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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is the most common 

histological type of lung cancer and has the highest 

cancer mortality rate worldwide [1]. Immunotherapies 

had presented sustained clinical significance in LUAD 

[2]. However, due to intrinsic genomic and 

immunogenic heterogeneity, immunotherapy had 

limited efficacy and the effect for different patients 

may be inconsistent [3]. To unravel the role of the 

distinct genetic features of lung cancer subtypes 

among patients, new research opportunities and 

technologies have arisen that might contribute to 

different therapeutic decisions [4, 5]. Plenty of 

research had reported that the tumor immune 

microenvironment (TIME) impacts cancer progression 

and metastases, as well as affects patient prognoses 

and outcomes [6, 7], which emphasizes the important 

role of immune cells, vital components of the tumor 

microenvironment, impacting on patient survival and 

tumor progression [8, 9]. Although researchers had 
made great efforts in the past decades, the related 

information about the role of TIME’s characteristics in 

LUAD is limited. 
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ABSTRACT 
 

Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer and accounts for 
approximately 40% of all lung cancer cases. Multiple distant metastases are the major cause of mortality in 
lung cancer. In this study, single-cell sequencing datasets of LUAD were utilized to depict the transcriptome 
characteristic of LUAD based on the bioinformatic method. Firstly, the transcriptome landscape of 
heterogeneous cell types in LUAD was analyzed and memory T cells, NK cells, and helper T cells were 
revealed to be the common immune cells in tumor, normal, and metastasis tissue, respectively. Then, marker 
genes were calculated and 709 genes were identified to play a vital role in the microenvironment of LUAD. 
While macrophages were reported to act as one of the cells in LUAD, enrichment analysis of macrophage 
marker genes revealed the important role of macrophages in the activation of neutrophils. Next, the results 
of cell-cell communication analysis suggested that pericytes interact with broad immune cells via MDK-NCL 
pathways in metastasis samples, MIF-(CD74+CXCR4) and MIF-(CD74+CC44) interaction especially occurred 
between different cell types in tumor and normal samples. Finally, bulk RNA-seq was integrated to validate 
the prognosis effect of the marker gene and the maker gene of M2 macrophage, CCL20, showed the most 
related to LUAD prognosis. Besides, ZNF90 (Helper T cells), FKBP4 (memory T, helper T, Cytotoxic T, and 
B cells), CD79A (B cells), TPI1 (pericyte), and HOPX (epithelial cells, pericytes) were also pivotal in the 
pathology of LUAD, helping researchers understand the molecular insight of microenvironment in LUAD. 
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Recently, next-generation sequencing, especially single-

cell RNA sequencing is a possible option for the 

analysis of detailed cell population subtypes of LUAD 

from bulk tissue samples at single cell level [10, 11]. 

Previous researchers had conducted a comprehensive 

analysis of single-cell RNA-sequencing data of LUAD 

and identified prognostic signatures based on B cells 

[12] and natural killer cells [13]. Then, multivariate 

analysis was performed to demonstrate that the 

signature was an independent prognostic factor and 

highly correlated with immune-cell infiltrations and 

immune-suppressive states. Although several studies 

revealed the important role of immune cells and related 

marker genes impact on LUAD prognosis and process, 

a comprehensive understanding of TIME malignant and 

metastatic change in LUAD is still limited. In this 

study, we collected single-cell sequencing datasets of 

LUAD and applied an integrated bioinformatic method 

to depict the transcriptome characteristic of LUAD in 

normal, tumoral, and metastasis condition. Firstly, the 

transcriptome landscape of heterogeneous cell types in 

LUAD was analyzed and marker genes of each cell type 

were calculated, which were identified to play a vital 

role in the microenvironment of LUAD. GO and KEGG 

enrichment analysis, as well as GSEA, of marker genes 

were performed to explore the functional pathologies. 

Next, cell-cell communication analysis and trajectory 

analysis was performed and bulk RNA-seq were 

integrated to validate the prognosis effect of the marker 

genes. We aim to broaden the understanding of 

molecular insight of microenvironment in the malignant 

and metastatic change in LUAD and the results of the 

study provide novel insights into the TIME of LUAD 

patients in different pathological conditions, improve 

patient prognoses, and provide guidance for selecting 

clinical LUAD treatments. 

 

MATERIALS AND METHODS 
 

Data procession 
 

Single-cell transcriptome files of GSE123902 [14] were 

downloaded from the Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo/) [15]. Bulk 

tumor transcriptome profiles and clinical information 

about LUAD were downloaded from The Cancer 

Genome Atlas (TCGA) database [16] via the UCSC 

Xena browser (http://xenabrowser.net/) [17]. R software 

(version: 4.1) was used for all the analyses in the 

manuscript. 

 

Single-cell RNA seq analysis 
 

Two single-cell transcriptome profiles from 

GSE123902 were collected and the “Seurat” package 

was applied to perform the single-cell RNA-seq 

analysis. The batch effect from studies was removed 

with regularized negative binomial regression by the 

“Seurat” package. The non-linear dimensional reduction 

was performed with the t-SNE method. Cluster 

biomarkers were found by the “Seurat” package. 

 

Cell-type specific markers identification 

 

Analysis of differentially expressed genes (DEGs) 

between different samples in certain clusters was 

performed using the function “FindAllMarkers” in 

“Seurat” package [18] with standard comparison 

parameters. Invalid genes were removed and a threshold 

of absolute log2 fold change > 1 and a significance 

threshold of adjusted p-value < 0.05 were chosen as 

criteria for valid DEGs. Then, cell-type-specifically 

expressed genes were also calculated with Seurat, and 

genes satisfying the above conditions were retained. 

Finally, take the intersection of DEGs between samples 

and cell-type-specifically expressed genes to be Cell-

type specific marker genes. 

 

Pathway enrichment analysis 

 

The Gene Set Variation Analysis (GSVA) [19] R 

package was used for Gene Set Enrichment Analyze 

(GSEA) [20] of biological processes. The 

clusterProfiler [21] R package was applied to Gene 

Ontology (GO) enrichment analysis [22] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis [23]. Genes related to immune-

related pathways were collected from the Molecular 

Signatures Database (MSigDB) [24] and The GSEA 

algorithm was used to quantify the scores of immune-

related pathways to explore the immune-relevant 

biological processes. 

 

ssGSEA implementation 

 

The marker genes of 28 immune cell subtypes were 

collected from public datasets. Infiltration levels of 

different immune cells, including innate and adaptive 

immunity cells in each LUAD sample were quantified 

using single-sample gene-set enrichment analysis 

(ssGSEA) [25]. We also used the estimation of stromal 

and immune cells in malignant tumors using expression 

data (ESTIMATE) algorithm [26] to calculate immune 

scores and stromal scores to determine levels of TIME 

immune. 

 

Survival analysis 

 

The mRNA profiles and related clinical information of 
LUAD samples were collected from TCGA database. 

Survival analysis based on the Cox model was used to 

estimate the survival risk of patients under different 
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conditions. For a specific marker gene, patients were 

divided into two groups according to median gene 

expression. Then, Kaplan-Meier curve analysis was 

performed with the R package “Survival” [27] and the 

p-value between the two groups was also calculated. 

Marker genes (p < 0.05) were identified to be 

biomarkers significantly related to LUAD prognosis. 

 

Regulatory element analysis 

 

Important regulatory transcription factors in tumor, 

normal, and metastasis samples were analyzed by 

single-cell regulatory network inference and clustering 

(SCENIC) algorithm [28]. To save calculation time, 

1000 cells were randomly selected for analysis, and an 

important transcription factor was obtained according to 

the co-expression analysis of TF-target, which 

interacted with 2592 pairs of TF-targets, and regarded 

the regulatory network formed by TF and its target gene 

as a regulatory module, and calculated the area under 

the curve (AUC) value of the module to characterize its 

activity. The activity of different regulatory modules in 

different cell groups and sample types is different, 

indicating that the function of transcription factors is 

different in different tissue states. 

 

Trajectory analysis 

 

Monocle3 [29] was applied to explore differences in 

the developmental trajectories of immune cells 

between different samples. Trajectory analysis of 

different cell types in different samples shows that cell 

development trajectories are different between 

different samples, such as B cells have no obvious 

developmental relationship in the normal sample, 

while the cells in the tumor sample are divided into 3 

clusters, and there are obvious transcript differences 

between each cluster, that is, differences in 

developmental relationships. 

 

Cell-cell communication analysis 

 

Signaling crosstalk is critical for informing diverse 

cellular decisions, including decisions to activate cell 

cycle or programmed cell death, undergo migration or 

differentiate along the lineage [30, 31]. Cell-cell 

interactions were analyzed using Cellchat [32], an open-

source R package (https://github.com/sqjin/CellChat)to 

infer, visualize and analyze intercellular communica-

tions from scRNA-seq data, comparing differences in 

cell-to-cell interactions between sample classes. The 

result shows the intercellular interaction between 

normal samples and metastatic, tumor samples, it 

revealed that in normal samples, macrophage-related 

signaling pathways are more active, while in metastasis 

samples, macrophage-related signaling pathways are 

missing, and epithelial cells in turn interact more with 

Regulatory T cells and monocyte. 

 

Immunocyte abundance calculation 

 

T cells, one of the important components of the immune 

system, are divided into subpopulations in this project. 

Including Helper T cell, Memory T cell, Cytotoxic T 

cell, etc., but immune cells, including B cells and 

dendritic cells, have more subdivided subsets, it is 

difficult to distinguish them according to cell marker 

molecules, so the marker gene of immune cell subsets is 

collected, and the ssGSEA method is used to calculate 

the enrichment fraction of T cell subset genes in each 

cell, and the enrichment score is high. It indicates that 

the cell has a high functional similarity with the 

reference T cell. 

 

RESULTS 
 

Transcriptome landscape of heterogeneous cell types 

in lung adenocarcinomas (LUAD) 

 

We collected single-cell sequencing dataset of 17 

LUAD donors from GEO database (GSE123902). After 

strict quality control (see Method), we screened 37030 

cells, consisting of 17908 cells from primary tumor 

samples, 8143 cells from metastasis samples, and 10988 

cells from normal samples. To investigate the 

heterogeneity in different sample classes, all the 

scRNA-seq data were merged and normalized to create 

a global cell atlas [14]. Clustering with t-distributed 

stochastic neighbor embedding (TSNE) algorithm, all 

the cells were clustered into 28 clusters and then 

assigned to 17 cell types (Figure 1A; Supplementary 

Table 1) based on canonical markers reported 

previously [14, 33–40]. According to the clinical 

pathology, these samples were divided into primary 

tumor, metastasis, and normal groups (Figure 1B). 

Cytotoxic T cells and Memory T cells were the most 

common cells and immune cells, with 11 

subpopulations of B cells, cytotoxic T cells, dendritic 

cells (DC), Helper T cells, M1 macrophage, M2 

macrophage, Mast cells, memory T cells, monocyte, 

NK cells, and regulatory T cell, come up of 84.58% 

(31320/37030) of all the cells, thus provide us the 

opportunity to look insight of the immune micro-

environment in different pathological samples. 

 

Next, we elucidated the fraction of immune cell types in 

different sample classes (Figure 1C). In different 

pathological conditions, immune cells emerged in 

different abundance [41]. Based on comparations of 

normal, metastasis, and tumor tissues of all immune 

cells, Memory T cell was predominant in tumor tissue, 

while NK cells were prevalent in normal tissue and 

https://github.com/sqjin/CellChat
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Helper T cells were the common immune cells in 

metastasis tissue. Besides, the proportion of pericytes 

and monocyte were much higher in metastasis tissue 

than in tumor and normal tissue and the proportion of B 

cell was higher in tumor tissue. In contrast, Cytotoxic T 

cell was the most common immune cells (Figure 1D) 

while the distribution of cytotoxic T cell between 

different samples in more even. Taken together, our 

scRNA-seq analyses dissected the heterogeneity of the 

immune landscape between normal, tumor, and 

metastasis samples of LUAD, and different sample 

classes have different dominant cells. 

 

 
 

Figure 1. Transcriptome landscape of heterogeneous cell types in LUAD. (A) All the cells were assigned to 17 cell types. (B) The 

distribution of cell clusters among three groups, including primary tumors, metastasis lesions and normal tissues. (C) The fraction of 
immune cell types in different sample classes. (D) Histogram to visual Cell numbers in each cell type. 
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Identification of marker genes for types of immune 

cells in different sample classes 

 

To further unveil the role of the immune cells in their 

microenvironment in different sample classes, we then 

investigated the differential expressed genes (DEGs) in 

each cell type in pairwise comparison between sample 

classes and specifically expressed in the cell type at the 

same time. These genes were identified as marker genes 

for the cell groups (see Method). In total 709 genes 

were identified to play a vital role in the immune 

microenvironment of LUAD (Figure 2A). Interestingly, 

Epithelial cell has 629 marker genes, which reach the 

most, while the number of epithelial cells is only a 

small part of the total number of cells (5%). The cell 

with the second highest number of marker genes was 

 

 
 

Figure 2. Identification of marker genes for type of immune cells in different sample classes.  (A) Overview of total 709 marker 

genes. (B) Marker genes identified in memory T cells. (C) Marker genes identified in M1 macrophages. 
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cytotoxic T cell, with 159 marker genes and 7614 cells 

(20.6%) (Supplementary Table 2). 

 

Investigation of key factors that induce the immune 

heterogeneity between different sample classes would 

provide a glimpse of the different malignancies and 

metastasis of LUAD patients in different pathological 

conditions. Memory T cell was the prevalent cell in 

tumor tissue and 26 genes were identified to be 

significantly differentially expressed between normal 

and tumor samples (Figure 2B), which were specifically 

expressed in memory T cells. HSPA1A and HSP90AA1 

were the most significant ones. Whereas JUN, HSPH1, 

HSPA8, HSPA6, HSP90AB1, and EGR1 were found to 

be the DEGs in both Tumor vs. normal and tumor vs. 

metastasis group. In addition, M1/M2 macrophages 

were enriched in normal tissue (Figure 2C). IGKC, 

SCGB1A1 HSPB1, and FCGR3A were found to be 

differentially expressed in normal tissue compared with 

tumor and metastasis. Especially for metastasis tissue, 

Helper T cells were the most common cells and 119 

markers were identified, such as VIM, ZFP36L2, 

TSC22D3, RPS29, and PRL41. These results reveal the 

molecular characteristics of different cell subtypes in 

different sample classes, thus facilitating our 

understanding of the microenvironment of LUAD. 

 

Pathways analysis revealed immune cell 

heterogeneity 

 

Specifically expressed genes contribute significantly to 

the heterogeneity between different sample classes and 

we further applied enrichment analysis to the marker 

genes to explore the biological mechanism affecting the 

microenvironment of LUAD. The results of GO 

enrichment analysis suggested that marker genes of M1 

macrophage were enriched in immune-related 

pathways, such as “involved in immune response”, 

“neutrophil degranulation” and “regulation of mono-

nuclear cell proliferation” (Figure 3A). Besides, 

markers of M2 macrophage enriched in not only 

immune-related pathways, such as “cellular response to 

chemokine”, “neutrophil chemotaxis” and “myeloid 

leukocyte migration” ion transportation pathways were 

also emphasized, such as “stress response to meta ion”, 

“response to zinc ion” and “cellular response to copper 

ion”(Figure 3B). For non-immune cells, the enrichment 

results of marker genes show that the cells are mainly 

related to protein targeting and localization (Figure 3C, 

3D). Overall, the enrichment results of marker genes 

matched the functions of cell types in our cognition and 

deepened our understanding of the microenvironment of 

LUAD. 
 

Functional analysis of marker genes showed that 

immune cells play an important role in affecting the 

cancer microenvironment through immune-related 

pathways. Further GSEA suggested that cytotoxic T 

cells were significantly enriched in 2 cancer hallmarks 

and 9 immune signatures from MigDB and indicated to 

be active in response to tumor necrosis factor (TNF) 

with the regulation of NFKB (Figure 4A). In addition, 

Helper T cells were founded to be enriched in genes 

positively correlated with memory B cell response 

(Figure 4B). Monocytes were active in the genes 

regulated by IL4, while suppressing the activity of 

polymorphonuclear leukocytes (Figure 4C). For non-

immune cells. The marker genes of mesenchymal 

progenitors enriched in cancer hallmarks of epithelial-

mesenchymal transition only. These results suggested 

broad communications between different subtypes of 

immune cells. 

 

Cell-cell communication 
 

The enrichment analysis results indicate that there is a 

wide range of cell-cell interactions between different 

types of cells and the tumor microenvironment is 

characterized by these complex interactions. To 

interrogate putative cell-cell interaction heterogeneity in 

different sample classes, we applied CellChat, which 

includes broad ligand-receptor pairs, to gain insights 

into interactions among all immune cell types. As a 

result, pericytes, which are predominant in metastasis 

tissues, were revealed to have broad interactions with B 

cells, cytotoxic T cells, dendritic cells, endothelial cells, 

epithelial cells, M1 macrophage, memory T cells, 

regulatory T cells, monocytes, and NK cells via the 

MDK-NCL pathways, which is an important hallmark 

in the change of tumor microenvironment, and serves as 

a sign of cancer-associated fibroblasts (CAF) activation 

to stimulate downstream pathways for facilitating tumor 

invasion [42]. What’s more, Endothelial cells and 

epithelial cells were also found to be active in MDK-

NCL pathways in communication with immune cells 

(Figure 5A, 5B). Besides, MIF-(CD74+CXCR4) and 

MIF-(CD74+CD44) pathways were widespread and are 

associated with multiple cell types in the tumor and 

normal tissues. Macrophage migration inhibitory factor 

(MIF) is an inflammatory cytokine that exhibits 

chemokine-like activities through non-cognate inter-

actions with the chemokine receptors CXCR2 and 

CXCR4, in addition to activating the type II receptor 

CD74. Activation of the MIF-CXCR4 axes promotes 

leukocyte recruitment, mediating the exacerbating role 

of MIF in atherosclerosis [43]. MIF-(CD74+CXCR4) 

and MIF-(CD74+CC44) interactions happened in 

dendritic cells, M1 macrophage, M2 macrophage, 

monocyte, and plasma cells both in tumor and normal 
tissues (Figure 5C, 5D). Except for the same cell type in 

normal tissue, tumor tissues were also found B cell, 

cytotoxic T cell, MAST cell, memory T cell, and 
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regulatory T cell to have the interaction (Figure 5E, 5F), 

which uncovers the change of microenvironment 

between tumor and normal tissues. 

 

Regulatory element analysis 

 

To further dissect the immune heterogeneity of gene 

regulation, the single-cell regulatory network inference 

and clustering (SCENIC) analysis for DEGs was 

performed to assess the differences in the expression 

levels of transcription factors (TFs) between different 

sample classes. In general, metastasis, normal, and 

tumor tissues contained a similar number of regulons 

per cell (RPC), while in normal tissues, the number of 

cells per regulon (CPR) was significantly higher (Figure 

6A, 6C, 6E), which indicate that the microenvironment 

was more complex in metastasis and tumor tissue. The 

most five active regulators were identical in tumor and 

normal tissues, SPI1, CEBPB, JUNB, FOS, and KLF4 

(Figure 6B, 6D, 6F). While in metastasis tissue, ATF3 

was the third active regulator, which is a stress-induced 

transcription factor that plays a vital role in modulating 

metabolism, immunity, and oncogenesis [44]. 

 

Immune cell abundance prediction 

 

To further unveil the role of the immune cells in their 

microenvironment in different sample classes, we then 

 

 
 

Figure 3. The results of GO enrichment analysis for marker genes of (A) M1 macrophages, (B) M2 macrophages, (C) Fibroblasts, (D) 

Epithelial cells. 
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investigated the immune cell type composition 

through ssGSEA algorithm (see Method). As a result, 

the marker genes of Naïve CD4 T cell, Naïve CD8 T 

cell, exhausted T cell, T central memory (Tcm), T 

effector memory (Tem), B cell, and monocyte had 

relatively high enrichment fraction in all cells (Figure 

7A–7C). The proportion of cytotoxic T cells in each 

sample was similar, but the analysis of immune cell 

abundance showed that the enrichment fraction of 

CD4+ T cells with cytotoxic activity was significantly 

higher in cytotoxic T cells than in other immune cells, 

like regulatory T cells and memory T cells 

(Figure 7D). Besides, the enrichment scores of all the 

immune cells in Cytotoxic T cells were significantly 

higher in tumor tissues than in metastasis and normal 

tissue (Figure 7E). Unsurprisingly, monocytes had 

higher enrichment scores for marker genes in 

monocyte, M1 macrophage, and M2 macrophage 

(Figure 7F). Besides, monocytes also had significantly 

high enrichment scores in type 2 conventional 

dendritic cells, while the scores of memory 

dendritic cells in monocyte were significantly low 

(Figure 7G–7I). These results indicated that monocyte 

may exhibit vital biological functions in LUAD. 

 

 
 

Figure 4. Functional analysis of marker genes for (A) cytotoxic T cells, (B) Helper T cells, and (C) Monocytes. 
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Marker gene validation in bulk RNA-seq 

 

To further explore the impact of cell-type specifically 

expressed marker genes on LUAD prognosis, mRNA 

expression matric and clinical information of TCGA-

LUAD were collected and applied to survival analysis. 

The results of survival analysis suggested that CCL20, a 

marker of M2 macrophage, is the most significant gene 

related to LUAD prognosis (p-value = 0.00048) (Figure 

8A) and patients with low expression of CCL20 have a 

better prognosis. Besides, TPI1 is the marker gene of 

Pericyte and patients with low expression of TPI1 have 

a better prognosis (p-value = 0.00053) (Figure 8B). 

Epithelial cells have 16 markers genes significantly 

correlated with LUAD prognosis, including CHRNAA5 

(p-value = 0.0015) (Figure 8C), GAPDH (p-value = 

0.0018) (Figure 8D), ERO1B (p-value = 0.0019) 

(Figure 8E), and CLIC6 (p-value = 0.0067) (Figure 8F). 

In general, 25 marker genes of 10 cell types were 

identified to be significantly related to LUAD prognosis 

and these genes provide molecular insight into the 

function of specific cell types in LUAD pathology 

(Supplementary Table 3). 
 

DISCUSSION 
 

In this study, we collected normal, tumor, and 

metastasis LUAD datasets in single-cell sequencing and 

 

 
 

Figure 5. Cell-cell communication analysis with CellChat in (A, B) metastasis samples, (C, D) Normal samples, and (E, F) tumor samples. 
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applied bioinformatic methods to explore the distinct 

molecular features of different sample types. As a 

result, the cellular landscapes of different subclasses of 

LUAD were depicted. With the bioinformatic method 

(see Method), marker genes of each cell type in LUAD 

were identified and enrichment analysis was used to 

explore the biological function of these marker genes. 

Combined with trajectory analysis and cell-cell 

communication analysis, the different micro-

environments between different sample classes were 

characterized. For example, CCL20 encodes protein 

displaying chemotactic activity for lymphocytes and 

can repress the proliferation of myeloid progenitors. 

Previous research reported that high CCL20 

expression is a poor prognostic marker for LUAD 

patients, and is associated with enhanced epithelial-

mesenchymal transition (EMT), inflammatory 

response, and activated TNF pathway in LUAD. While 

low CCL20 expression blocked the detrimental effects 

of high TGF-β on survival and effectively improved 

patients’ response to anti-PD-L1 therapy [45]. In our 

study, CCL20 is specifically expressed in M2 

macrophage, and the expression in normal samples is 

much higher than in other samples, which indicates 

that M2 macrophage plays an important role in LUAD 

through the function of CCL20. Further enrichment 

analysis of marker genes of LUAD revealed that the 

significantly enriched GO terms were chemokine-

mediated signaling pathway, myeloid leukocyte 

migration, positive regulation of leukocyte migration, 

calcium-mediated signaling, and positive regulation of 

ERK1/ERK2 cascade. Besides, IL-17 signaling 

pathway and TNF signaling pathway were the most 

significant KEGG pathways. Marker genes shared in 

these pathways were TREM2, CXCL3, CCL20, IL1B, 

CXCL8, and CCL4. Then, the result of cell-cell 

communication analysis illustrated different signal 

pathways in different sample classes. In normal 

samples, CCL20-CCR6 interaction occurs in M2 

macrophage->DC, M2->Treg. The ligand-receptor pair 

CCL20-CCR6 is responsible for the chemotaxis of 

dendritic cells (DC), effector/memory T-cells, and B-

cells, which plays an important role at skin and 

mucosal surfaces under homeostatic and inflammatory 

conditions, as well as in pathology, including cancer 

and various autoimmune diseases. While in meta 

samples, macrophage function is weaker. In 

conclusion, this study has revealed the characteristic of 

normal, tumor, and metastasis LUAD tissues and 

associated immune microenvironment, and further 

illuminated changes in cellular and molecular 

dynamics in different sample classes. 

 

 
 

Figure 6. Regulatory element analysis with SCENIC in different sample classes. The number of cells per regulon and the regulon 

activity in metastasis (A, B), normal (C, D), and tumor (E, F) samples, respectively. 



www.aging-us.com 5349 AGING 

 
 

Figure 7. Immune cell abundance prediction. Heatmap of Estimate score in (A) metastasis, (B) normal samples, and (C) tumor samples 
in different cells. The predicted estimate score of cytotoxic T cell markers in (D) different cells and (E) samples. The predicted estimate 
score of monocyte markers in (F) different cells and (G) samples. The predicted estimate score of regulatory T cell markers in (H) different 
cells and (I) samples. P values were shown as: *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Figure 8. The prognostic significance of marker genes in LUAD. Kaplan-Meier survival curves of (A) CCL20, (B) TPI1, (C) CHRNA5, (D) 

GAPDH, (E) ERO1B, (F) CLIC6 in LUAD. The median of gene expression is utilized as the cut-off. Yellow: higher expression of indicated gene; 
Blue: lower expression of indicated gene. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 and 3. 

 

Supplementary Table 1. Marker gene list. 

Cell type Marker genes 

B cell CD19, MS4A1, CD79A, CD79B, SPIB 

Cytotoxic T cell CD3D, CD3G, CD8A, CD8B 

Dendritic cell XCR1, CLEC9A, THBD, CD1C, CD1E, FCER1A 

Endothelial cell CDH5, PECAM1, VWF 

Epithelial cell EPCAM, CDH1 

Fibroblast LUM, DCN, COL1A2, COL1A1 

Helper T cell CD3D, CD3G, CD4, TBX21, IFNG, IL4, CXCR5  

M1 macrophage CD68, IL1B, IL6, TNF 

M2 macrophage MRC1, CD163, TGFB1, IL10, FN1 

MAST TPSAB1, TPSB2, CPA3 

Memory T cell PTPRC, CCR7, SELL 

Mesenchymal progenitors FDGFRA, LGR5 

Monocyte CD14, FCN1, FCGR3A, VCAN 

NK cell KLRD1, NKG7, KLRC1, FCGR3A, CD3D-, CD3G- 

Pericyte RGS5, ACTA2, MCAM, PDGFRB, NOTCH3 

Plasma cell CD79A, JCHAIN, MZB1, IGHG1 

Regulatory T cell FOXP3, IL2RA, CTLA4, IKZF2, CD25 

 

Supplementary Table 2. Marker genes in each cell type. 

 

Supplementary Table 3. Survival analysis of all the marker genes. 

 


