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INTRODUCTION 
 

In recent years, there has been a resurge of interest in 

cancer metabolism, which is now an established 

hallmark of cancer [1]. As first described by Otto 

Warburg, cancers preferentially use aerobic glycolysis 

for energy generation (now termed the “Warburg 
effect”) [2]. Besides aerobic glycolysis, multiple 

cancers have been shown to be highly dependent on 

methionine, an essential amino acid in one-carbon 

metabolism [3, 4]. Methionine is primarily metabolized 

to S-Adenosylmethionine (SAM), which donates the 

methyl group to DNA, RNA, and histones and is 

subsequently converted to S-adenosylhomocysteine 

(SAH) [5]. Although dietary methionine restriction  

has been shown to inhibit tumor growth profoundly  

and induce sensitivity to anti-cancer agents [6], the 

underlying mechanisms are poorly understood. It is 
possible that the altered methionine metabolic networks 

substantially influenced the epigenetic state of cancer 

cells, which ultimately led to transcriptional programming 

that favored tumor formation [6]. 
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ABSTRACT 
 

Recent research revealed methionine metabolism as a key mediator of tumor initiation and immune evasion. 
However, the relationship between methionine metabolism and tumor microenvironment (TME) in lung 
adenocarcinoma (LUAD) remains unknown. Here, we comprehensively analyzed the genomic alterations, 
expression patterns, and prognostic values of 68 methionine-related regulators (MRGs) in LUAD. We found that 
most MRGs were highly prognostic based on 30 datasets including 5024 LUAD patients. Three distinct MRG 
modification patterns were identified, which showed significant differences in clinical outcomes and TME 
characteristics: The C2 subtype was characterized by higher immune score, while the C3 subtype had more 
malignant cells and worse survival. We developed a MethScore to measure the level of methionine metabolism 
in LUAD. MethScore was positively correlated with T-cell dysfunction and tumor-associated macrophages 
(TAMs), indicating a dysfunctional TME phenotype in the high MethScore group. In addition, two 
immunotherapy cohorts confirmed that patients with a lower MethScore exhibited significant clinical benefits. 
Our study highlights the important role of methionine metabolism in modeling the TME. Evaluating methionine 
modification patterns will enhance our understanding of TME characteristics and can guide more effective 
immunotherapy strategies. 
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Recently, it was found that methionine-related 

metabolites were strongly enriched in patient-derived 

lung tumor-initiating cells (TICs) as compared with 

isogenic differentiated cells. Methionine restriction 

severely disrupted the tumor-forming ability of TICs, 

presumably by changing histone methylation levels. In 

addition, the study demonstrated the overexpression and 

tumor-promoting potential of two key methionine 

regulators (Methionine adenosyltransferase 2A [MAT2A] 

and Methylenetetrahydrofolate Reductase [MTHFR]) in 

lung adenocarcinoma [7]. Interestingly, two recent 

studies have also identified a causal link between tumor 

methionine metabolism and T cell immunity in the 

tumor microenvironment (TME) [8, 9], revealing cancer 

methionine signaling as a promising immunotherapeutic 

target. 

 

It is worth noting that lung cancer remains as the leading 

cause of cancer death in 2022 [10], and the most common 

subtype is lung adenocarcinoma (LUAD) [11]. Emerging 

evidence showed that the application of immune-

checkpoint blockade has offered a new therapeutic 

opportunity for advanced non-small-cell lung cancer 

(NSCLC) patients, for whom the treatment provides 

durable responses and improved long-term survival  

[12–18]. Therefore, it would be of great interest to decode 

the role of methionine-related molecules in LUAD and to 

understand the relationship between these genes and the 

TME. However, the aforementioned research involved 

only two methionine regulators, a comprehensive picture 

of methionine regulation in LUAD is urgently needed. 

 

In this study, we comprehensively evaluated the 

expression profiles and genomic alterations of 68 

methionine-related genes (MRGs) in LUAD. We also 

analyzed the prognostic value of MRGs in 30 datasets 

including 5024 LUAD patients. We identified three 

distinct MRG modification patterns with significant 

differences in clinical and immunological characteristics. 

In addition, we constructed a scoring system 

(MethScore), which was found to be related to the 

patient prognosis and immune responses of LUAD. We 

also found that this scoring system could predict the 

response to immunotherapy in lung cancer patients. 

Overall, our integrative analysis of MRGs in LUAD will 

provide new insights for tumor biological research. 

 

MATERIALS AND METHODS 
 

LUAD dataset source and preprocessing 

 

Multi-omics data of LUAD, including mRNA 

(RNAseq), copy number variation (CNV), and single 
nucleotide variation (SNV) data, were downloaded 

from UCSC Xena Browser (https://xenabrowser.net). 

In addition, 38 LUAD gene-expression datasets  

and clinical annotation were retrieved from  

Gene-Expression Omnibus (GEO), cbioportal 

(https://www.cbioportal.org, OncoSG LUAD RNAseq 

data) and PRECOG (PREdiction of Clinical Outcomes 

from Genomic profiles; https://PRECOG.stanford.edu) 

database. The detailed clinical information of all 

eligible LUAD datasets was summarized in 

Supplementary Table 1. Thirteen datasets with 

matched controls were used to assess the differential 

expression patterns of MRGs (Supplementary Table 2 

and Figure 1A). Thirty LUAD cohorts (including 

TCGA LUAD) with survival information were 

gathered to determine the prognostic value of  

MRGs (Supplementary Table 3 and Figure 1B). For 

microarray data that were not normalized, they were 

log2 transformed and then converted to a Z score. For 

microarrays that were already log2 transformed, the 

normalized matrix was Z-score transformed. For 

RNAseq data, the FPKM values were transformed into 

transcripts per kilobase million (TPM) values. Batch 

effects between arrays were corrected using the 

“ComBat” method from the sva package. 

 

Consensus clustering analysis of MRGs 

 

Sixty-eight MRGs were retrieved from the  

Molecular Signatures Database (MSigDB, 

http://www.broad.mit.edu/gsea/msigdb/), Gene Ontology 

(GO) database, and previous articles and reviews [6, 9, 

19–21]. The full list of these genes was shown in 

Supplementary Table 4. After median centering the 

expression values of MRGs, consensus clustering was 

applied using the ConsensusClusterPlus R package with 

partitioning around medoids (PAM) algorithm, euclidean 

distance, and 100 subsamples with a 0.8 random gene 

fraction. To investigate the differences in biological 

processes between different MRG subtypes, gene set 

variation analysis (GSVA) was performed with the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) gene set 

(c2.cp.kegg.v7.4) retrieved from the MSigDB database. 

 

Differential gene expression analysis and functional 

enrichment analysis 

 

We used the limma package to find differentially 

expressed genes (DEGs) among three MRG clusters. 

DEGs for each comparison were intersected to determine 

the final core gene set, which was visualized as Venn 

diagram using the R VennDiagram package. GO analysis 

and KEGG pathway analysis of the core gene set were 

performed using the clusterProfiler R package. 

 

Immune response analysis 

 

TME characteristics including immune score, stromal 

score, and tumor purity were evaluated using the 

https://xenabrowser.net/
http://www.cbioportal.org/
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xCELL and ESTIMATE algorithm. In addition, the 

activities of a list of TME-related signatures were 

calculated using the single-sample gene set enrichment 

analysis (ssGSEA) algorithm, as implemented in the 

IOBR package [22]. The relative abundances of 

immune cells in LUAD patients were estimated using 

six deconvolution methods (CIBERSORT, EPIC, MCP-

counter, quanTIseq, TIMER, and xCell), which have 

been integrated as a unified function “deconvo_tme” in 

the IOBR package. We compared the activity of TME-

related signatures between each molecular subtype and 

the remaining samples. Then, the average fold changes 

(FCs) and Bonferroni-adjusted p-values (false discovery 

rate [FDR]) were computed using Wilcoxon rank sum 

test. The FDR values were categorized into six groups 

based on significance cutoffs for visualization (0.05, 

0.01, 0.001, 1e-5, 1e-16). The pheatmap package was 

used to visualize the relative abundance of immune cells 

among groups. The TIDE (http://tide.dfci.harvard.edu/) 

was used to calculate T cell dysfunction, T cell 

exclusion, and other immune signature scores. 

 

Analysis of single-cell RNA-sequencing (scRNA-seq) 

data of LUAD 

 

For single cell RNA-seq (scRNA) data analysis, three 

published scRNA-seq data of LUAD (EMTAB6149, 

GSE117570, and GSE127465) were downloaded 

 

 
 

Figure 1. Transcriptome-based expressional alterations and prognostic impacts of MRGs across multiple LUAD datasets.  
(A) Heatmap showing the difference of mRNA expression levels of 68 MRGs between normal and LUAD samples in 13 datasets with matched 
controls. The color depicts the log2-transformed fold change (Log2FC) between tumor and normal tissues. Please also refer to Supplementary 
Table 2. (B) Association between MRGs expression and patient prognosis across 30 LUAD datasets with survival information as determined by 
the Log-rank test. The color represents Zscore-transformed hazard ratio (HR) and asterisks represent the statistical p value (*p < 0.05;  
**p < 0.01; ***p < 0.001). Please also refer to Supplementary Table 3. 

http://tide.dfci.harvard.edu/
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from Tumor Immune Single-cell Hub (TISCH, 

http://tisch.comp-genomics.org/), a scRNA-seq database 

facilitating the exploration of TME across multiple 

cancer types [22]. Data were processed and visualized 

following the standard workflow of the single-cell data 

processing R package, Seurat [23]. Briefly, the 

downloaded h5 format was converted to a Seurat object 

using the “Read10X_h5” function. Low-quality cells 

were identified and filtered with a mitochondrial gene 

ratio >15% and with <500 or >4000 genes detected. The 

count matrix of high-quality cells was then subjected to 

normalization, scaling, principal component analysis 

(PCA), and clustering according to the Seurat tutorial. 

Cell clusters were annotated based on the downloaded 

cell metainformation table. The methionine metabolism 

activities for each single cell were computed using the 

scMetabolism package [24], and cell samples were 

categorized into high and low activity groups based on 

median activity levels. 

 

Collection and analyses of immunotherapy datasets 

 

We collected two independent immunotherapy cohorts of 

lung cancer, including one cohort treated with anti-PD1 

(Prat_CancerRes_2017, GSE93157) [25] and another 

cohort treated with anti-PD-1 (Cho_ExpMolMed, 

GSE126045) [26], to determine difference in immune 

checkpoint blockade (ICB) responsiveness between 

patients with high and low meth score. The response 

information was downloaded from the Supplementary 

Data of the respective papers. 

 

Construction of the methionine-related methscore 

 

The methscore was calculated to quantify methionine 

metabolism of individual LUAD samples. First, the 

DEGs among three MethClusters were subjected to 

univariate Cox regression analysis to identify those 

significantly associated with OS. Then, the MethScore 

was calculated as the sum of PC1 and PC2 of the five 

core MRGs. Based on the median score, patients were 

divided into high and low MethScore groups. In 

addition, we also used the ssGSEA method to calculate 

and validate the value of MethScore. 

 

Statistical analysis and bioinformatics 

 

Survival analysis was conducted using the “survival” 

and “survminer” packages. The optimal cutoff point of 

MethScore was determined by maximally selected rank 

statistics implemented in the “survminer” package. 

Survival probabilities of patient groups were estimated 

by the Kaplan-Meier method and compared with log-
rank test. We used Wilcoxon rank-sum test to compare 

differences between two groups. Correlation between 

two continuous variables was assessed with Spearman’s 

rank correlation test. The R/Bioconductor package 

Maftools was used to compute the tumor mutation 

burden (TMB), generate oncoprint plots, and evaluate 

differentially mutated genes between two cohorts. 

Visualization was performed using the following R 

packages: “ggplot2”, “ggsci”, “ggpubr”, “RCircos” (for 

circos plots), “igraph” (for network plots), and 

“factoextra” (to visualize principal component analysis 

[PCA]). All statistical tests were two-sided, and a p-

value less than 0.5 was considered to indicate statistical 

significance. 

 

Data availability 

 

The datasets supporting this study are from previously 

reported studies and datasets, which have been cited. 

The data are available in the following open access 

repositories: TCGA, https://portal.gdc.cancer.gov/; 

UCSC Xena, https://xena.ucsc.edu; cBioPortal, 

https://www.cbioportal.org; GEO, https://www. 

ncbi.nlm.nih.gov/geo/; TISCH, http://tisch.comp-

genomics.org/. Other data used to support the findings 

of this study are available from the corresponding 

author upon request. 

 

RESULTS 
 

Landscape of genetic variation of methionine 

regulators in LUAD 

 

A total of 68 MRGs were investigated. We first 

determined the prevalence of somatic mutations of 

these genes in LUAD. The top 20 frequently mutated 

genes were shown in Figure 2A. The overall mutation 

frequency of MRGs was relatively low (127/561, 

22.64%) and missense mutation was the most prevalent 

mutation type. DNA Methyltransferase 3 Alpha 

(DNMT3A) showed the highest mutation frequency, 

followed by 5-Methyltetrahydrofolate-Homocysteine 

Methyltransferase (MTR), 5-Methyltetrahydrofolate-

Homocysteine Methyltransferase Reductase (MTRR), 

DOT1 Like Histone Lysine Methyltransferase 

(DOT1L), and DNA Methyltransferase 3 Beta 

(DNMT3B). The strongest co-occurrence was found 

between alterations of SLC38A7 and MTR, as well  

as SET Domain Bifurcated Histone Lysine 

Methyltransferase 1 (SETDB1) and Enhancer of Zeste 2 

Polycomb Repressive Complex 2 Subunit (EZH2) 

(Supplementary Figure 1). Analysis of CNV data 

showed widespread CNV alteration with 68 regulators. 

SETDB1 and MTRR displayed the most prevalent CNV 

amplification, whereas the opposite was seen for 

Methylthioadenosine Phosphorylase (MTAP), PRMT6, 
and AHCYL1 (Figure 2B). The locations of CNV 

alterations of 68 MRGs on chromosomes were 

demonstrated in Figure 2C. Interestingly, we observed 

http://tisch.comp-genomics.org/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
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that SETDB1, PRMT6, and AHCYL1 were all located 

on chromosome 1. 

 

PCA analysis indicated that MRGs’ expression could 

effectively distinguish tumors from normal samples in 

the TCGA cohort (Figure 2D). Further analysis in 13 

datasets with matched controls (Supplementary Table 2) 

demonstrated that MRGs were more often up-regulated 

than down-regulated in LUAD than paired normal. We 

found EZH2, Solute Carrier Family 7 Member 5 

(SLC7A5), IL4I1, SUV39H2, and DNMT3A were 

remarkably increased in LUAD, whereas Cysteine 

Dioxygenase Type 1 (CDO1), MSRB3, AHCYL2, and 

MTHFR were mostly decreased (Figure 1A). 

Prognostic significance of MRGs in LUAD 

 

We next sought to determine the prognostic significance 

of MRGs in LUAD. A total of 30 datasets including 

5024 LUAD patients with survival information were 

used (Supplementary Table 1). The optimal cutoff for 

stratifying each gene was determined by the maxstat 

method. Surprisingly, we found most MRGs were highly 

prognostic in more than one cohort. Interestingly, we 

found high expression of the Protein Arginine 

Methyltransferase (PRMT) family genes (PRMT1, 3, 5, 

and 6) were generally associated with a worse survival 

outcome. Other MRGs that were significant in more than 

half of the tested datasets were SLC7A5, SRM, MTAP, 

 

 
 

Figure 2. Landscape of genetic variation of methionine regulators in LUAD. (A) Oncoprint plot showing mutation frequencies of 

MRGs in 561 patients with LUAD. (B) The CNV alteration frequency of 68 MRGs. The column represented the alteration frequency. The 
deletion frequency, blue dot; The amplification frequency, yellow dot. (C) Circos plot showing the location of CNV alteration of MRGs on 
chromosomes. (D) Principal component analysis of 68 MRGs to distinguish tumors from normal samples in the TCGA LUAD cohort. 
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RNMT, CBS, EZH2, PRMT1, SUV39H1, CDO1, MSRA, 

GNMT, HNMT, and AHCYL2, in which the former eight 

genes were mostly adverse prognostic indicators and 

high expression of the latter mostly predicted better 

prognosis (Figure 1B and Supplementary Table 3). 

Importantly, a meta-analysis of hazard rations (HRs) and 

p-values across 30 datasets further confirmed the strong 

prognostic influence of SLC7A5 and CDO1 expression 

(Supplementary Figure 2). 

 

Methionine modification patterns mediated by 68 

regulators 

 

In a next step, 39 genes with significant associations with 

survival in the TCGA cohort (logrank p-value < 0.05, 

Supplementary Table 5) were illustrated in a network, 

which showed comprehensive connections, differential 

expression patterns, and prognostic implications of these 

genes (Figure 3A). We found that these MRGs showed 

either positive or inverse correlations, with genes up-

regulated in LUAD significantly negatively correlated 

with those down-regulated in LUAD. Additionally, 

highly expressed MRGs consistently predicted worse 

patient outcome, and the opposite was true for the lowly 

expressed genes. 

 

The above results indicated that cross-talk among the 

MRGs may play critical roles in the pathogenesis of 

LUAD. Using the ConsensusClusterPlus package, we 

grouped LUAD patients with qualitatively different 

modification patterns based on the expression of 68 

MRGs, and three distinct modification patterns were 

ultimately identified using unsupervised clustering, 

including 181 cases in cluster 1, 195 cases in cluster 2, 

and 141 cases in cluster 3. We termed the three clusters 

as methcluster C1-C3, respectively (Supplementary 

Figure 3A–3C and Supplementary Table 6). Prognostic 

analysis for the three methionine subtypes revealed that 

patients in C3 had the worst prognosis, while patients in 

C1 and C2 had similar survival rates (Figure 3B). We 

also observed significant differences in the expression of 

MRGs among the three clusters. For example, BHMT2 

and BHMT were almost exclusively expressed in C1 and 

genes that adversely impact outcomes, such as SLC7A5, 

MARS, EZH2, the DNMT family (DNMT1, DNMT3A, 

and DNMT3B), and the PRMT family (PRMT1, 3, 5, and 

6) all showed low expression in C2 but relatively high 

expression in C3 (Figure 3C). Besides those that 

exhibited poor outcomes, we found much more smokers  

were distributed in the C3 cluster (Figure 3C and 

Supplementary Figure 3D). In addition, we analyzed 

differences in KEGG pathway scores among 3 

methclusters. As expected, we detected differential 
levels of multiple metabolism pathways, such as 

KEGG_PENTOSE_PHOSPHATE_PATHWAY, KEGG 

_CYSTEINE_AND_METHIONINE_METABOLISM, 

and KEGG_ONE_CARBON_POOL_BY_FOLATE, 

which were activated in the C1 cluster (Figure 3D). 

Interestingly, DNA repair pathways including 

KEGG_DNA_REPLICATION, KEGG_MISMATCH_ 

REPAIR, KEGG_BASE_EXCISION_REPAIR, KEGG 

_NUCLEOTIDE_EXCISION_REPAIR, KEGG_ 

SPLICEOSOME were also high in C1. In addition, 

some signaling pathways were differentially enriched 

(Figure 3D and Supplementary Figure 3E). These 

results indicated that MRGs might participate in tumor 

development by impacting various metabolism, DNA 

repair, and tumor signaling pathways. 

 

TME and immunological characteristics in distinct 

MRG modification patterns 

 

To explore the difference in immune responses among 

three distinct MRGs modification patterns, we used the 

xCell (Figure 4A) and ESTIMATE (Figure 4B) 

algorithms to quantify the overall infiltration of immune 

cells (Immune Score), stromal components (Stromal 

Score), and tumor cell purity (Tumor Purity) across three 

modification patterns. Surprisingly, we found the C2 

subtype consistently exhibited the highest TME score, 

followed by C1 and C3 (Figure 4A, 4B). Conversely, C3 

had a higher tumor purity than the C1 and C2 subtypes 

(Figure 4B), suggesting that C2 subtype tumors are 

surrounded by more nontumor components (immune 

cells and stromal cells) while C3 subtype contains more 

malignant cells. This was consistent with the observed 

survival differences among the three groups (Figure 3B). 

 

We then analyzed the activity of TME-related 

signatures among subtypes of methionine metabolism. 

Our results showed that these pathways were active in 

C2 but suppressed in C3 (Figure 4C and Supplementary 

Table 7), further confirming the important role of 

methionine metabolism in tumor immune regulation. 

Importantly, further estimating immune infiltration 

using 6 deconvolution algorithms confirmed the overall 

enrichment of immune cells in C2 (Figure 4D and 

Supplementary Table 8). 

 

Identification of MRG gene subtypes and functional 

annotation 

 

To further investigate the potential biological features 

of each methionine regulation pattern, we examined the 

MRG-related transcriptional expression changes across 

three methclusters in LUAD. A total of 23 differentially 

expressed genes (DEGs) that represented the essential 

distinguishing index of the three subtypes were 

identified, all of which were in the list of 68 MRGs 
(Figure 5A and Supplementary Table 9). These MRG 

subtype-related genes were, as expected, significantly 

enriched in biological processes that were regulated by 
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methionine metabolism, such as DNA methylation, 

histone methylation, and N-methyltransferase activity 

(Figure 5B). KEGG analysis indicated enrichment  

of amino acids metabolism-related pathways 

(Supplementary Figure 4A). We then performed 

univariate Cox regression analysis of the 23 subtype-

related genes and determined 5 genes significantly 

associated with OS (p < 0.05): HNMT, MTHFD1, SMS, 

 

 
 

Figure 3. Patterns of methionine modification and biological characteristics of each pattern. (A) The interaction between key 

MRGs (Log-rank p-value < 0.05) in LUAD. The circle size represents the impact of each regulator on the prognosis, and the range of values 
calculated by Log-rank test was p < 0.001, p < 0.01, and p < 0.05, respectively. The color on the left side of the dots depicts differential 
expression patterns and the color on the right side depicts direction of the prognostic significances. The lines linking regulators showed their 
interactions, and thickness showed the correlation strength between regulators. Negative correlation was marked with blue and positive 
correlation with red. (B) Survival analysis for the three MRG modification patterns based on 517 patients from the TCGA LUAD cohort.  
(C) Heatmap showing association between the expression of 68 MRGs and clinical characteristics in the TCGA LUAD cohort. The 
MethClusters, age, gender, smoking status, TNM stage, and survival status were used as patient annotations. (D) GSVA enrichment analysis 
showing the activation states of biological pathways in distinct MRG patterns. The comparison of C1 vs C2 and C1 vs C3 was shown. 
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GNMT, and CHDH (Supplementary Table 10). To 

further validate this regulation mechanism, a consensus 

clustering algorithm was used to divide patients into 

three clusters based on the 5 prognostic genes 

(genecluster C1-C3) (Supplementary Figure 4B). The 

gene subtype C3 comprises less advanced pathologic 

stage (stage III/IV) tumors (Figure 5C). The three MRG 

gene subtypes also showed significant differences in 

MRG expression (Figure 5C). Further survival analysis 

indicated significant prognostic differences among the 

three MRGs gene clusters in LUAD (Figure 5D). 

Kaplan-Meier curves showed that patients with gene 

subtype C3 had the best OS, whereas patients in 

genecluster C1 and C2 showed a relatively poor OS  

(p = 0.004; Figure 5D). 

 

Construction of the MethScore and exploration of its 

clinical relevance 

 

The above results demonstrated the importance of 

methionine metabolism in the regulation of TME and 

prognosis of LUAD. We then constructed a scoring 

model called MethScore based on the sum of PC1 and 

PC2 of the five core MRGs. A Sankey diagram was 

 

 
 

Figure 4. TME and immunological characteristics in distinct MRG modification patterns. (A, B) The differences of indicated TME 

characteristics (immune score, stromal score, and tumor purity) among three MRG modification patterns. The TME score was evaluated using 
the xCELL (A) and ESTIMATE (B) algorithm, respectively. (C) The differences of indicated TME-related signatures among three MRG 
modification patterns. The fold change between each subtype and the remaining samples were compared using the Wilcoxon rank sum test. 
The color of the dots indicates fold changes (log2) and size indicates the FDR values. (D) The differences of indicated immune cells among 
three MRG modification patterns. The relative cell abundances were calculated using 6 deconvolution algorithms as indicated. *P < 0.05;  
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant. 
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used to visualize the attribute changes of individual 

patients (Figure 6A). Further analysis revealed significant 

differences of MethScore among MethClusters and 

GeneClusters (Figure 6B, 6C). We found MethCluster 

C2 showed the highest score while C3 had the lowest 

median score, which indicated that a high MethCluster 

might be closely linked to immune activation. 

Accordingly, the high MethScore group showed a 

higher TME score but lower tumor purity (Figure 6D 

and Supplementary Figure 5A), once again indicating 

a strong positive correlation between methionine 

metabolism and immune infiltration. For GeneCluster, 

the score is highest in the C3 cluster (Figure 6C).  

In addition, we showed that the MethScore was 

positively correlated with the infiltration level of most 

immune cells, but negatively correlated with the 

abundance of activated CD4+ T cells (Supplementary 

Figure 5B). 

 

 
 

Figure 5. Construction of MRG gene signatures and functional annotation. (A) Venn diagram showing 23 MRG-related 
differentially expressed genes (DEGs) among three MRG-clusters. Vs means that the gene expression profiles from one cluster was 
compared to another cluster. (B) Functional annotation for MRG-related genes using GO enrichment analysis. The color depth of the 
bubbles represents the q value and the size of the bubbles represents the count of genes enriched. (C) Heatmap showing association 
between the expression of core DEGs and clinical characteristics in the TCGA LUAD cohort. The gene clusters, MethClusters, age, gender, 
smoking status, TNM stage, and survival status were used as patient annotations. (D) Survival analysis for the three gene clusters based on 
517 patients from the TCGA LUAD cohort. 
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Figure 6. The association between MethScore with clinical, immunological, and genomic features. (A) Sankey diagram showing 

the links between MRG cluster, MRG-gene cluster, MethScore, and survival status. (B, C) Distribution of MethScore in the different MRG 
clusters (B) and gene clusters (C). (D) Box plots showing the difference of immune score and tumor purity in groups with high or low 
MethScore. The TME score was evaluated using the ESTIMATE algorithm. (E) Kaplan-Meier curves for high and low MethScore patient 
groups in TCGA LUAD cohort. (F) Multivariate analysis of MethScore for OS in the TCGA LUAD cohort. Only variables with p ≤ 0.20 in the 
univariate analysis were retained. Please see Supplementary Table 5 for the full list of variables. (G) Nomogram for predicting 1-, 3-, and  
5-year OS for LUAD patients in TCGA cohort. (H) Relative distribution of tumor mutation burden (TMB) in patients with high and low 
MethScore. (I) The difference in mutational profiles in TCGA LUAD stratified by high (left panel) versus low MethScore (right panel) 
subgroups. The top 20 frequently mutated genes were shown. 
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We then divided the TCGA-LUAD cohort into high or 

low MethScore groups using the optimal cut-off value 

obtained by the maxstat method. Patients with low 

MethScore were significantly associated with a worse 

prognosis in the TCGA LUAD cohort (p < 0.001, 

Figure 6E). Furthermore, multivariate Cox regression 

model analysis considering T stage, N stage, and TNM 

status confirmed the MethScore as a robust and 

independent prognostic biomarker for evaluating patient 

outcomes (p < 0.001, Figure 6F). Then, a nomogram-

based survival probability prediction model was 

constructed based on the MethScore and clinical factors 

in LUAD. After integrating the total score of clinical 

factors and locating it on the total point scale, the 

probability of 1-, 3-, and 5-year survival at each time 

point could be determined (Figure 6G). As can be seen 

in the figure, the nomogram predicted well and the 

concordance index was 0.682 (Figure 6G). 

 

Next, we analyzed the distribution differences of 

somatic mutations between low and high MethScore 

groups in TCGA-LUAD cohort. As shown in 

Supplementary Figure 6, genes were much more 

frequently mutated in patients with low MethScore than 

in those with high MethScore. Consistently, the low 

MethScore group presented a significantly higher TMB 

and the MethScore was much lower in the high TMB 

group (Figure 6H and Supplementary Figure 5C). The 

MethScore and TMB also exhibited a significant 

negative correlation (Supplementary Figure 5D). The 

mutational landscape showed that TP53 (59% vs. 41%) 

had higher somatic mutation rates in the low MethScore 

group, whereas CACNB2 and KCNT1 were exclusively 

mutated in the high MethScore subtype (Fisher’s exact 

test, p < 0.01, Figure 6I and Supplementary Figure 6). 

 

The role of MethScore in predicting immuno-

therapeutic benefits 

 

Our analysis demonstrated that tumor MRG modification 

patterns play a crucial role in mediating the immune 

response and were closely linked to patient TMB status. 

Accumulated evidence revealed TMB status as an 

emerging biomarker for response to immunotherapy  

[27, 28]. Therefore, we hypothesized that the difference 

in tumor MRG modification patterns might be a  

crucial factor that mediated the clinical response to 

immunotherapy. Surprisingly, using the TIDE algorithm, 

we found that MethScore was positively correlated with 

the T-cell dysfunction score and M2 subtype of tumor-

associated macrophages (TAMs) (Figure 7A), despite the 

higher immune scores observed in the high MethScore 

group (Figure 6D). We then calculated the methionine 
metabolism activity at the single-cell resolution using 

three scRNA-seq datasets derived from lung cancer 

patients. Interestingly, we found CD8+ T cells were 

consistently inhibited in samples with higher methionine 

metabolism activity, whereas the proportion of  

TAMs and malignant cells was remarkably increased 

(Figure 7B). These results were consistent with previous 

findings that methionine metabolism contributes to T 

cell dysfunction and immune escape in cancer [8]. 
 

We next investigated whether the MRG signatures 

could predict patients’ response to ICB therapy. Using 

two independent ICB cohorts of lung cancer, we found 

that patients with a response to ICB had lower 

MethScore than patients with no response and that the 

low MethScore group presented a better response to 

ICB and improved treatment outcomes in terms of 

progression-free survival (PFS) (Figure 7C–7E). Taken 

together, our findings strongly suggest that MethScore 

is associated with the response to immunotherapy. 

 

DISCUSSION 
 

Increasing evidence demonstrated that methionine 

metabolism takes on a critical role in protein synthesis, 

epigenetic regulation, antioxidant defense as well as 

pro-tumor effects [6]. A recent study has revealed a 

tumor-initiating capability of methionine cycle activity 

and two methionine regulators (MAT2A and MTHFR) in 

lung cancer [7]. Given the indispensable tumorigenic 

potential of methionine in lung cancer, we reasoned that 

an overall characterization of multiple methionine 

regulators in lung cancer will broaden our under-

standing of methionine modification and guide the 

designation of more effective therapies. 
 

In this study, we investigated the genetic and 

transcriptional heterogeneity of 68 MRGs in LUAD, 

the most prevalent subtype of lung cancer. We found 

DNMT3A was the most frequently mutated MRGs in 

LUAD, followed by MTR, MTRR, DOT1L, and 

DNMT3B. Among them, DNMT3A and DNMT3B are 

DNA methyltransferases dependent on SAM [29], the 

major metabolic product of methionine metabolism. 

While DNMT3A and DNMT3B are involved in de novo 

methylation, DOT1L is a histone methyltransferase 

that mediates the methylation of histone H3 lysine  

79 (H3K79me) [30]. Therefore, altered methionine 

metabolism might contribute to LUAD through 

epigenetic-regulated gene expression patterns. 

Accordingly, the previous study demonstrated that 

lung TICs require exogenous methionine for histone 

methylation, and that the tumorigenic capabilities of 

TICs were probably endowed through epigenetic 

alterations [7]. We also observed widespread CNV 

alterations of certain MRGs in LUAD. For example, 
MTAP, an enzyme involved in the methionine salvage 

pathway, was found to be deleted in LUAD. 

Consistently, MTAP homozygous deletion occurs 
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frequently in cancers such as glioblastomas [31], 

melanomas [32], and pancreatic cancer [33]. It should 

be noted that MTAP could also be inactivated by 

promoter hypermethylation in cancer [34], which 

indicates epigenetic alterations in MRGs could feed 

back and modulate methionine metabolism. 

 

Further analysis revealed distinct differential expression 

patterns and prognostic values of MRGs in LUAD. 

Overall, genes that were upregulated in LUAD usually 

predicted worse outcomes; some prominent ones 

include EZH2, SLC7A5, PRMT3, and PRMT5. In line 

with this, overexpression of PRMT5 has been 

implicated in a number of cancer types [35–37]. MAT2A 

and MTHFR have been found to be overexpressed in 

lung tumors [7]; however, they showed no differential 

expression or even reduced expression in our study. The 

possible reasons are as follows: First, fewer samples 

were included in previous studies, whereas we used 13 

LUAD datasets to compare MRGs between LUAD and 

normal samples. Second, gene expressions were 

assessed at the protein and mRNA level between their 

study and ours. Therefore, prospective validation is still 

required. 

 

 
 

Figure 7. The MethScore predicts responses to immunotherapy. (A) Correlogram showing the association between MethScore with T 
cell dysfunction and T cell exclusion signatures in TCGA LUAD cohort, as determined using the tumor immune dysfunction and evasion (TIDE) 
method. (B) Differential composition of immune cell populations in cell samples with high and low methionine activity. The methionine 
activity was computed in three scRNA-seq data of LUAD (EMTAB6149, GSE117570, and GSE127465). (C) Violin plots comparing the 
MethScore between patients who benefitted and did not benefit from immunotherapy in indicated ICB cohorts. (D) The fraction of patients 
with clinical response to ICB among indicated ICB cohorts between patients with high and low MethScore (as stratified by the median score). 
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (E) Kaplan-Meier curve depicting the PFS of lung 
cancer patients with high and low MethScore in the indicated ICB cohort. 
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Unsupervised cluster analysis of the expression values of 

MRGs identified three distinct modification patterns. 

Notably, the C2 subtype was characterized by higher 

immune scores and elevated tumor-infiltrating 

lymphocytes, corresponding to an immune-inflamed 

phenotype, while the C3 subtype was characterized by 

the presence of more malignant cells and a worse 

survival. Differentially expressed genes were then 

determined to construct an MRG-related gene cluster, 

which also had significantly different outcomes. Finally, 

we established a scoring system to evaluate the MRG 

modification pattern of individual patients with LUAD—

the MethScore. We observed that patients with a higher 

MethScore were more frequently in the C2 MRG 

subtype, and accordingly had a higher TME score. 

Indeed, increasing evidence has shown that metabolism 

plays a key role in immune regulation [38]. Recently, 

researchers have uncovered a mechanic link between 

tumor methionine metabolism and T-cell exhaustion: 

they showed that SAM and MTA treatment promotes the 

dysfunction of human CD8+ T cells in vitro, and that 

knockout of MAT2A reduces SAM production and 

suppresses tumorigenesis and T-cell dysfunction in 

hepatocellular carcinoma (HCC) [8]. Another study by 

Bian et al. demonstrated that tumor cells could hijack 

methionine metabolism from CD8+ T cells for their own 

benefit, thereby impairing T cell survival and function by 

reducing H3K79me2 levels and inhibiting STAT5 

signaling in CD8+ T cells [9]. Our analysis demonstrated 

that MethScore was positively correlated with the T-cell 

dysfunction score and M2 subtype of TAMs. Using 

scRNA-seq data, we found CD8+ T cells were 

consistently inhibited in samples with higher methionine 

metabolism activity, whereas the proportion of TAMs 

was remarkably increased. In addition, we showed that 

the MethScore was negatively correlated with the 

abundance of activated CD4+ T cells. It was previously 

shown that methionine deprivation limited the immune 

activation of CD4+ T cells [39]. Therefore, it is possible 

that methionine was deprived from CD4+ T cells by 

tumor cells, leading to decreased levels of activated 

CD4+ T cells. These results further support the view that 

methionine metabolism contributes to T cell dysfunction 

and immune escape in cancer [8], suggesting a 

complicated interaction of MRG modification with tumor 

immunological characteristics. These findings and ours 

imply that the MRG modification pattern could be 

applied in clinical practice to determine immune 

phenotypes and guide immunotherapy strategies. 

Importantly, we confirmed the predictive value of the 

MethScore in two independent ICB cohorts of lung 

cancer: patients with a low MethScore exhibited robust 

clinical benefits from ICI therapy. 
 

In summary, we comprehensively evaluated the 

expression and genomic features of 68 MRGs in LUAD 

and systematically correlated these modification 

patterns with clinical and TME characteristics. We 

identified three MRG modification patterns of LUAD, 

which were different in terms of clinical outcome, 

biological processes, and immunological characteristics. 

Overall, the comprehensive evaluation of MRG 

modification patterns will enhance our understanding of 

the relationship between methionine metabolism and 

immune responses and guide more effective 

immunotherapy strategies. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The mutation co-occurrence and exclusion analysis for the top 20 frequently mutated MRGs in 
TCGA LUAD cohort. MRG pairs with co-occurrence or exclusiveness in their mutation pattern were illustrated as a triangular matrix. Green 

displayed tendency toward co-occurrence, whereas purple showed exclusiveness. 
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Supplementary Figure 2. Forest plot showing hazard ratios and p-values of SLC7A5 (A) and CDO1 (B) in each LUAD dataset. The hazard 
ratios and p-values were combined across datasets with OS information available. The p-values in each dataset were combined using the 
weighted Z-method. 
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Supplementary Figure 3. Patterns of methionine modification and biological characteristics of each pattern. (A) Consensus 

clustering matrix for k = 3, which was the optimal cluster number in the TCGA LUAD cohort. (B) CDF curves of the consensus score (k = 2-9) in 
the TCGA LUAD cohort. (C) Relative change in the area under the CDF curve (k = 2-9) in the TCGA LUAD cohort. (D) Pie charts showing the Chi-
squared test of clinicopathologic factors between different methclusters (C1&C2 vs C3). (E) GSVA enrichment analysis showing the activation 
states of biological pathways in distinct MRG patterns. The comparison of C2 vs C3 was shown. 
 

 
 

Supplementary Figure 4. Construction of MRG gene signatures and functional annotation. (A) Functional annotation for MRG-

related genes using KEGG enrichment analysis. The color depth of the bar represents the q value. (B) Consensus clustering matrix for k = 3, 
which was the optimal cluster number in the TCGA LUAD cohort. 
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Supplementary Figure 5. The association between MethScore with immunological and genomic features. (A) Box plots showing 

the difference of indicated TME score in groups with high or low MethScore. The TME score was evaluated using the xCell and ESTIMATE 
algorithm. (B) Correlations between MethScore and 22 immune cells using Spearman analysis. The negative correlation was marked with 
blue and positive correlation with red. The ssGSEA and CIBERSORT algorithms were employed to quantify the relative infiltration levels of the 
immune cell subsets. (C) Relative distribution of MethScore in patients with high and low tumor mutation burden (TMB). (D) Scatter plots 
showing the correlation between MethScore and TMB. P and r values from Spearman correlation analysis were shown. 
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Supplementary Figure 6. Forest plot showing the comparison of mutational profiles between patients with high and low 
MethScore in the TCGA LUAD dataset. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3, 6–8. 

 

 

Supplementary Table 1. LUAD data sets utilized in the study. 

 

Supplementary Table 2. The difference of mRNA expression levels of 68 MRGs between normal and LUAD 
samples in 13 datasets. 

 

Supplementary Table 3. Association between MRGs expression and patient prognosis across 30 LUAD datasets 
as determined by the Log-rank test. 

 

Supplementary Table 4. A total of 68 methionine-related genes in the study. 

Symbol Source 

ADI1 REACTOME_METHIONINE_SALVAGE_PATHWAY 

AHCY Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism 

AHCYL1 GOBP_S_ADENOSYLMETHIONINE_CYCLE 

AHCYL2 GOBP_S_ADENOSYLMETHIONINE_CYCLE 

AMD1 Methionine metabolism in health and cancer: a nexus of diet and precision medicine 

APIP GOBP_S_ADENOSYLMETHIONINE_CYCLE 

BHMT HNF4α regulates sulfur amino acid metabolism 

BHMT2 Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism 

CARM1 Methionine Cycle 

CBS HNF4α regulates sulfur amino acid metabolism 

CDO1 HNF4α regulates sulfur amino acid metabolism 

CHDH Methionine Cycle 

COMT Methionine Cycle 

CTH HNF4α regulates sulfur amino acid metabolism 

DNMT1 Methionine Cycle 

DNMT3A Methionine Cycle 

DNMT3B Methionine Cycle 

DOT1L Methionine Cycle 

EIF2B1 methionine biosynthetic process 

EIF2B2 methionine biosynthetic process 

EIF2B4 methionine biosynthetic process 

ENOPH1 GOBP_S_ADENOSYLMETHIONINE_CYCLE 

EZH2 Methionine Cycle 

GAMT Methionine Cycle 

GNMT Methionine Cycle 

GOT1 REACTOME_METHIONINE_SALVAGE_PATHWAY 

HNMT Methionine Cycle 

IL4I1 Methionine Cycle 

KMT5A Methionine Cycle 

MARS1 Methionine Cycle 

MAT1A Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

MAT2A Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

MAT2B Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism 

MRI1 GOBP_S_ADENOSYLMETHIONINE_CYCLE 
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MRM2 Methionine Cycle 

MSRA Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

MSRB2 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

MSRB3 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

MTAP Methionine metabolism in health and cancer: a nexus of diet and precision medicine 

MTFMT Methionine Cycle 

MTHFD1 methionine biosynthetic process 

MTHFD2L methionine biosynthetic process 

MTHFR Methionine Cycle 

MTR Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism 

MTRR GOBP_S_ADENOSYLMETHIONINE_CYCLE 

NNMT Methionine Cycle 

PCMT1 Methionine Cycle 

PEMT Methionine Cycle 

PNMT Methionine Cycle 

PRMT1 Methionine Cycle 

PRMT2 Methionine Cycle 

PRMT3 Methionine Cycle 

PRMT5 Methionine metabolism in health and cancer: a nexus of diet and precision medicine 

PRMT6 Methionine Cycle 

PRMT7 Methionine Cycle 

RNMT Methionine Cycle 

MSRB1 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer 

SETD7 Methionine Cycle 

SETDB1 Methionine Cycle 

SHMT1 Methionine Cycle 

SLC38A7 Methionine Transport 

SLC43A2 Cancer SLC43A2 alters T cell methionine metabolism and histone methylation 

SLC7A5 Cancer SLC43A2 alters T cell methionine metabolism and histone methylation 

SMS Methionine Cycle 

SMYD2 Methionine Cycle 

SRM Methionine Cycle 

SUV39H1 Methionine Cycle 

SUV39H2 Methionine Cycle 
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Supplementary Table 5. Univariate Cox regression result of 68 MRGs in the TCGA LUAD cohort. 

Gene HR HR.95L HR.95H pvalue km 

GNMT 0.770653673199567 0.691730063992243 0.85858214776486 2.29091935009681E-06 4.34312585895213E-11 

SMS 1.59997380500189 1.28972307343853 1.98485723750545 0.00001925742348073 3.19978537044463E-06 

MTHFD1 1.55298619967208 1.20824258678777 1.99609429657984 0.000588148762962725 7.10621980848369E-06 

SLC7A5 1.16214401544152 1.03781428036945 1.3013684029726 0.00924397641864403 0.00023067836100743 

PRMT6 1.04502881925879 0.903252120145111 1.20905914165579 0.553790281018542 0.000360145605322493 

SETD8 1.3115365124243 0.977176583125433 1.76030417953773 0.0708874638265721 0.000446833560163173 

MTHFR 0.829666989583491 0.68439520258789 1.00577460362331 0.0572581711567003 0.000557942386581689 

MTHFD2L 0.801255498150047 0.646913590430834 0.992420599616885 0.0423914546125624 0.000648420026005292 

CDO1 0.90667396150655 0.820766291442599 1.00157338458566 0.0537296886823586 0.000754656692648403 

FTSJ2 1.25945858865966 0.939333926819406 1.68868161924012 0.123146662703762 0.00156345542258796 

PRMT2 0.850473313602593 0.612760237082287 1.18040436271494 0.332875171050306 0.00180835626505016 

MRI1 0.744792634505469 0.605053542636515 0.916804926050722 0.00544805032347809 0.00193286688678285 

MTRR 0.812049670604717 0.664160997750521 0.992868701659186 0.0423831729418267 0.00269822967008782 

MAT2A 0.672109508063635 0.482601786827224 0.936032984459847 0.0187169693158296 0.00281076814837311 

MTAP 0.987119703455488 0.849224555243783 1.14740595162175 0.865901860312542 0.00300139848491265 

EIF2B2 1.18628989395644 0.905062471493774 1.55490229329751 0.215933349002563 0.00323195959332834 

HNMT 0.852339925056659 0.735738238752324 0.987420946174514 0.0332858745036553 0.00400118818421813 

SUV39H2 1.17530489111446 0.96782934138114 1.42725739757623 0.103103573289245 0.00406127572596982 

PRMT7 0.863596353099823 0.668131524403361 1.11624528082747 0.262691423785109 0.00407651727537472 

GOT1 1.12794942989154 0.935342929599871 1.36021760162011 0.207562247424876 0.00907820845871321 

CHDH 0.87119042083928 0.770256029426023 0.985351260317546 0.0281743210599072 0.00983152084580197 

SRM 1.21729520927679 0.959825987859981 1.54382944957768 0.104851105484751 0.0101433275452283 

AHCYL2 0.948795303055893 0.860436082710994 1.04622823843534 0.29194111472637 0.0118618027559739 

EIF2B1 1.32374398054339 0.925129641924976 1.89411088631722 0.124968163032936 0.0135173027635095 

SHMT1 0.936319279178884 0.778044304162594 1.12679160797359 0.486149075980808 0.0138400109095673 

DNMT3B 1.07138304957349 0.96766886464453 1.18621326039569 0.184408590454656 0.0180767859443872 

ENOPH1 1.21499866949772 0.896541288960402 1.64657421254184 0.209207693741283 0.0192937079251336 

PRMT1 1.21678831771275 0.927739252599752 1.59589432696018 0.156207001668826 0.0198242300625547 

BHMT2 0.987005613706406 0.937279397884098 1.0393699932882 0.619961629924726 0.0208361752984604 

MSRA 0.90075389573951 0.760694445396504 1.06660116371297 0.225436885053485 0.0209915500735796 

SUV39H1 1.20647628240277 0.965510040788739 1.50758144245846 0.0986967195460309 0.0304850281289359 

EZH2 1.07018832687955 0.935743234823759 1.22395013115426 0.322002530315364 0.031756259789255 

PRMT5 1.25374122623631 0.977286612821823 1.60839925743575 0.0752077275401681 0.0328224229411592 

PNMT 0.942052316725147 0.864199959252884 1.02691808527096 0.174970059660026 0.0359420813150034 

AHCY 1.15724980990084 0.928180756600161 1.44285163530107 0.194382300100916 0.0363913275545391 

SLC43A2 0.775020848530121 0.625486241450518 0.96030460120659 0.01978970803669 0.0378155885981011 

SETDB1 1.03991580485008 0.767711365880963 1.40863471512636 0.800441967519744 0.0406897247872571 

MTR 0.837662319202561 0.645127869552414 1.08765749261248 0.18372400813831 0.0433203223555916 

PRMT3 1.26224788185154 0.960709685876399 1.65842994888228 0.0944908547558041 0.0487200569876071 

SLC38A7 1.02712981855446 0.82428979635515 1.27988441544309 0.811512296605085 0.0504606837901911 

COMT 1.10609201854468 0.8911652905527 1.37285368545881 0.360347753084245 0.05086365279905 

DNMT3A 1.0718282553209 0.872419492655041 1.31681584212205 0.508963765834148 0.0543760864021912 

MSRB1 1.08447097578505 0.929761521528458 1.26492360684792 0.301788852847082 0.0588800910034374 

MAT2B 0.955210726013453 0.750842252286971 1.21520536212767 0.709094781048809 0.0595681063946989 

AHCYL1 0.797335854073813 0.575283452045282 1.10509777733286 0.173859566194053 0.0621675771735962 

SETD7 1.12153570105253 0.899381630313009 1.39856350890513 0.308493817249946 0.0699749169663926 

RNMT 0.912250344680271 0.688795535317683 1.20819698836382 0.521747118002844 0.0748441879522822 

ADI1 0.844259306449333 0.680856777149299 1.04687769946367 0.122941270660216 0.0755773999481508 

CTH 1.08136223001509 0.937157454699211 1.24775646465782 0.284094015214203 0.0767162484652339 

MSRB3 0.980126981673605 0.864889350367279 1.1107188448981 0.753112165658284 0.0801265738706223 

BHMT 0.965067670382737 0.884511725457924 1.0529601605177 0.423972842051891 0.0804562503017044 

NNMT 1.02805982644336 0.921039210391936 1.14751575700778 0.621721697970572 0.0838580978235688 

CARM1 1.19879783737279 0.874435199280451 1.64347942085616 0.259990712315004 0.08830723086653 

SMYD2 1.11243680316344 0.844629832212747 1.46515739065298 0.448278597058724 0.096612136974032 
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IL4I1 0.987081426232783 0.891538299088591 1.09286358534433 0.802330027511617 0.0989105028293321 

PCMT1 1.07842105852689 0.812364502712062 1.43161348826991 0.601452648346337 0.111752369535646 

DNMT1 1.03980244140981 0.855718431993289 1.26348700312942 0.694604193705971 0.140169624835835 

MTFMT 0.974567568597464 0.705921958051946 1.34544893373622 0.875585364269793 0.140681898896992 

EIF2B4 0.894894129881452 0.606530135018971 1.32035567148075 0.57575802407707 0.163034618545632 

MARS 1.01135783886 0.801517741246084 1.27613479476249 0.924164549513128 0.166953076127564 

APIP 0.939159208885381 0.718805222049156 1.22706401202786 0.645446591024472 0.172723798672296 

MSRB2 1.07466166655645 0.855871922753148 1.34938145166726 0.535281279158577 0.196839230136354 

PEMT 0.994559763811341 0.809521246989909 1.22189396198121 0.958578224836063 0.196864287312599 

DOT1L 1.06995470180367 0.882408066604711 1.29736241908656 0.491661103951679 0.230479863805757 

AMD1 0.959073476182539 0.709984972207714 1.29555127041162 0.78535286240328 0.23823840527471 

MAT1A 0.995249875728653 0.93216232147243 1.06260711500684 0.886680551859676 0.299018940121025 

CBS 0.995552546817452 0.906673332731822 1.09314439687824 0.925569439728456 0.325690373002635 

GAMT 0.984400913700314 0.871041652366402 1.11251299666481 0.801141723237438 0.370191752867674 

 

Supplementary Table 6. Three consensus clusters identified based on 68 MRGs in the TCGA LUAD cohort. 

 

Supplementary Table 7. The differences of a list of TME-related signatures among three MRG modification 
patterns. 

 

Supplementary Table 8. The differences of a list of immune cells among three MRG modification patterns. 

 

Supplementary Table 9. A total of 23 differentially expressed genes (DEGs) that represented the essential 
distinguishing index of the three subtypes. 

Symbol 

BHMT2 

DNMT3B 

EZH2 

SUV39H2 

CBS 

MARS 

SUV39H1 

HNMT 

DNMT3A 

SETD8 

MTHFD1 

MAT2B 

AHCYL2 

MSRA 

MSRB3 

CDO1 

DNMT1 

PRMT1 

SMS 

GNMT 

CHDH 

AHCY 

MTR 
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Supplementary Table 10. Univariate Cox regression result of 5 subtype-related genes in the TCGA LUAD cohort. 

Symbol HR HR.95L HR.95H pvalue 

HNMT 0.852339925056659 0.735738238752324 0.987420946174514 0.0332858745036553 

MTHFD1 1.55298619967208 1.20824258678777 1.99609429657984 0.000588148762962725 

SMS 1.59997380500189 1.28972307343853 1.98485723750545 0.00001925742348073 

GNMT 0.770653673199567 0.691730063992243 0.85858214776486 2.29091935009681E-06 

CHDH 0.87119042083928 0.770256029426023 0.985351260317546 0.0281743210599072 

 


