion of cells in G0-G1 phase and 

apoptosis and a decreased proportion of cells in G2-M 

phase compared to the NC group. 

 

Building upon the findings from the previous section, 

our investigation suggests a potential association 

between SUSD4 and the JAK/STAT signaling pathway. 

Thus, we verified the mRNA changes in key genes of 

the JAK/STAT pathway after knockdown of SUSD4 

compared to the NC group. We found no obvious 

changes in mRNA levels except for STAT3. JAK3 was 
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Figure 9. Correlation analysis between SUSD4 expression and pathway signatures in COADREAD. (A) Tumor inflammation 

signature. (B) ECM−related genes signature. (C) Angiogenesis signature. (D) EMT markers signature. (E) P53 pathway signature. (F) Collagen 
formation signature. (G) Apoptosis signature. (H) IL−10 Anti−inflammatory Signaling Pathway signature. (I) Inflammatory response signature. 
(J) TGFB signature. (K) Degradation of ECM signature. (L) Tumor proliferation signature. (M) DNA repair signature. (N) Cellular response to 
hypoxia signature. (O) DNA replication signature. (P) MYC targets signature. (Q) G2M checkpoint signature. ECM, extracellular matrix. EMT, 
Epithelial-Mesenchymal Transition. IL-10, interleukin-10. TGFB, transforming growth factor-β. 
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Figure 10. Knockdown of SUSD4 inhibits the cell proliferation and impacts on JAK/STAT pathway. (A) Relative mRNA level of 
SUSD4 in multiple colorectal cancer cell lines. (B) Validation of siRNA knockdown efficiency in DLD1. (C) Validation of siRNA knockdown 
efficiency in LOVO. (D) Clonogenic assay and comparison of colony areas. (E) Cell cycle assay. (F) Cell proliferation assays in DLD1. (G) Cell 
proliferation assays in LOVO. (H) Relative mRNA changes of JAK/STAT pathway key gene between the negative control and knockdown group 
in DLD1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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dramatically reduced after knockdown of SUSD4, while 

other critical genes were significantly elevated (Figure 

10H). To further confirm the impact of SUSD4 

knockdown on JAK3, we conducted Western Blot 

validation. As shown in Supplementary Figure 2E, 

following SUSD4 knockdown, both SUSD4 and JAK3 

protein levels significantly decreased. Given that the 

primary focus of this study does not involve elucidating 

the specific mechanisms of SUSD4 in cancer, further 

exploration in this regard was not pursued. 

 

DISCUSSION 
 

The complement system constitutes a meticulously 

orchestrated network of proteins indispensable for host 

defense and inflammatory processes [14, 15]. Its 

functionality extends beyond the activation of 

macrophages, neutrophils, eosinophils, and basophils 

[16, 17], encompassing a role in modulating the 

adaptive immune response and potentially shaping T 

cell reactions to tumors [3, 18, 19]. In this intricate 

milieu, Sushi domain-containing protein 4 emerges as a 

pivotal complement regulator primarily tasked with 

modulating complement system activity. Building upon 

this premise, we postulate that SUSD4 may exert a 

discernible influence on tumorigenesis and cancer 

progression. 

 

To date, scant attention has been devoted to the 

exploration of Sushi domain-containing protein 4 

(SUSD4), with a paucity of studies investigating its 

implications across diverse cancer types. Existing 

research has predominantly centered on assessing 

SUSD4 expression levels in lung adenocarcinoma and 

breast cancer contexts [5, 20]. Thus, recognizing this 

void in the literature, our study endeavors to bridge this 

gap by methodically scrutinizing the correlation 

between SUSD4 expression levels and a comprehensive 

spectrum of cancer types. Through this systematic 

approach, we aim to unveil novel perspectives on the 

potential relevance of SUSD4 in the landscape of cancer 

research. 

 

Our systematic pan-cancer analysis has elucidated a 

dualistic nature in the role of Sushi domain-containing 

protein 4 (SUSD4) expression within tumors. Upon 

comparing SUSD4 expression levels between cancerous 

and normal tissues, we observed pronounced elevation 

exclusively in select cancer types. Moreover, our 

survival analysis unveiled two discernible impacts of 

SUSD4 expression levels on prognosis, thereby 

underscoring its potential utility as a prognostic 

biomarker across diverse cancer contexts. 

 

To explore the dual effects of SUSD4 expression on 

tumors, we assessed the correlation between various 

immune-related genes and SUSD4 expression. Our 

findings revealed a general negative correlation, 

suggesting SUSD4 may serve as a protective prognostic 

factor. Englund et al. identified SUSD4 as a prognostic 

factor for breast cancer (BRCA), demonstrating that 

knocking down SUSD4 in breast tumor cell lines 

inhibits cell migration and invasion. However, our 

results did not indicate a significant effect of SUSD4 

expression on BRCA prognosis. Nevertheless, analysis 

of the correlation between SUSD4 expression and 

immune cells showed a significant negative correlation 

in BRCA. Conversely, in colorectal adenocarcinoma, 

liver hepatocellular carcinoma, and kidney renal 

papillary cell carcinoma, high SUSD4 expression was 

significantly associated with poor prognosis and 

increased immune cell infiltration.  

 

The correlation analysis results revealed a noteworthy 

pattern: SUSD4 expression exhibited positive 

correlations with most immune-related genes in 

COADREAD, UVM, DLBC, LAML, LIHC, PCPG, 

and PRAD, while negative correlations were observed 

in LGG, BRCA, BLCA, MESO, and LUSC. Overall, a 

prevailing trend emerged wherein the correlation 

between SUSD4 expression and immune-related genes 

tended to be positive across various cancer types. 

Additionally, our analysis of SUSD4 correlation with 

immune-related genes and tumor infiltration unveiled a 

consistent trend: in instances where elevated SUSD4 

expression was linked to poorer prognosis, a positive 

correlation with immune-related genes and infiltrating 

cells was evident. Conversely, when heightened SUSD4 

expression conferred a protective prognosis, a negative 

correlation was observed. These observations suggest a 

potential role for SUSD4 in tumor immunity, with 

consequential implications for patient prognosis. 

Accordingly, these findings underscore the need for 

further comprehensive investigation and discussion to 

elucidate the mechanistic underpinnings of SUSD4 in 

tumor immunity and its impact on patient outcomes. 

 

To delve deeper into the multifaceted functions of 

SUSD4, we embarked on our investigation by 

constructing a protein-protein interaction (PPI) network. 

Subsequently, we conducted Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analyses based on the PPI network. 

Remarkably, our analyses revealed significant 

enrichment of numerous pathways related to both 

tumorigenesis and immune response, consistent with 

previous findings. This underscores the involvement of 

SUSD4 in these crucial biological processes. 

 
Moreover, our exploration uncovered a distinctive 

association between SUSD4 and colorectal 

adenocarcinoma, prompting us to delve deeper into 
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this connection from multiple perspectives. 

Consequently, we performed gene set enrichment 

analysis (GSEA) in COADREAD to unravel the 

potential mechanisms underlying the oncogenic 

actions of SUSD4 in colorectal cancer. Additionally, 

leveraging the single-sample gene set enrichment 

analysis (ssGSEA) algorithm, we corroborated the 

correlation between SUSD4 expression levels and 

prevalent cancer-related pathways in colorectal 

cancer. These findings provide further support to prior 

research implicating SUSD4 in immune responses and 

underscore its intricate interaction with multiple 

oncogenic pathways. Significantly, the regulatory 

correlations associated with SUSD4 were found to be 

dependent on the specific cancer type. These 

variations encompassed various regulatory levels, 

including genetic alterations, expression patterns, 

DNA methylation, immune-related genes, tumor 

microenvironment (TME), and pathway correlations. 

These disparities may have implications for 

differences in drug efficacy, treatment response, and 

survival rates among different cancer types. 

 

To investigate the potential oncogenic role of SUSD4, 

we conducted knockdown experiments in colorectal 

cancer cell lines. The results indicated that diminishing 

SUSD4 expression led to reduced proliferation, 

suggesting that SUSD4 plays a regulatory role in cell 

proliferation in vitro. Corresponding outcomes were 

observed in vivo, where mice with SUSD4-disrupted 

expression developed smaller and lighter subcutaneous 

tumors. Considering the critical importance of the 

JAK/STAT signaling pathway in cytokine transduction 

and its close association with cell proliferation, 

migration, and apoptosis, we explored its potential 

involvement in SUSD4-mediated actions. Enrichment 

analysis suggested that SUSD4 might participate in the 

activation of the JAK/STAT pathway. These findings 

were corroborated through RT-qPCR experiments and 

Western Blot analysis, confirming a significant 

reduction in JAK3 expression following SUSD4 

knockdown. Additionally, inhibiting JAK3/STAT3 in 

colorectal cancer cells promoted apoptosis and inhibited 

cell proliferation, aligning with previous results. These 

insights offer a more comprehensive understanding of 

SUSD4’s function in cancer biology, specifically in 

colorectal cancer, and highlight its interaction with the 

JAK/STAT signaling pathway.  

 

Further investigation into these mechanisms holds 

promise for enhancing our understanding of the role of 

SUSD4 in cancer progression, as well as for guiding the 

development of targeted therapeutic strategies [21]. 
Interestingly, our results revealed a significant increase 

in the mRNA level of STAT1 following SUSD4 

knockdown. Notably, high expression of STAT1 in 

colorectal cancer has been associated with a favorable 

prognosis [22]. These findings suggest a potential link 

between SUSD4, STAT1, and the clinical outcomes of 

colorectal cancer.  

 

Additional research is imperative to unveil the 

underlying mechanisms and delve into the therapeutic 

implications of this association. Comprehending the 

intricate interplay among SUSD4, JAK/STAT 

signaling, and colorectal cancer prognosis offers 

potential for identifying novel therapeutic targets and 

devising personalized treatment strategies for patients. 

 

Patient-derived organoids, which better represent tumor 

heterogeneity compared to established tumor cell lines, 

are widely used in drug screening. Through organoid 

drug analysis, we confirmed the correlation between 

SUSD4 expression and the response to Selumetinib and 

YK-4-279. These findings support the potential of 

SUSD4 as a therapeutic marker for colorectal cancer.  

 

However, it is crucial to acknowledge the limitations of 

this study. The depth of gene function validation and the 

effects on pathways may not have been fully explored. 

Nonetheless, the primary aim of this study was to 

deliver a comprehensive pan-cancer analysis of SUSD4, 

and more intricate validation of gene function will be 

pursued in future investigations. Continued exploration 

of the functional roles and molecular mechanisms 

linked with SUSD4 is imperative to attain a profound 

comprehension of its relevance in cancer biology. This 

endeavor will facilitate the development of targeted 

therapies and personalized treatment strategies for 

patients afflicted with colorectal cancer and potentially 

other malignancies as well. 

 

In conclusion, our research explores the role of Sushi 

domain-containing protein 4 across various cancer types, 

particularly focusing on its involvement in tumor 

immunity and cancer progression. Through systematic 

pan-cancer analysis, our study reveals a dualistic nature of 

SUSD4 expression in tumors, impacting prognosis 

differently depending on the cancer type. Correlation 

analyses with immune-related genes highlight SUSD4’s 

potential as a prognostic biomarker and its association 

with tumor immunity. Protein-protein interaction network 

and enrichment analyses indicate SUSD4’s involvement 

in tumorigenesis and immune response pathways. In-

depth investigation in colorectal cancer uncovers 

SUSD4’s role in cell proliferation via the JAK/STAT 

signaling pathway and its potential as a therapeutic 

marker. The study underscores the significance of SUSD4 

in cancer biology, suggesting it as a promising therapeutic 
target and prognostic indicator across diverse cancer 

types, while acknowledging the need for further 

mechanistic exploration and validation. 
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MATERIALS AND METHODS 
 

Data collection and processing 

 

A standardized pan-cancer dataset was obtained from 

the UCSC Xena functional genomics explorer 

(https://xenabrowser.net/), followed by extraction of the 

expression data of ENSG00000143502 (SUSD4) gene. 

The GTEx (Genotype-Tissue Expression) data and 

TCGA (The Cancer Genome Atlas) data available in the 

XENA database have undergone batch correction, 

enabling direct comparisons between the two datasets. 

For each expression value, log2(x+1) transformation 

was performed.  

 

Gene expression and survival analysis 

 

The cancer cell line expression matrix was acquired 

from the Cancer Cell Line Encyclopedia (CCLE) 

database (https://portals.broadinstitute.org/ccle/about), 

and analyzed by “ggplot2” R package (ver. 3.3.3).   

 

Calculating the differential expression between normal 

and tumor samples was done using unpaired Wilcoxon 

tests using the R software. Additionally, we obtained a 

high-quality prognostic dataset from The Cancer 

Genome Atlas (TCGA), as previously reported by Liu 

et al. [23]. The Cox proportional-hazards regression 

model was subsequently established using the coxph 

module of the “survival” R package (ver. 3.2-7) to 

analyze the inner link between gene expression and 

prognosis. We also calculated the optimal cut-off value 

of risk score using the “maxstat” R package (ver. 0.7-

25), in which the minimum sample size was set to 

greater than 25% and the maximum sample size was set 

to lower than 75%. 

 

Analysis of immune-related genes 

 

We extracted expression data of 150 marker genes of 

the 5 classes of immune pathways (chemokine, 

receptor, MHC, immunoinhibitor, immunostimulator) 

from the downloaded TCGA dataset, and then, analyzed 

the Spearman’s correlation of SUSD4 expression with 

these genes. Immune checkpoints consisting of 

inhibitory and stimulatory pathways were obtained from 

the Immune Landscape of Cancer [24], and the 

Spearman’s correlation between these two classes of 

genes and the SUSD4 expression was analyzed using 

TCGA database. 

 

TME and infiltration of immune cells 

 

The “ESTIMATE” R package (ver. 1.0.13) calculates 

stromal, immune, and ESTIMATE scores for each 

patient based on gene expression [25]. We re-evaluated 

the scores of each patient’s immune cells using the 

Timer method via the “IOBR” R package (ver. 0.99.9) 

[26, 27]. For the immune cell infiltration score, we 

employed three algorithms, namely TIMER [26], EPIC 

[28], and MCP counter [29], and utilized IOBR for 

calculation and analysis. 

 

Tumor heterogeneity analysis 

 

MuTect2 software processed the level 4 simple nucleotide 

variation dataset downloaded from TCGA. Besides, the 

tumor mutational burden (TMB) and mutant-allele tumor 

heterogeneity (MATH) for each tumor were calculated 

using the TMB and inferHeterogeneity functions of the 

“maftools” R package (ver. 2.8.05), and the TMB and 

MATH scores were combined with gene expression data 

[30]. Homologous recombination deficiency (HRD) and 

microsatellite instability (MSI) scores for each tumor were 

obtained from previous studies [24, 31]. Then, the 

correlation of HRD and MSI scores with gene expression 

data was assessed using Spearman’s correlation analysis.  

 

Genetic alteration analysis 

 

We analyzed genetic alterations using the cBio Cancer 

Genomics Portal (http://cbioportal.org), an open-access 

resource for interactive exploration of multidimensional 

cancer genomic datasets [32]. In addition, “Cancer Types 

Summary” sub-menu was used to analyze and visualize 

genetic alteration frequencies. To assess the relationship 

between DNA methylation and copy number  

alteration (CNA) profile of SUSD4, the “mutation” 

module in the Gene Set Cancer Analyses (GSCA) 

(http://bioinfo.life.hust.edu.cn/GSCA/#/mutation) was 

utilized [33]. 

 

Drug sensitivity analysis in silico 

 

Drug sensitivity data of various tumor cell lines and 

mRNA expression levels were obtained from the 

Genomics of Drug Sensitivity in Cancer (GDSC) 

(www.cancerrxgene.org/) and Cancer Therapeutics 

Response Portal (CTRP)(https://portals.broadinstitute. 

org/ctrp/) [34–39]. Pearson’s test was performed to 

discovery the correlation between gene expression and 

half-maximal inhibitory concentration (IC50). False 

discovery rate (FDR)-adjusted p-values were calculated. 

RNA-sequencing expression (level three) profiles and the 

parallel clinical records were downloaded from TCGA, 

and “pRRophetic” R package was applied to calculate the 

chemotherapy sensitivity of each sample. Based on ridge 

regression, the IC50 was calculated. All parameters were 

set as the default values. We removed the batch effect 
using “ComBat” and set the tissue type to 

“allSoldTumours” We summarized duplicate gene 

expression by calculating the mean. 
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Gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis 

 

In order to construct the protein-protein interaction 

network (PPI), we used the STRING database 

(https://cn.string-db.org/) and plotted the results with 

Cytoscape (ver. 3.9.0) [40–43]. As for STRING 

parameters, the minimum interaction score was 0.15, 

and the top 50 relative proteins were obtained. The 

“clusterProfiler” R package was used to perform GO 

and KEGG pathway enrichment analyses, and the 

results were illustrated using the “Riverplot” R package 

for visual presentation of Sankey.  

 

For gene set enrichment analysis (GSEA), the GSEA 

software (ver. 3.0) was utilized, and samples were 

grouped by SUSD4 expression level (cut off value is 

50%) [44]. KEGG symbol matrix was acquired from the 

Molecular Signatures Database (http://www.gsea-

msigdb.org/gsea/downloads.jsp) to evaluate the 

potential pathways and mechanisms based on gene 

expression profiles and groupings, in which the 

minimum and maximum gene set function was set to 10 

and 500 re-samplings, respectively [45]. 

 

Pathway correlation analysis 

 

The pathway correlation analysis was performed by 

“GSVA” R package, the ssGSEA method was 

employed, and the correlation between gene and 

pathway scores was finally analyzed by the Spearman’s 

correlation analysis [46]. The AmiGO database 

(http://amigo.geneontology.org/amigo/) was used to 

analyze the GO terms for selected genes to verify the 

accuracy and annotate biofunctions of identified genes. 

More specifically, the website https://www.aclbi.com/ is 

used for conducting correlation analysis between 

pathway scores and gene expression levels. 

 

Cell culture 

 

All the cell lines (DLD1, LOVO) used in this study 

were purchased from the American Type Culture 

Collection (ATCC). Cells were grown in a 37° C 

incubator using DMEM medium (Gibco, USA, 

Cat.11965092) containing 10% fetal bovine serum 

(Gibco, USA, Cat. 10091148) and 5% CO2. 

 

Organoid culture 

 

Patients with tumors have a markedly improved overall 

survival rate after chemotherapy. It is important to note, 
however, that cancer cell chemosensitivity is highly 

heterogeneous. Organoid cultures are now thought to 

predict sensitivity to radiotherapy in patients with CRC 

[47]. A total of 12 colorectal cancer organoids were 

harvested. Briefly, after obtaining the cancer tissue, the 

tissue is first thoroughly washed using a washing buffer. 

The tissue is then cut up and added to the tissue 

digestion solution. The tumour cells were filtered using 

a 70 μM filter, resuspended again using the washing 

buffer and centrifuged. After removal of the 

supernatant, the Matrigel (BD, Cat.356234) was added 

for resuspension. Finally, the cell suspension was 

inoculated into 48-well plates (Corning 3300). Organoid 

culture medium purchased from STEMCELL 

(IntestiCult™ Organoid Growth Medium (Human), 

Cat.06010). 

 

Cell transfection 

 

We have cloned a full-length plasmid DNA from the 

SUSD4 deletion construct obtained from GENECHEM 

Company (https://www.genechem.com.cn/). Vazyme 

Lipofectamine (ExFect® Transfection Reagent) was used 

for plasmid transfection and siRNA interference for gene 

knockdown. The SUSD4 siRNA sequences were as 

follows: (1) AUUUGAUGCAGUAGACUUGAU, CAA 

GUCUACUGCAUCAAAUCA, and (2) AAUGUAUGG 

UUCAAUUUGGGG, CCAAAUUGAACCAUACAUU 

UA. The SUSD4 shRNA sequences were as follows: (1) 

CGATGATGGAACGTGGAATAA, (2) ATGGTGAG 

TCACGGAGATTTC. For stable shRNA-transfected 

SUSD4 knockdown cell lines, we utilized puromycin for 

screen. 

 

Proliferation assay 

 

According to the manufacturer’s instructions (CCK-8 

Cell Counting Kit, Vazyme, China), cell counting kit 8 

(CCK8) was also used to evaluate cell proliferation. In 

the following step, samples were analyzed for 

absorbance using a Spark 20M microplate reader 

(Tecan Instruments) at 450 nm. The plate clonogenic 

assay was used to determine colony forming ability. 

And the experimental procedure was referred to 

previous studies [48]. After the cell colonies were 

formed, photographs were taken using a scanner 

(Microtek, China) and then the colony areas were 

calculated using ImageJ (https://imagej.nih.gov/ij/). 

 

Drug sensitivity assay in vitro 

 

Selumetinib (HY-50706), YK-4-279 (HY-14507), and 

piperlongumine (HY-N2329) were purchased from MCE 

(https://www.medchemexpress.cn/). DMSO is used as a 

solvent and the maximum concentration of DMSO during 

cell culture does not exceed 0.5%. Organoid viability 
assay using the CellTiter-Glo® 3D Cell Viability Assay 

(Promega, G9681). All drug sensitivity verifications were 

carried out on the third day after drug was delivered.  
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Cell cycle assay 

 

Cell Cycle and Apoptosis Analysis Kit (C1052) 

purchased from https://www.beyotime.com/ to detect 

cell cycle and apoptosis. The assay was performed 

according to the manufacturer’s instructions.  

First, after performing transfection, cells and 

supernatant were collected, then cells were fixed 

using pre-cooled 70% ethanol and then stained with 

propidium iodide. The cells were resuspended and 

then assayed using a Beckman Coulter (CytoFLEX 

LX). Analyses were carried out with Flow Jo 

Software (FLOWJO, LLC). 

 

In vivo model 

 

To further validate the function of SUSD4, we 

employed a CDX model for in vivo validation. 

Subcutaneous tumor experiments were conducted 

using 4-5-week-old female nude mice. Firstly, cells 

were prepared by culturing them until confluency 

reached around 80%. Then, on the day prior to tumor 

inoculation, fresh culture medium was replenished. 

After washing the cells with PBS, cell counting was 

performed. To avoid immunogenic reactions, cells 

were resuspended in 100μL PBS, and each mouse was 

injected with 5×106 cells. Tumor volume was 

calculated using the formula: length × (0.5 × width)2. 

 

RNA isolation and quantitative real-time PCR 

(qRT–PCR) 

 

FastPure Cell/Tissue Total RNA Isolation Kit V2 

(RC112) from Vazyme® used to extract RNA from cell. 

HiScript® II Q RT SuperMix for qPCR (+gDNA wiper) 

(R223) from Vazyme® used to reverse transcription. 

ChamQ Universal SYBR qPCR Master Mix (Q711) 

from Vazyme® used to qPCR validation. Primer 

sequences is available in Supplementary Material 

(Supplementary Table 2). 

 

Western blot and protein extraction 

 

To perform Western blotting (WB) on cultured cells, 

cells are first grown in appropriate culture dishes until 

reaching the desired confluency. Following this, the 

cells are rinsed with phosphate-buffered saline and 

detached from the culture dish using trypsin-EDTA. 

The detached cells are then collected by 

centrifugation, and the resulting cell pellet is 

resuspended in ice-cold lysis buffer (Beyotime, 

Cat.P0013B) containing protease inhibitors 

(Beyotime, Cat.ST506). After incubating the cell 
lysate on ice for 15-30 minutes with intermittent 

vortexing to ensure complete lysis, the lysate is 

centrifuged (12000g for 15 minutes at 4° C) to remove 

cell debris, and the supernatant containing the protein 

lysate is collected. Subsequently, protein samples are 

mixed with loading buffer (Beyotime, Cat.P0015F), 

denatured by heating (10 minutes at 95° C), and 

loaded onto 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis gels (EpiZyme, 

Cat.PG112) after determining protein concentration 

using a BCA assay kit (Beyotime, Cat.P0010) for 

sample quantification. The gel is then run at a 

constant voltage (120V) until the dye front reaches the 

bottom. Following electrophoresis, proteins are 

transferred from the gel to a PVDF using a wet 

transfer apparatus. The membrane is then blocked 

with a blocking buffer (CST, Cat.9999S) to prevent 

nonspecific binding and incubated with primary 

antibody (1:1000) overnight at 4° C. After washing to 

remove unbound primary antibody, the membrane is 

incubated with a secondary antibody (1:2000) 

conjugated to horseradish peroxidase. Following 

another round of washing, protein bands are detected 

using chemiluminescent substrate (EpiZyme, 

Cat.SQ201) and imaged using a chemiluminescence 

detection system. JAK3 Antibody (Affbiotech, 

Cat.AF0008), SUSD4 Antibody (Bioss, Cat.bs-

7330R). GAPDH Antibody (CST, Cat.2118S). 

Secondary Antibody (ZSBiO, Cat.ZB5301). 

 

Statistical analysis 

 

Statistical analysis was carried out using R 4.2.0 

software and the above-mentioned R packages. RNA 

expression data were log2 (TPM+1) transformed. p < 

0.05 was considered statistically different.  All 

experiments were performed in triplicate in at least 

three separate experiments. 

 

For comparisons between two groups, non-parametric 

tests or t-tests are employed based on whether the data 

adhere to a normal distribution. For correlation analysis, 

the Pearson method is utilized for testing. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The relationship between SUSD4 and immune infiltration. Correlation Analysis Heatmap of SUSD4 with 

(A) ESTIMATE Score, (B) EPIC Immune Infiltration, (C) Timer Immune Infiltration, and (D) MCP Immune Infiltration. 
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Supplementary Figure 2. (A) Confirmation of shRNA knockdown efficiency in DLD1 cells. (B) Representative tumor images of DLD1 cells 

following shSUSD4 and control group treatments. (C, D) Boxplots illustrating tumor weight (mg) and tumor volume (mm3). (E) Western blot 
analysis depicting the expression levels of JAK3, SUSD4, and GAPDH post siSUSD4 treatment in DLD1 cells. *p<0.05, ***p<0.001, 
****p<0.0001. 
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Supplementary Tables 
 

 

Supplementary Table 1. Cancer abbreviations. 

Abbreviations Cancer name 

ACC Adrenocortical carcinoma 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

COADREAD/COREAD Colon adenocarcinoma/Rectum adenocarcinoma Esophageal carcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

GBMLGG Glioma 

HNSC Head and Neck squamous cell carcinoma 

KICH Kidney Chromophobe 

KIPAN Pan-kidney cohort (KICH+KIRC+KIRP) 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

STAD Stomach adenocarcinoma 

SKCM Skin Cutaneous Melanoma 

STES Stomach and Esophageal carcinoma 

TGCT Testicular Germ Cell Tumors 

THCA Thyroid carcinoma 

THYM Thymoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

UVM Uveal Melanoma 

OS Osteosarcoma 

ALL Acute Lymphoblastic Leukemia 

NB Neuroblastoma 

WT High-Risk Wilms Tumor 
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Supplementary Table 2. Primer information. 

Gene Primer-F Primer-R 

JAK1 CTTTGCCCTGTATGACGAGAAC ACCTCATCCGGTAGTGGAGC 

JAK2 TCTGGGGAGTATGTTGCAGAA AGACATGGTTGGGTGGATACC 

JAK3 CCTGATCGTGGTCCAGAGAG GCAGGGATCTTGTGAAATGTCAT 

STAT1 CAGCTTGACTCAAAATTCCTGGA TGAAGATTACGCTTGCTTTTCCT 

STAT2 GAGCCAGCAACATGAGATTGA GCCTGGATCTTATATCGGAAGCA 

STAT3 CAGCAGCTTGACACACGGTA AAACACCAAAGTGGCATGTGA 

STAT4 TGTTGGCCCAATGGATTGAAA GGAAACACGACCTAACTGTTCAT 

STAT5A CGACGGGACCTTCTTGTTG GTTCCGGGGAGTCAAACTTCC 

STAT5B GAACACCCGCAATGATTACAGT ACGGTCTGACCTCTTAATTCGT 

STAT6 CGAGTAGGGGAGATCCACCTT GCAGGAGTTTCTATCAAGCTGTG 

SUSD4 AATGAACCCGAGCAATGGAGA GGGCTACAGAGCCTTCAAAGA 

GAPDH CAGGAGGCATTGCTGATGAT GAAGGCTGGGGCTCATTT 
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