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INTRODUCTION 
 

Cancer is a major global public health problem, with a 

significant impact on mortality worldwide. In 2020, an 

estimated 10 million people died of cancer globally 

[1]. Early diagnosis is crucial for effective cancer 

management and better prognosis. However, 

approximately 50% of cancers are diagnosed at 

advanced stages [2, 3]. Effective treatment of advanced 
cancer often involves the use of modern systemic and 

targeted drugs, which can be costly and may have 

limited efficacy [4]. Early cancer detection has been 
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ABSTRACT 
 

Metabolomics is a rapidly expanding field in systems biology used to measure alterations of metabolites and 
identify metabolic biomarkers in response to disease processes. The discovery of metabolic biomarkers can 
improve early diagnosis, prognostic prediction, and therapeutic intervention for cancers. However, there are 
currently no databases that provide a comprehensive evaluation of the relationship between metabolites and 
cancer processes. In this review, we summarize reported metabolites in body fluids across pan-cancers and 
characterize their clinical applications in liquid biopsy. We conducted a search for metabolic biomarkers using 
the keywords (“metabolomics” OR “metabolite”) AND “cancer” in PubMed. Of the 22,254 articles retrieved, 
792 were deemed potentially relevant for further review. Ultimately, we included data from 573,300 samples 
and 17,083 metabolic biomarkers. We collected information on cancer types, sample size, the human 
metabolome database (HMDB) ID, metabolic pathway, area under the curve (AUC), sensitivity and specificity of 
metabolites, sample source, detection method, and clinical features were collected. Finally, we developed a 
user-friendly online database, the Human Cancer Metabolic Markers Database (HCMMD), which allows users to 
query, browse, and download metabolite information. In conclusion, HCMMD provides an important resource 
to assist researchers in reviewing metabolic biomarkers for diagnosis and progression of cancers. 
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shown to provide substantial health benefits, including 

increased survival rates and reduced morbidity [2]. 

Although several blood-based biomarkers, such as 

carcinoembryonic antigen (CEA) and prostate-specific 

antigen (PSA), have been used for cancer screening in 

the past few decades, their sensitivity and specificity 

have been found to be unsatisfactory, limiting their 

effectiveness [5]. Therefore, there is a pressing need to 

identify biomarkers that exhibit high sensitivity and 

specificity for the early detection of cancer. 

 
Metabolomics, which involves the comprehensive 

analysis of small molecule metabolites in cells,  

tissues, or whole organisms, has undergone rapid 

technological evolution in the past two decades [6–8]. 

By measuring downstream chemical phenotypes of 

genomic, transcriptomic, and proteomic variability, 

metabolomics can provide a more comprehensive 

understanding of the biological system [6, 9, 10]. 

Research has shown that metabolites play a crucial 

role in various diseases such as obesity, diabetes, 

cardiovascular disease, respiratory conditions, and 

cancer [6, 11]. Metabolomics has emerged as an 

accurate and non-invasive diagnostic tool, accompanied 

by the development of novel and sensitive measurement 

techniques [12, 13]. The uncontrolled proliferation of 

tumor cells requires metabolic regulation [14–16], and 

metabolic reprogramming is a hallmark of malignancy 

[17]. In recent years, several highly sensitive and 

specific metabolic biomarkers have been identified in 

liquid biopsy studies. For instance, Sreekumar et al. 

reported that sarcosine had a diagnostic value with an 

AUC of 0.69 (95% CI: 0.55, 0.84) for prostate cancer 

[18]. Soga et al. discovered that serum γ-glutamyl 

dipeptides had an AUC of 0.76 for hepatocellular 

carcinoma [19]. Tyrosine and glutamine-leucine in 

serum had an AUC of 0.98 for the diagnosis of 

colorectal cancer [20]. N1, N12-diacetylspermine in 

serum had an AUC of 0.65 (95% CI, 0.59 to 0.72)  

for the diagnosis of non–small-cell lung cancer [21]. 

The AUC value of creatine nucleoside in urine was 

0.79 for differential diagnosis between adrenocortical 

carcinoma and benign adrenal tumors [22]. 

 
This study aimed to comprehensively evaluate  

the role of metabolites in cancers. Cancer-related 

metabolites were searched from the PubMed database. 

The collected information includes cancer types, sample 

size, HMDB ID, metabolic pathway, area under the 

curve (AUC), sensitivity, specificity, sample source, 

detection method, and clinical features. Importantly,  

a user-friendly online database was developed,  

named Human Cancer Metabolic Markers Database 
(HCMMD), to assist users in querying, browsing, and 

downloading information about the cancer-related 

metabolites. 

Advances in metabolomics 
 

Metabolomic analysis is a technique used to  

analyze the type and content of small molecule 

metabolites in biological samples [23]. Four major 

technologies are commonly used for metabolomics: 

gas chromatography mass spectrometry (GC-MS) [24], 

liquid chromatography mass spectrometry (LC-MS) 

[25], capillary electrophoresis mass spectrometry (CE-

MS) [26], and nuclear magnetic resonance spectroscopy 

(NMR) [27]. These techniques can assess changes  

in metabolic processes and provide a summary of 

alterations at the DNA, RNA, and protein levels [28]. 

Metabolomics has been used to reveal the mechanisms 

of basal metabolic processes in diseases [29, 30], and 

in some cases, it may be the most sensitive method for 

identifying the pathological state of cancer patients, as 

even small changes in gene or protein expression can 

lead to remarkable changes in protein activity and 

metabolite levels [31–33]. Metabolomics can provide 

an effective method for screening for cancer, guiding 

treatment strategies, assessing efficacy, and tracking 

cancer progression [34–37]. Additionally, it can help 

to identify therapeutic targets and promote drug 

discovery [38, 39]. 

 

Metabolism-related biomarkers for cancers 
 

Database establishment 

 

To search for cancer-related metabolites from 

PubMed, we used the keywords “metabolomics” OR 

“metabolite” AND “cancer”. The eligible data 

included 22,254 articles published before July 30, 

2022. We selected literature that focused on human 

tumors, samples from liquid biopsies, and individual 

biomarkers with diagnostic, prognostic, and predictive 

value. After filtering the results, we identified 792 

studies with a total of 573,300 samples and 17,083 

metabolic biomarkers. The included studies covered 

24 types of cancer derived from 92 subtypes. We 

recorded information such as cancer type, sample  

size, HMDB ID, metabolic pathway, AUC, sensitivity, 

specificity, sample source, detection method, and 

clinical features. Figure 1 summarizes the basic infor-

mation and diagnostic value of metabolic biomarkers 

in different cancers. Importantly, we created a new 

online database, called the HCMMD, which allows 

users to explore and analyze cancer-related metabolic 

biomarkers (Figure 2).  

 

Digestive system tumors 

 
Digestive system cancer encompasses oral cancer, 

esophageal cancer, gastric cancer, colorectal cancer, 

liver cancer, pancreatic cancer, and gallbladder cancer. 
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The five-year survival rates for liver cancer and 

pancreatic cancer are only 20% and 11%, respectively 

[40]. A total of 315 articles were collected, covering 7 

cancer types and 23 subtypes, with sample sizes ranging 

from 9 to 3,109 [20, 41]. The reports included 6,731 

diagnostic biomarkers, 64 progressive biomarkers, and 

163 prognostic biomarkers. Of these biomarkers, 3,609 

were from serum samples, 1,619 from plasma samples, 

974 from urine samples, and 460 from saliva samples. 

Among the biomarkers, 1,763 belonged to amino acids 

and 246 belonged to bile acids. Several studies have 

shown that bile acids are closely related to digestive 

system tumors [23, 42, 43]. Of the biomarkers, 79 had 

an AUC ≥0.95, and 420 had an AUC ≥0.80. 

 

To explore the underlying pathogenesis of digestive 

system cancer, metabolite pathway enrichment analysis 

was conducted (Supplementary Figure 1). As shown  

in Figure 3, the four most closely related pathways  

for digestive system cancer were glycine serine and 

threonine metabolism, arginine biosynthesis, alanine 

aspartate and glutamate metabolism, and valine leucine 

and isoleucine biosynthesis. 

 

Reproductive system tumors 

 

Reproductive system cancer comprises breast cancer, 

prostate cancer, endometrial cancer, cervical cancer, and 

ovarian cancer. Among all cancers, new cases of 

reproductive system cancer rank first [40]. In this 

review, we collected 238 articles covering 5 cancer 

types and 14 subtypes. The minimum sample size was 

12 [44], and the maximum sample size was 6,114 [45]. 

These studies included 3,701 diagnostic biomarkers, 73 

progression biomarkers, and 429 prognostic biomarkers. 

Of these metabolic markers, 1,462 biomarkers were 

from serum samples, 1,715 were from plasma samples, 

and 750 were from urine samples. Among the metabolic 

markers, 1,044 belonged to amino acids. A total of 213 

diagnostic markers had an AUC ≥0.80. 

 

Metabolite pathway enrichment analysis of diagnostic 

metabolites was performed for reproductive system 

cancers (Supplementary Figure 2). The four most 

closely related pathways for reproductive system cancer 

were glycine serine and threonine metabolism, alanine 

aspartate and glutamate metabolism, arginine and 

proline metabolism, and valine leucine and isoleucine 

biosynthesis. Figure 4 shows the three most significant 

pathways involved in reproductive system cancer. 

 

Respiratory system tumors 

 

Respiratory system cancer includes lung cancer and 

throat cancer. Lung cancer is the leading cause of 

cancer-related morbidity and mortality worldwide,  

with a five-year relative survival rate of only 22%  

[1, 40]. In this review, we collected 102 publications  

on respiratory system tumors, including 2 cancer types 

and 8 cancer subtypes. The sample size ranged from 14 

to 1,196 [46, 47]. These publications included 1,976 

diagnostic biomarkers and 204 prognostic biomarkers. 

Among these biomarkers, 1,335 biomarkers came from 

serum samples, and 467 biomarkers came from plasma 

samples. In addition, metabolites from breath samples 

were used to diagnose lung cancer in seven studies [46, 

48–53]. These studies identified 162 diagnostic markers 

with an AUC greater than or equal to 0.80. We also

 

 
 

Figure 1. The basic information of metabolic biomarkers in different system cancers. 
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enriched the metabolic pathways of diagnostic 

metabolites in respiratory system cancers (Supplementary 

Figure 3). The main relevant pathways were aminoacyl-

tRNA biosynthesis, arginine biosynthesis, glycine  

serine and threonine metabolism, and glyoxylate and 

dicarboxylate metabolism. 

 

 
 

Figure 2. The web interface of the HCMMD database. 
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Urinary system tumors 

 

Urinary system cancer includes bladder cancer,  

kidney cancer, and ureteral cancer. Bladder cancer  

is known for its high recurrence rate worldwide  

[1, 40]. In this review, we collected 77 publications  

on urinary system tumors, encompassing 3 cancer 

types and 17 cancer subtypes. The sample size varied 

 

 
 

Figure 3. The four most related metabolic pathways in digestive system tumors. The metabolic process of metabolites and the 

proteins involved in their regulation. Differentially expressed metabolites (red), unchanged metabolites (grey), regulated proteins (yellow), 
metabolic pathway names (blue). Abbreviations: ACY1: aminoacylase; ADSL: adenylosuccinate lyase; ADSS1: adenylosuccinate synthase 1; 
AGST: alanine-glyoxylate transaminase; ARG1: arginase 1; AS: asparagine synthase; ASL: argininosuccinate lyase; ASS1: argininosuccinate 
synthase 1; GCAT: glycine C-acetyltransferase; GLS: glutaminase; GLT1: glutamate synthase; GLUT1: glucose transporter 1; glyA: glycine 
hydroxymethyltransferase; GOT1L1: glutamic-oxaloacetic transaminase 1 like 1; ilvE: branched-chain amino acid aminotransferase; IL4I1: 
interleukin 4 induced 1; OTC: ornithine transcarbamylase; PC: pyruvate carboxylase; SDS: threonine ammonia-lyase; SCL1A5: solute carrier 
family 1; TDH: threonine 3-dehydrogenase. 
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Figure 4. Three greatly important metabolic pathways in digestive system tumors. The metabolic process of metabolites and the 

proteins involved in their regulation. Differentially expressed metabolites (red), unchanged metabolites (grey) regulated proteins (yellow), 
metabolic pathway names (blue). Abbreviations: acnA: aconitate hydratase; AGXT: alanine-glyoxylate transaminase/serine-glyoxylate 
transaminase and serine-pyruvate transaminase; CS: citrate synthase; CYP11A: cholesterol monooxygenase; CYP17A: steroid 17alpha-
monooxygenase/17alpha-hydroxyprogesterone deacetylase; CYP19A: aromatase; CYP11B1: steroid 11beta-monooxygenase; CYP11B2: 
steroid 11beta-monooxygenase/corticosterone 18-monooxygenase; CYP21A: steroid 21-monooxygenase; GGAT: glutamate--glyoxylate 
aminotransferase; GLU: glutamate synthase; GLUL: glutamine synthetase; GLUT1: glucose transporter 1; glyA: glycine 
hydroxymethyltransferase; GOT: aspartate aminotransferase; HAO: (S)-2-hydroxy-acid oxidase; HSD17B2: corticosteroid 11-beta-
dehydrogenase isozyme 2; HSD17B2: 17beta-estradiol 17-dehydrogenase/3alpha(17beta)-hydroxysteroid dehydrogenase; HSD3B: 3beta-
hydroxy-Delta5-steroid dehydrogenase; IL4I1: L-amino-acid oxidase; ICL: isocitrate lyase; mdh: malate dehydrogenase; PAT: bifunctional 
aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase; PC: pyruvate carboxylase; PGP: phosphoglycolate 
phosphatase; pheA2: prephenate dehydratase; SRD5A1: 3-oxo-5-alpha-steroid 4-dehydrogenase 1; tyrA2: prephenate dehydrogenase; 
tyrC: cyclohexadieny/prephenate dehydrogenase. 

7492



www.aging-us.com 7 AGING 

from 12 to 2,610 [54, 55]. The publications  

included 1,779 diagnostic biomarkers, 135 progression 

biomarkers, and 44 prognostic biomarkers. Urine 

samples were the primary diagnostic tool for urinary 

system cancers, with 51 articles including 1,483 

biomarkers from urine used to detect these cancers. 

Additionally, there were 382 biomarkers from serum 

samples and 93 biomarkers from plasma samples.  

We identified 128 diagnostic markers with an AUC of 

0.80 or higher. The enrichment analysis of metabolic 

pathways of diagnostic metabolites in urinary system 

cancer is presented in Supplementary Figure 4, showing 

that these metabolites were enriched in aminoacyl-

tRNA biosynthesis, steroid hormone biosynthesis, 

glycine serine and threonine metabolism, and arginine 

biosynthesis. 

 

Nervous system tumors 

 

Nervous system cancer, including brain cancer  

and other types of nervous system cancer, is one  

of the deadliest cancers, with 18,600 people in the 

United States dying from the disease in 2021 [40,  

56]. Six cancer subtypes were reviewed in 16 articles, 

with sample sizes ranging from 17 to 220 [57, 58].  

The studies included 223 diagnostic biomarkers, 31 

progression biomarkers, and 13 prognostic biomarkers. 

Biomarkers were derived from serum samples (92 

biomarkers), plasma samples (118 biomarkers), and 

cerebrospinal fluid samples (38 biomarkers). Of these 

studies, 24 diagnostic markers had an AUC of 0.80 or 

higher. A metabolic pathway enrichment analysis of 

diagnostic metabolites in nervous system cancers was 

conducted, and the four most relevant pathways were 

aminoacyl-tRNA biosynthesis, arginine biosynthesis, 

alanine aspartate and glutamate metabolism, and glyo-

xylate and dicarboxylate metabolism (Supplementary 

Figure 5). 

 
Other tumors 

 
In addition to the aforementioned common cancers, 

abnormal metabolites have also been observed in  

other types of cancer. We collected 65 articles for the 

diagnosis of other cancers, including six cancer types 

(thyroid cancer, myeloma, leukemia, lymphoma, skin 

cancer, and osteosarcoma) and 24 cancer subtypes. 

The sample sizes ranged from 10 to 846 [59, 60]. 

Those studies included 1,393 diagnostic biomarkers, 27 

progression biomarkers, and 97 prognostic biomarkers. 

Biomarkers were mainly derived from three types  

of samples: 725 biomarkers in serum samples, 586 

biomarkers in plasma samples, and 105 biomarkers  

in urine samples. Those publications contained a total 

of 66 diagnostic markers with an AUC of 0.80 or 

higher. 

DISCUSSION 
 

Cancer is one of the major threats to human health 

because of its high morbidity and mortality rates [61]. 

Highly specific and sensitive diagnostic or prognostic 

biomarkers can improve the efficiency of treatment and 

prolong the survival of patients [2]. Metabolomics has 

many exciting opportunities to promote the treatment of 

cancer [62]. For example, metabolomics combined with 

other “omics” can uncover valuable drug targets [63–

65]. Metabolomics also has the potential to influence 

cancer screening and diagnosis. Since many studies 

have identified biomarkers in body fluids with high 

diagnostic value for human cancers [66, 67]. Zhou et al. 

reported that 4-Dodecylbenzenesulfonic acid, PC (30:1) 

and PC (44:5) were downregulated in the serum of 

colorectal adenoma patients compared to healthy 

subjects, with an AUC of 1.00 [68]. Plasma levels of 

beta-sitosterol were upregulated in pancreatic cancer 

patients compared to healthy individuals with an AUC 

value of 0.99 [69]. Plasma of hexadecasphinganine with 

an AUC value of 0.99 in the diagnosis of gastric cancer 

[70]. Serum levels of hypoxanthine were upregulated in 

patients with lung adenocarcinoma compared to normal 

controls with an AUC value of 0.99 [71]. Jové et al. 

found that hexanoic acid in the plasma had an AUC 

value of 1.00 for breast cancer diagnosis [72]. Metabolite 

pathway enrichment analysis is a good method to 

discover potential pathogenesis of different systemic 

cancers. Glycine serine and threonine metabolism and 

arginine biosynthesis were enriched in each system of 

cancer. These two metabolic pathways may provide 

inspiration for future cancer research. 

 

Although many liquid biopsy biomarkers with high 

diagnostic value in human cancers have been reported, 

there are still difficulties and challenges in the clinical 

application of these metabolites. First, there is a lack of 

multi-center, large-scale studies to validate the clinical 

feasibility and reproducibility of metabolic markers 

[73]. Second, in order to incorporate biomarker assays 

into the clinical workflow, supporting assay resources, 

staff logistics, and technical education are needed, which 

can be costly in the clinic [73, 74]. Third, there are huge 

fluctuations in the concentration of metabolites in vivo, 

as well as a fragmented distribution of specialized small 

molecules in the body [75]. In addition, metabolomics is 

diverse and chemically complex, and varies in different 

tumor lesions. For example, L-alanine is significantly 

downregulated in pancreatic cancer but significantly 

upregulated in colorectal cancer, which adds great 

difficulty for tumor screening [7, 47, 76]. This article 

has some innovations that need to be clarified. First, 

previous studies mainly focused on biopsy markers of  

a single tumor and lacked a summary of diagnostic data 

on multiple tumor biopsies. This article summarizes 
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diagnostic markers covering 24 tumor types. Second,  

our database contains more detailed information, such  

as AUC, accuracy, specificity, HMDB ID, metabolic 

pathway, sample source and so on. In addition, pathway 

analysis demonstrated that glycine, serine and threonine 

metabolism and arginine biosynthesis metabolic pathways 

were enriched in multiple cancer systems, suggesting that 

these two metabolic pathways play an important role in 

cancer diagnosis and treatment. 

 

CONCLUSION 
 
With the development of standardized protocols, the 

measurement of metabolomics has become cheaper and 

more convenient. Metabolomics plays an increasingly 

important role in cancers, alongside other diagnostic 

and prognostic tests in the clinic. To provide an 

important resource for users to query, browse, and 

download information on cancer-related metabolites, we 

have established a user-friendly website. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Top 25 metabolic pathways for diagnostic metabolite enrichment analysis in digestive system 
tumors. 
 

7500



www.aging-us.com 15 AGING 

 
 

Supplementary Figure 2. Top 25 metabolic pathways for diagnostic metabolite enrichment analysis in reproductive system 
tumors. 
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Supplementary Figure 3. Top 25 metabolic pathways for diagnostic metabolite enrichment analysis in respiratory system 
tumors. 
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Supplementary Figure 4. Top 25 metabolic pathways for diagnostic metabolite enrichment analysis in urinary system 
tumors 
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Supplementary Figure 5. Top 25 metabolic pathways for diagnostic metabolite enrichment analysis in nervous system 
tumors. 
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