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INTRODUCTION 
 

The liver is an immunological organ that harbors 

abundant immune cells such as dendritic cells (DCs), 

natural killer (NK) cells, and gamma delta (γ δ) T cells, 

which will trigger immune response to protect the body 

against adverse pathogens and prevent tumorigenesis 

[1]. HCC as the most common subtype of liver  

cancer has the third highest death rate [2]. Unlike 

normal liver, the immunosuppressive TME of patients  

is characterized by the presence of immune cells,  

for example, macrophages, myeloid-derived suppressor 

cells, tumor-correlated neutrophils, regulatory T cells, 

lymphocytes infiltrating tumors, and CD8+ cytotoxic  

T lymphocytes and tumor vasculature [3, 4]. Previous 

studies have explored the TME in the biological and 

prognostic classification of patients with HCC [5] and 

proposed an RME-based classification for HCC patients 

according to the mRNA and protein expression detected 

by multiplex-immunohistochemistry (IHC) and mass 
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ABSTRACT 
 

Background: Complex cellular signaling network in the tumor microenvironment (TME) could serve as an 
indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. 
Methods: Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes 
(TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) 
algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration 
level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) 
using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). 
Results: HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-
related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the 
RS model. Univariate and multivariate CRA showed that the RS could independently predict patients’ prognosis. 
A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also 
validated the reliability of the model according to the area under the receiver operating characteristic (ROC) 
curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that 
the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. 
Conclusion: This study provided TRGs to help classify patients with HCC and predict their prognoses, 
contributing to personalized treatments for patients with HCC. 
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cytometry (CyTOF) [6]. Patients with immunosuppressive 

TME, including high levels of regulatory T cells (Tregs) 

and myeloid-derived suppressor cells (MDSCs), will 

often develop poorer prognosis and benefit limitedly 

from conventional and immunotherapeutic treatments. 

Conversely, TME enriched with active immune 

components such as CD8+ T cells often indicates a 

favorable prognosis and better responses to certain 

therapies [7–10]. Therefore, the heterogeneity of TME 

and patients’ immune status should be comprehensively 

explored in order to improve the clinical treatment of 

HCC. 

 

TME is a complex network of signaling pathways  

as it contains a variety of cell types, including  

cancer, stromal, endothelial, and immune cells, and 

non-cellular components such as growth factors and 

cytokines [11]. Currently, targeting the TME as an 

option to treat patients with HCC is still difficult  

[12], which also points to the need to characterize the 

TME of patients with HCC and identify TME-related 

molecular signatures [5]. 

 

This study excavated TME-related genes (TRGs) in 

patients with HCC and developed a risk score (RS) 

model using these TRGs. Samples were clustered using 

TRGs and non-negative matrix factorization (NMF) 

algorithm. The RS model was established and validated 

by performing LASSO and Cox regression analysis 

(CRA). The present study developed a TME-based 

classification for HCC patients and filtered TME-related 

markers for prognostic prediction, contributing to the 

personalized treatment in HCC. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

We collected the transcriptomic data and clinical features 

of 374 HCC patients and 50 control samples from  

The Cancer Genome Atlas (TCGA) database by visiting 

Genomic Data Commons (https://portal.gdc.cancer.gov/) 

[13]. Four patients without complete clinical follow- 

up and microdissection data were eliminated, while  

the remaining samples were included in the analyses. 

Moreover, for external validation, the GSE76427 dataset, 

which used the GPL10558 platform and included 115 

primary HCC tumors and 52 adjacent nontumor tissues, 

were obtained from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

 
Screening and analysis of differentially expressed 

TRGs (DE-TRGs) 

 

We identified 4,061 TRGs from previously published 

studies [14, 15]. First, “limma” package was employed 

to screen DE-TRGs between HCC and adjacent 

nontumor tissues [16]. The data in fpkm format were 

preprocessed by normalization and filtering under  

the criteria of the absolute value of FDR <0.05 and 

|log2Fold Change|>1. 

 

NMF clustering 

 

Prognosis-related DE-TRGs were screened using 

Univariate CRA (UCRA) under P < 0.01 as  

the threshold. Next, NMF clustering analysis was 

performed on the expression matrix of prognosis-

related DE-TRGs in the “NMF” R package [17]. The 

correlation coefficients were calculated, the inner 

feature structure of gene expression matrices was 

predicted, and 50 iterations were recycled during the 

clustering. 

 

Analysis of immune cell infiltration 

 

Microenvironment cell populations-counter (MCP-

counter) was applied to score the abundance of immune 

cells such as CD8+ T cells, NK and endothelial cells, 

myeloid DCs, neutrophils, cytotoxic and B lymphocytes, 

monocyte-derived cells, and fibroblasts based on the 

gene expression [18] using the “MCPcounter” package. 

 

Developing and validating the RS model 

 

We divided 370 HCC patients from TCGA into the 

training (n = 262) and validation (n = 108) sets at the 

ratio of 7:3 ratio without control (Table 1). Notably, the 

GSE76427 dataset contained both tumor and adjacent 

non-tumor samples, only the tumor samples were used 

for developing a RS model. Next, prognosis-related 

genes were mined by performing UCRA on DE-TRGs, 

the model was refined by building a penalized feature 

using the “glmnet” package [19], and multivariate CRA 

(MCRA) was used to screen the characteristic genes for 

the RS model. Finally, we calculated the coefficient 

value of each gene and the riskscore as follows: 
 

 
1

( )
n

i

Riskscore coefi Xi
=

=   

 

coef represented the Cox regression coefficient for each 

gene, and X referred to gene expression. 

 

The samples were clustered by their median RS value 

into the low-risk group (LRG) and high-risk group 

(HRG). The prognostic significance of the model was 

analyzed by Kaplan-Meier (KM) analysis with two-

sided log-rank test using the “survminer” package. Area 

under the receiver operating characteristic (ROC) curve 

(AUC) in “timeROC” [20] package was used to reflect 

the prediction accuracy of the model. 

6538

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 3 AGING 

Table 1. 370 sample information about training set and verification set of TCGA-LIHC. 

Characteristics TCGA-LIHC cohort (N = 370) GSE76427 (N = 115) 

Age 

Mean ± SD 59.45 ± 13.51 63.45 ± 12.68 

Median (min-max) 61.00 (16.00, 90.00) 64.00 (14.00, 93.00) 

Gender 

Female 121 (32.7%) 22 (19.13%) 

Male 249 (67.3%) 93 (80.87%) 

Grade 

G1 55 (14.86%) NA 

G2 177 (47.84%) NA 

G3 121 (32.7%) NA 

G4 12 (3.24%) NA 

Unknow 5 (1.35%) NA 

Stage 

Stage I 171 (46.22%) 55 (47.83%) 

Stage II 85 (22.97%) 35 (30.43%) 

Stage III 85 (22.97%) 21 (18.26%) 

Stage IV 5 (1.35%) 4 (3.48%) 

Unknow 24 (6.49%) NA 

T 

T1 181 (48.92%) NA 

T2 93 (25.14%) NA 

T3 80 (21.62%) NA 

T4 13 (3.51%) NA 

TX 1 (0.27%) NA 

Unknow 2 (0.54%) NA 

M 

M0 345 (93.24%) NA 

M1 4 (1.08%) NA 

MX 21 (5.68%) NA 

N 

N0 329 (88.92%) NA 

N1 4 (1.08%) NA 

NX 37(10%) NA 

Survival status 

Dead 240 (64.86%) 92 (80.00%) 

Alive 130 (35.14%) 23 (20.00%) 

Abbreviation: NA: Not Available. 
 

 

We also created a nomogram by integrating 

clinicopathological features such as gender, age, TNM 

stages, grade, clinical stage, and the RS model using  

the “restricted mean survival (rms)” package. The 
reliability of the nomogram was tested according to 

the ROC curve, calibration curve (CC, bootstrap 

1000), decision curve analysis (DCA), and C-index. 

Analysis of biological functions 

 

Annotated gene sets ‘c2.cp.kegg.v7.4’ and 

‘c5.go.v7.4.symbols’ obtained from the Molecular 
Signatures Database (MSigDB, http://www.gsea-

msigdb.org/gsea/msigdb) were used for GSEA 

(software version 4.1.0). 
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Statistical analysis 

 

Data were analyzed using the R (version 4.1.1) package. 

Volcano maps and violin plots were visualized by  

the “ggplot2” package [21] and “ggpubr” package, 

respectively. CRA was performed using the “survival” 

package. By employing the chi-squared or Fisher’s 

exact test, differences between both sets and the 

correlation between clinical characteristics and the RS 

were analyzed. KM survival curves with the log-rank 

tests were generated using the “survminer” package. 

The ROC and calibration curves were plotted using  

the “timeROC” and “rms” packages, respectively [22]. 

The restricted mean survival (RMS) package was used 

for computing the C-index of the model. A p < 0.05 

indicated a significant difference. 

 
Data availability statement 

 
The dataset analyzed in this study is available  

in (GSE76427) at (https://www.ncbi.nlm.nih.gov/geo/ 

query/acc.cgi?acc=GSE76427). 

RESULTS 
 

NMF consensus clustering analysis classified three 

molecular HCC subtypes based on TRGs  

 

A total of 1,717 TRGs were defined as DE-TRGs  

from 4061 TRGs between 370 (FDR <0.05 and 

|log2FC|>1, Figure 1A), and UCRA identified 704 

prognosis-related TRGs. NMF consensus clustering 

analysis was performed based on the expression 

profiles of 704 prognosis-related TRGs. The cophenetic 

correlation coefficient was significantly reduced at  

k = 3, which was therefore selected as the optimal 

number of clusters (Figure 1B–1D). Survival analysis 

showed that the OS and progression-free survival 

(PFS) of patients in C2 and C3 was significantly  

worse compared to C1 (Figure 1E, 1F). Moreover, 

immune scores of myeloid dendritic cells, B lineage, 

endothelial cells, cytotoxic lymphocytes, neutrophils, 

fibroblasts, monocytic lineage, NK cells, and CD8+ 

T cells were different across C1, C2, and C3 (Figure 

2A–2I). 

 

 
 

Figure 1. Differential expression and NMF consensus clustering analysis of TRGs. (A) Volcano plot shows DE-TRGs among 374 

patients with HCC and 50 control samples. (B) NMF consensus clustering for the k = 3. (C) The cophenetic correlation coefficient indicates 
the stability of the cluster obtained using the NMF algorithm. (D) RSS reflects the performance of the model in clustering. (E) The KM 
survival curves show the OS and (F) the PFS of patients in the three subtypes. (G) The alluvial map shows the distribution of these subtypes 
in immune subtypes. 
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Wound healing (Immune C1), IFN-gamma dominant 

(Immune C2), inflammatory (Immune C3), lymphocyte 

depleted (Immune C4), C5 (Immunologically quiet), and 

TGF-beta dominant (Immune C6) are the six immune 

subtypes of solid tumors [23]. Hence, the distribution  

of these immune subtypes in three molecular clusters 

was analyzed. Specifically, Immune C3 and C4 were 

the primary immune subtypes in C1, the proportions of 

Immune C4 and C3 were the highest in C2 and C3, 

respectively, and Immune C1 was only detected in C2 

and C3 (Figure 1G). 

 

Constructing and validating the RS model 

containing 13 DE-TRGs 

 

UCRA and LASSO regression analysis was conducted 

using the DE-TRGs identified from the training set. 

Independent variables gradually increased to zero with 

lower λ (Figure 3A). In addition, 32 genes were mined 

using the partial likelihood deviance method (Figure 

3B). Finally, the RS model was constructed with the 

13 TMGs identified by MCRA as follows: 

 

Risk score = (−0.5974 × CAPN3 expression  

level) + (0.3376 × HAVCR1 expression level) + 

(0.4161 × GRIN2D expression level) + (0.6536 × 

BMI1 expression level) + (0.4733 × SLC30A3 

expression level) + (0.2293 × GLP1R expression 

level) + (0.2211 × CSAG3 expression level) + 

(−0.5401 × NR4A3 expression level) + (−0.8607 × 

INPP4B expression level) + (0.1339 × ETV4 

expression level) + (−0.2406 × MYH4 expression 

level) + (−0.4394 × ICA1 expression level) + (0.4485 

× ST6GALNAC4 expression level. 

 

 
 

Figure 2. Analysis of the infiltration scores of (A) B lineage, (B) CD8+ T cells, (C) cytotoxic lymphocytes, (D) endothelial cells, (E) fibroblasts, 
(F) monocytic lineage, (G) myeloid DCs, (H) neutrophils and (I) NK cells in patients in these three molecular subtypes. 
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Next, the AUC value was calculated to assess the RS 

model in all cohorts. The AUC values for 1-, 3-, and  

5-year OS of patients in the training set were 0.835, 

0.854, and 0.911, respectively (Figure 3C). In the entire 

TCGA-LIHC cohort, the AUC values for 1, 3, and 5-

year OS of patients were 0.790, 0.785, and 0.830, 

respectively (Figure 3D). In the TCGA validation 

cohort (the validation set), the AUC values for 1-, 3-, 

and 5-year OS of patients were 0.704, 0.614, and 0.552, 

respectively (Figure 3E). Though the AUC values of the 

1- (0.561), 3- (0.614), and 5-year (0.692) OS of patients 

in the GSE76427 cohort were <0.7, the RS model was 

still accurate to some extent, especially in predicting the 

5-year OS. Such a result might be related to the short 

median duration of follow-up of patients in this cohort 

(Figure 3F). 

 

Patients from all HCC cohorts were assigned with a  

RS and divided into HRG and LRG based on the 

median RS. The KM survival curves showed that in the 

training set, the prognosis in the LRG was significantly 

better than in HRG (Figure 4A). The results from 

survival analyses on patients in the validation set, the 

entire TCGA, and the GSE76427 cohort were the same 

results. In the HRG, the patient’s OS was significantly 

poor than in LRG (Figure 4B–4D). Additionally, in the 

TCGA-LIHC cohort, the RS varied in patients with 

different clinicopathological characteristics and it was 

positively correlated with high pathological grades and 

advanced T, TNM stages (Figure 4I). 

 

Construction of a nomogram by integrating RS and 

clinicopathological features 

 

We performed UCRA and MCRA to determine the 

correlation between the OS and clinicopathological 

features such as age, tumor grade, and stage, gender,  

T and M stage, as well as RS. The results demonstrated 

that only the RS (HR: 1.026, 95% CI: 1.014–1.037,  

P < 0.001) could independently predict risk (Table 2).  

A nomogram integrating clinicopathological features 

and RS was developed (Figure 4E) to predict 1-, 3-, and  

5-year survival. For example, the clinical features of a 

50-year-old female with LIHC were T2NxM0 stage II, 

grade 1, and high RS. Then, final total score of the 

variables was 399. The AUC values of patients’ 1-, 3-, 

and 5-year survival rates were 0.767, 0.561, and 0.322, 

respectively. The CC of the nomogram showed a high

 

 
 

Figure 3. Construction of the RS model constituting 13 DE-TRGs. (A) The LASSO coefficient profile of the DE-TRGs in patients from the 

training set. (B) The partial likelihood deviance method was used for screening genes. (C–F) Constructing and validating the RS model with the 
AUC value for 1-, 3- and 5-year OS of patients with HCC in (C) training set; (D) entire TCGA cohort; (E) validation set; (F) GEO cohort. 
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Table 2. Univariate and multivariate Cox regression for risk score and clinicopathologic features. 

Variables 
Univariable analysis Multivariable analysis 

HR 95% CI p-value HR 95% CI p-value 

Age 1.011 0.996–1.0258 0.147 − − − 

Gender 0.765 0.524–1.119 0.167 − − − 

Grade 1.123 0.872–1.445 0.369 − − − 

Stage 1.675 1.364–2.0567 8.54E-07 0.958 0.430–2.132 0.915 

T 1.655 1.361–2.012 4.48E-07 1.693 0.796–3.600 0.171 

M 3.78 1.196–11.946 0.024 1.505 0.439–5.153 0.515 

RiskScore 1.024 1.013–1.034 6.71E-06 1.026 1.014–1.0367 5.18E-06 

 

consistency between the observed 1-, 3- and 5-year 

survival rates and the predicted values in the training  

sets (Figure 4F). In addition, compared to the other 

clinicopathological characteristics, the AUC value of  

the RS was higher (Figure 4G). DCA showed that the RS 

and nomogram could effectively predict the OS compared 

to all other clinicopathological features (Figure 4H). 

Comparing the TRG-RS model with other models 

 

We compared our 13-gene signature RS model to  

other models, including 8-gene signature related to 

inflammation response (a TME signature) [24], 3 

immune-related prognostic genes [14], and 3 tumor 

doubling time-related immune genes [15]. Firstly, we

 

 
 

Figure 4. Constructing and evaluating a nomogram by integrating the RS and clinicopathological features.  (A–D) 
Construction and validation of the TRG-RS in patients with HCC in (A) training set; (B) entire TCGA cohort; (C) TCGA testing cohort; (D) 
GEO cohort using the KM survival curves. (E) Nomogram predicting the 1-, 3- and 5-year patient’s OS. The points identified on the point 
scale of each variable are totaled. Finally, beneath the total points, the probability of 1-, 3- or 5-year survival is projected on the scales 
below. (F) CC shows the actually observed and nomogram-predicted 1-, 3- and 5-year OS of patients. (G) The ROC curve shows the AUC 
value of the nomogram, the RS, and clinicopathologic features for predicting the patient’s survival. ( H) Evaluating the clinical benefit of 
the nomogram and the RS using DCA. None indicates that all samples were negative and untreated; therefore, the net benefit is zero. 
All indicates that all samples were positive and treated. The x-axis shows the threshold probability. (I) TRG-RS comparison of clinical 
information of patients with HCC in TCGA-LIHC. 
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calculated the RS for all patients using MCRA and 

plotted the ROC curve using their corresponding 

genes. Then, the patients were classified by the median 

RS value into HRG and LRG. A significant survival 

difference of patients in the two groups was observed. 

In addition, the prognosis of patients in LRH was 

better than in HRG (Figure 5A–5D). As shown by the 

ROC curve, the AUC value of our model in predicting 

average 1- year prognosis was the highest. The AUC 

values of our model for predicting 1-, 3-, and 5-year 

survival were higher compared to the other three 

models (Figure 5E–5H). The C-index of our model 

was 0.734, which was higher than other models 

(Figure 5I). Finally, we used the RMS time to assess 

the prediction accuracy of our model at different time 

points, and observed that our model outperformed  

the other three models when predicting survival time 

longer than 60 months. These results indicated that our 

model was more effective and accurate in predicting  

5-year OS and survival timer longer than 5 years 

(Figure 5J). 

 

Functions of our RS model  

 

Based on the normalized enrichment score and 

adjusted p-value (q-value), GSEA was applied to 

identify enriched pathways in the two groups. The 

complement and coagulation pathways, fatty acid and 

cytochrome p450 drug metabolism was enriched by 

genes in the LRG (Figure 6A). Moreover, GO terms 

such as the process of cellular amino acid and alpha-

amino acid catabolism and the T cell receptor complex 

were enriched genes in the LRG (Figure 6B). The 

correlation between the RS and target genes was 

analyzed according to the expression of genes related 

to classical cancer-related pathways including fatty acid 

 

 
 

Figure 5. Comparing the RS model and three previously published models. (A–D) The KM survival curves of patients were 

predicted by our RS model and three previously published models. (E–H) The ROC curves and (I) the C-index of our RS model and three 
published models and the C-index of our RS model were the highest. (J) The RMS time curve of all four prognostic RS models revealed an 
overlap of 60 months. 
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metabolism, DNA replication, and cell cycle. DNA 

replication-related genes (MCM6, MSH2, and MSH6) 

were positively correlated with the RS (Figure 6C). 

Additionally, immune cell infiltration in all patients 

from TCGA-LIHC was analyzed. The RS showed a 

positive relationship with CD8+ T cells, monocytic 

lineage, and myeloid DCs (Figure 6D). The correlation 

between the RS/tumor mutation burden (TMB) and 

infiltrating immune cells was analyzed using an MCP 

counter, and the results are presented in Figure 6E. 

 

 
 

Figure 6. Function of our RS model. (A) GSEA shows the KEGG pathways enriched in the LRG. (B) GO terms enriched in the LRG. (C) The 

correlation between the RS of patients with LIHC and the expression of cancer-related pathway genes. (D) The correlation between 
immune cell score in patients from TCGA-LIHC and the RS. (E) Correlation between the RS/TMB and immune cell score. Among them, 
*usually represents a p-value < 0.05. Red indicates a positive correlation, blue indicates a negative correlation, and the shade of the color 
indicates the strength of the correlation. 
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Survival prediction for patients with different 

clinicopathological characteristics using the RS 

 

We predicted the survival of patients with different 

clinical traits using the RS model. Compared to  

those in HRG, the KM survival showed better 

prognostic outcomes of patients with age >65 and ≤65, 

pathological grade (G1-2 and G3-4), gender, stage Ⅰ–

II, and III–IV in the LRG (Figure 7). 

 

DISCUSSION 
 

HCC is a typical inflammation-induced cancer. A 

complex interaction between TMEs is a prerequisite 

for HCC development [25]. Comprehensive and 

systematic profiling of these complex interactions in 

heterogeneous tumor samples could help effectively 

identify therapeutic agents and biomarkers [26].  

This study analyzed TME-related genes to explore  

the molecular heterogeneity of HCC. Targeting a 

single molecule involved in the interactions between 

tumor and TME is unlikely to accurately predict  

the prognosis of HCC [27]. Hence, we developed  

an RS model based on multiple TRGs to predict 

patients’ prognosis and determine the biological effects 

of HCC. 
 

Classifying molecular subtypes using TME-associated 

genes represents a key advance in understanding  

the heterogeneity of HCC, and these isoforms could 

reflect TME characteristics, different stages of tumor 

progression, immune evasion capacity and response  

to therapy [28]. Zhang et al. revealed three unique 

HCC subtypes of immunoactive, immunodeficient, and 

immunosuppressive TME using CyTOF [29]. In this 

study, HCC patients were classified into different 

subtypes based on the transcriptomic characteristics  

of TRGs. We identified 4,061 TRGs, of which  

704 prognosis-related DE-TRGs were screened by 

differential expression analysis and UCRA. Based on 

the expression matrix of these DE-TRGs, we divided 

patients with HCC into C1, C2, and C3 molecular 

subtypes. Specifically, patients in subtype C1 exhibited 

a more favorable prognosis than those in subtypes  

C2 and C3. We then employed CRA and LASSO 

regression analysis to construct an RS model based on 

these 13 TRGs. 

 

The effectiveness of the RS model in predicting the 

patient’s prognosis was analyzed. UCRA and MCRA 

results revealed that only the RS was an independent 

risk (not clinicopathological features) for patients with 

HCC from TCGA-cohort. Furthermore, the reliability 

of our model was validated according to the CC, AUC 

value, C-index, and DCA. Furthermore, our RS models 

outperformed the other three previously published 

models in predicting HCC prognosis. These results 

confirmed the reliability of our prognostic model. 

 

We also analyzed the potential pathways enriched  

by our RS model. Dysregulated pathways, such as 

fatty acid metabolism [30], DNA replication [31], and 

cell cycle [32], are involved during tumorigenesis. 

Correlation analysis between the RS and target genes 

also showed a positive relationship between DNA 

replication-related genes and the RS. CD8+ T cells 

were positively related to the RS. CD8+T cells 

primarily mediate anti-tumor immune responses [33]. 

A previous study showed better survival outcomes of 

cancer patients with high CD8+ T cell levels [34]. 

However, patients with a high RS associated with  

CD8 +T cell score had poor prognosis, which might be 

related to tumor cell escape from immune surveillance 

mediated by CD8 +T cells. 

 

 
 

Figure 7. Predicting the survival of patients with different clinicopathological features, including age (age >65 and ≤65), gender, T stage 

(T1-2, T3-4), AJCC stage (stage I–II and stage III–IV), and pathological grade (G1-2 and G3-4) using the RS model. 
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In summary, we identified three molecular HCC sub-

types based on TRGs using NMF. An RS model was 

established using these 13 TRGs and the prognostic 

value and application of the RS model was verified  

in clinical settings. However, additional experimental 

validation is needed to confirm the underlying 

mechanism of TRGs of the RS model in HCC. 
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