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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a type of malignancy 

that causes malignant clonal proliferation due to genetic 

mutations and seriously endangers human health [1], 

and it is far more common in elderly patients [2]. In the 

era of traditional chemotherapy, elderly AML patients 

face a significantly poorer prognosis, when compared 

with younger AML patients [3]. With the recent advent 

of molecularly targeted therapies, survival has been 

improved for elderly AML patients, but the prognosis is 

still poor [4, 5]. 

 

In elderly AML population, prognosis is associated with 

multiple factors. Badness of health status could lead to 

poor tolerance of the effective treatment measures [6]. 
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ABSTRACT 
 

To explore effects of aging-related genes (ARGs) on the prognosis of Acute Myeloid Leukemia (AML), a seven-
ARGs signature was developed and validated in AML patients. The numbers of seven-ARG sequences were 
selected to construct the survival prognostic signature in TCGA-LAML cohort, and two GEO datasets were used 
independently to verify the prognostic values of signature. According to seven-ARGs signature, patients were 
categorized into two subgroups. Patients with high-risk prognostic score were defined as HRPS-group/high-risk 
group, while others were set as LRPS-group/low-risk group. HRPS-group presented adverse overall survival (OS) 
than LRPS-group in TCGA-AML cohort (HR=3.39, P<0.001). In validation, the results emphasized a satisfactory 
discrimination in different time points, and confirmed the poor OS of HRPS-group both in GSE37642 (HR=1.96, 
P=0.001) and GSE106291 (HR=1.88, P<0.001). Many signal pathways, including immune- and tumor-related 
processes, especially NF-κB signaling, were highly enriched in HRPS-group. Coupled with high immune-inflamed 
infiltration, the HRPS-group was highly associated with the driver gene and oncogenic signaling pathway of 
TP53. Prediction of blockade therapy targeting immune checkpoint indicated varied benefits base on the 
different ARGs signature score, and the results of predicted drug response suggested that Pevonedistat, an 
inhibitor of NEDD8-activating enzyme, targeting NF-κB signaling, may have potential therapeutic value for 
HRPS-group. Compared with clinical factors alone, the signature had an independent value and more predictive 
power of AML prognosis. The 7-ARGs signature may help to guide clinical-decision making to predict drug 
response, and survival in AML patients. 
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Lower therapeutic response and shorter duration of 

remission time in the elderly patients may also result in 

irregular treatment [6, 7]. Moreover, elderly AML 

patients often accompany with multiple abnormalities 

both in cytogenetics and molecular biology [8]. 

 

Aging is a complicated, continual, progressive, and time-

dependent biological process that results in decreased 

physiologic function across all organ systems, eventually 

culminating in death; it is an irreversible and progressive 

process [9], including genomic instability, metabolic 

changes, loss of ability for stem cell self-renewal, and so 

on [10]. It seems to be that aging is an adverse prognostic 

element for cancers, but the exact mechanism is still 

obscure [10, 11]. More frequency of mutations happened 

in epigenetic modifiers as AML patients got older [12]. 

On the other hand, aging could accelerate drastic 

decrease of B cell diversity, which may promote 

oncogenesis in the elderly patients [13]. Genetics and 

intrinsic factors play important roles in influencing aging. 

With the development of genomics and transcriptome 

sequencing, as well as the application of high-throughput 

genetic screens, over 300 genes have been found to be 

involved in aging in humans alone [14]. 

 

Not only targeted therapy but survival prediction could 

be guided by signatures of aging-related genes (ARGs) 

in multiple different tumors [15–18]. Moreover, the 

primary markers of aging such as ARGs have been 

investigated widely, and the most main phenotypes 

contained mitochondrial dysfunction and immunological 

senescence [19]. To evaluate the effects of ARGs on 

prognosis of adult AML, we obtained ARGs from 

website of HAGR (human aging genome resource) [20] 

and assessed the association between ARGs and AML 

prognosis. 

 

RESULTS 
 

Construction of ARGs-related prognostic signature 

 

The flow chart of this study was presented in 

Supplementary Figure 1. In training set (TCGA-LAML, 

n = 151), 83 (55.0%) were male and 68 (45.0%) were 

female, with a median age of 56 years at diagnosis. In 

patients with complete survival data (n = 140), the 

median time of OS was 577 days. 

 

Univariate COX analysis demonstrated that 84 of  

307 ARGs were associated with AML prognosis 

(Supplementary Figure 2). Via random survival forest 

algorithm (Figure 1A, 1B), we identified a 7-ARGs 

signature with a lowest OOB error rate for predicting 

AML survival (Figure 1C), Subsequently, seven ARGs 

with a relative importance greater than 0.52 were 

transferred to establish a prognostic signature for AML 

(Figure 1D). Table 1 described the coefficients and other 

parameters of these seven ARGs in detail. The Prognostic 

Risk Score (PRS) of signature was estimated as follows: 
 

PRS 0.466051 0.430832

0.377577 0.250209

0.050049 0.001312

0.443539

PTPN1 DGAT1

SOD1 GSTP1

NUDT1 EMD

STK11

=  + 

+  + 

+  − 

− 

 

 

Validation of 7-ARGs prognostic signature 

 

In training set, patients were divided into HRPS- and 

LRPS-group according to median value of PRS  

(Figure 2A). LRPS-group had a notably better OS  

than HRPS-group (Figure 2B, P<0.001). The median 

survival time of LRPS-group was 915 days (Q1: 303.75, 

Q3: 1193.5), whereas that of HRPS-group was 242 days 

(Q1: 52, Q3: 372.75). The area under curves (AUCs) 

meant that 7-ARGs signature has a good predictive 

performance (Figure 2C), with values of 0.780, 0.772 

and 0.691 at 1- , 2-, and 3-year. 

 

Then, two independent datasets were applied to verify 

the performance of this 7-ARGs signature. Patients in 

GSE37642 were stratified into two different risk groups 

in terms of the median PRS value too (Figure 2D). 

Similarly, LRPS-group significantly prolonged OS 

(Figure 2E, P=0.001), and 7-ARGs signature also had 

an ability to predict OS (Figure 2F). In GSE106291 

cohort (Figure 2G), HRPS-group exhibited a worse OS 

than LRPS-group (Figure 2H, P<0.001), and values of 

AUCs at 1-, 2- and 3-year were 0.639, 0.654 and 0.641 

(Figure 2I). 

 

GSEA analysis 

 

GSEA analysis of KEGG connoted that HRPS-group was 

enriched in many pathways, such as signaling of WNT, 

Toll-like receptor and MAPK. Similarly, many items of 

immune pathways were also enriched in HRPS-group 

(processing and presentation of antigen, interaction of 

cytokine and cytokine receptor, signaling pathway of 

Chemokine and T cell receptor) (Figure 3A). 

 

The results of hallmark analysis suggested that many 

tumor-related signaling pathways were identified for 

HRPS-group (Figure 3B), such as NF-κB pathway in 

response to TNF, IL-25 signaling pathway through 

STAT5, signaling pathway of IL6/JAK/STAT3, p53, 

KRAS, notch, and TGF-β. 

 

Characteristics of immune-related cells 

 

The assessments above confirmed the prognostic  

value and biological function of the 7 ARGs-related 
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signature, including many tumors and immune/ 

inflammatory signaling pathways, prompting us to 

further explore the different proportion of immune-

related cells between HRPS- and LRPS-group. HRPS-

group had a higher ESTIMATE and immune score 

than LRPS-group (Supplementary Figure 3). The 

differences of immune-related features were displayed 

in Figure 4, and the results were almost consistent  

with each other in three AML cohorts (TCGA-AML, 

GSE37642 and GSE106291). HRPS-group were 

accompanied with higher scores of immune cells,  

such as MDSCs (myeloid-derived suppressor cells), 

many subtypes of T cell (central memory CD8 T, 

regulatory T, and Gamma delta T), Monocyte, 

macrophage, and etc. In addition, HRPS-group was 

characterized by increased enrichment of MHC I, 

Parainflammation, Type-I IFN Response and Check-

point (Supplementary Figure 4). 

 

Immune checkpoints play an important role in 

regulating immune infiltration [21], and up-regulated 

score of check-point molecule in HRPS-group might be 

a potential therapeutic target. So, we next explored the 

relevance of PRS and expression levels of 8 immune 

checkpoints, which indicated that PDCD1 (R= 0.314), 

LAG3 (R= 0.247), CTLA4 (R= 0.199), and CD274  

(R= 0.198) had a positive relationship with PRS 

(Supplementary Figure 5). 

 

 
 

Figure 1. Modelling of aging-related genes (ARGs) prognostic signature. (A) Random survival forest algorithm for selecting hub 

ARGs. (B) The raw importance of the 32 candidate ARGs. (C) Weighted random forest (Ranger) was preformed to choose the optimization 
model with a lowest out of bag (OOB) error rate. (D) Seven ARGs with a relative importance greater than 0.52 were transferred to construct 
prognostic signature using COX regression model. 
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Table 1. Multivariate COX regression analysis of 7 prognosis-related ARGs in AML. 

Ensemble gene ID Symbol Coefficient Hazard ratio Importance Relative importance 

ENSG00000196396 PTPN1 0.466051 1.593688 0.008 1.000 

ENSG00000185000 DGAT1 0.430832 1.538536 0.006 0.880 

ENSG00000142168 SOD1 0.377577 1.458746 0.006 0.831 

ENSG00000084207 GSTP1 0.250209 1.284294 0.003 0.627 

ENSG00000106268 NUDT1 0.050049 1.051322 0.002 0.590 

ENSG00000102119 EMD -0.001312 0.998689 0.002 0.542 

ENSG00000118046 STK11 -0.443539 0.641761 0.001 0.530 

Abbreviations: ARGs, aging-related genes; AML, Acute Myelocytic Leukemia. 

 

Scores of twelve subtypes in ARGs signal 

 

To explore the distribution of ARGs subtypes and 

possible pathogenic mechanisms between HRPS- and 

LRPS-group, ssGSEA was performed to assess each 

score of 12 aging-related gene subsets. Results 

manifested that score of altered intercellular 

communication, deregulated nutrient sensing, NF-κB 

related gene and others were remarkably increased in 

the HRPS-group; whereas the score of stem cell 

exhaustion and genomic instability depressed inversely 

(Supplementary Figure 6). 

 

Mutation profile between HRPS- and LRPS-group 

 

The top 20 frequent genes of mutation were visualized 

in Figure 5. NPM1 was the primary mutated gene in 

LRPS-group (Figure 5A), whereas TP53, KIT and 

FLT3 mutated frequently in HRPS-group (Figure 5B). 

The results of Oncogenic Signaling Pathways revealed 

that LRPS-group displayed a higher frequency of 

mutations, which were enriched in many different 

pathways, including NRF2, TGF-β, Hippo, MYC, 

PI3K and Cell Cycle (Figure 5C). In HRPS group, 

TP53 followed by RAS and NOTCH pathways were 

the most mutation-enriched pathways (Figure 5D). 

Forest plot confirmed that HRPS-group occurred more 

frequent TP53 mutation (Figure 5E). However, no 

difference of TMB was found between these two 

groups (Figure 5F). PRS distributions showed that 

more patients with higher PRS were assigned to 

FLT3-TKD mutation (Supplementary Figure 7A),  

but those with lower PRS were more likely to  

appear in mutations of double CEBPA and IDH2 

(Supplementary Figure 7B, 7C). However, no differences 

of PRS distribution were found between patients with 

wild type and mutations of FLT3-ITD, NPM1, IDH1, 

KRAS, and NRAS (Supplementary Figure 7D–7H). 

These results implied that HRPS-group was highly 

associated with the driver gene and signaling pathway 

of TP53. 

High PRS patients may response to Pevonedistat 

 

The predicted response hinted that increased PRS was 

significantly correlated with decreased score of TIDE 

(Figure 6A, P=0.023) and increased dysfunction score 

(Figure 6B, P=0.005). No difference of TIDE score was 

seen between these two groups, while HRPS-group had 

a higher dysfunction score (Figure 6D, P<0.001). In 

addition, a markedly lower IC50 value of Pevonedistat 

was found in HRPS-group (Figure 6E, P<0.001), and 

other information of predicted drugs with potential 

therapeutic values could be downloaded in 

Supplementary Tables 7, 8. A negative and moderate 

correlation was also seen between IC50 level of 

Pevonedistat and PRS (Figure 6F, P<0.001). 

 

Pevonedistat is an inhibitor of NEDD8-activating 

enzyme, the response of which is significantly 

correlated with expression level of NEDD8. To reveal 

the relationship between 7-ARGs signature and NEDD8 

expression level, Figure 6G demonstrated that NEDD8 

expression is positively related with PRS (R=0.457), 

and negatively (Figure 6H, R= -0.647) related with the 

predicted IC50 of Pevonedistat (P<0.001). Moreover, 

HRPS-group also had a higher NEDD8 expression than 

LRPS-group (Figure 6I, P<0.001). These results 

suggested that Pevonedistat may be a potential drug for 

the HRPS-group. 

 

Development of a nomogram containing 7-ARGs 

signature 

 

The clinical features of TCGA-LAML were described in 

Table 2. No significant differences were found between 

HRPS- and LRPS-group, including gender, race, gene 

mutation of FLT3, RAS, NPM1 and IDH1. However, 

adverse-risk of cytogenetics and older patients were 

occurred frequently in HRPS-group (P<0.05). 
 

To seek clinical applicability, we constructed a predicted 

Nomogram composed of 7-ARGs signature in training 
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set. Results of univariate and multivariable survival 

analysis could be found in Supplementary Table 9  

and Figure 7A. All predictors accompanied with a VIF 

value less than 5, which meant that no collinearity 

happened in the predicted nomogram. Combining with 

age, cytogenetics risk and PRS of ARGs signature,  

a nomogram was constructed for predicting AML 

prognosis (Figure 7B). According to the nomogram, the 

cytogenetics risk stratification can be further reclassified 

(Figure 7C), and prognostic difference of OS was well 

accounted too (Figure 7D, P<0.001). Good performance 

was verified by calibration plots (Figure 7E). 

 

 
 

Figure 2. Identification and validation of a seven-ARGs prognostic model. (A) Plot of risk classification, survival status and heatmap 
of seven-ARGs; (B) curve of OS (Overall Survival) stratified by high-risk prognostic score (HRPS)-group/high-risk group and low-risk prognostic 
score (LRPS)-group/low-risk group; (C) curves of time-dependent ROC (receiver operator characteristic) in training set. (D–F) Plot of risk 
classification, survival status and heatmap of seven-ARGs; curve of OS; curves of time-dependent ROC in validation set of GSE37642.  
(G–I) Plot of risk classification, survival status and heatmap of seven-ARGs; curve of OS; curves of time-dependent ROC in validation set of 
GSE106291. 
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Moreover, plots of C-statistic demonstrated a good 

discrimination (Figure 7F), with a value of 0.754, 0.741 

and 0.731 at 1-, 2- and 3-year, respectively. Compared 

with the model of age or combined model with age plus 

cytogenetics risk, higher C-statistic values were seen in 

predicted nomogram (Figure 7F). With regard to DCA 

analysis at 1-, 2- and 3-year, various degrees of benefits 

were presented for nomogram prediction than two other 

models. Moreover, using the nomogram to predict AML 

prognosis could add more benefits than either the 

strategy of intervene-none or intervene-all-patients if the 

probability is higher than the threshold (Figure 7G–7I). 

 

DISCUSSION 
 

AML is a common malignant tumor in the elderly [2], 

and these group of patients were associated with poor 

prognosis [22–24]. However, the mechanism how aging 

affects AML prognosis is not quite clear. A prognostic 

signature base on expression level of 7-ARGs was 

established and verified in this study, which can well 

classify AML patients into two risk groups with 

different prognosis. 

 

In the 7-ARGs signature, PTPN1, DGAT1, SOD1, 

GSTP1, and NUDT1 acted as risk factors, whereas EMD 

and STK11 were protective factors. Some of them were 

confirmed with the formation and progression of AML. 

Overexpression of GSTP1 is linked with drug resistance 

in AML [22]. STK11 is a tumor suppressor gene, which 

can encode kinase B1 in liver (LKB1) [23], and pathway 

regulated by which was highly associated with tumor 

suppression in AML [24]. Although there are no definite 

investigations of the roles other five ARGs played in 

AML, these genes will be worthy of further study. The 7-

ARGs signature exhibited a good performance in 

predicting overall survival both in the training and 

validation cohorts. Adjusted by clinical features, 7-ARGs 

signature acted as an independent risk factor of  

AML prognosis. Furthermore, the nomogram based on  

 

 
 

Figure 3. GSEA analyses between HRPS-group/high-risk group and LRPS-group/low-risk group. (A) KEGG analyses. (B) Analyses of 
hallmark pathways. 
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7-ARGs signature both took on a good calibration and 

discrimination, which can also help to make clinical 

decisions. 

 

Functional analyses of 7-ARGs signature emphasized 

that HRPS-group was enriched in pathways of 

processing and presentation of antigen, interaction  

of cytokine receptor, and Toll-like receptor, which  

could help to promote AML progression [25]. 

Activation of inflammatory pathways can also lead  

to myeloproliferative disease by increasing levels  

of cytokine and ROS (reactive oxygen species) [26]. 

 

 
 

Figure 4. Different cell abundance of twenty-eight immune categories between HRPS-group/high-risk group and LRPS-group/low-risk group 

in training set (A) and validation set (B, C). (*P < 0.05, **P <0.01, ***P < 0.001). 
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Figure 5. Mutation analysis of two different prognostic risk score groups. Oncoplot of top 20 high frequency of mutated genes in 

LRPS-group/low-risk group (A) and HRPS-group/high-risk group (B). The major mutation-enriched pathways in LRPS-group/low-risk group (C) 
and HRPS-group/high-risk group (D). Difference of mutated genes (E) and TMB score (F) in two different PRS groups. 
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GSEA analysis revealed that signaling pathways of  
NF-κB and KRAS were significantly activated in HRPS-

group. AS a member of transcription factors, NF-κB is 

widely involved in many biological processes, such as 

responses of immune and inflammation, proliferation, 

differentiation, cell survival, and all of which were 

strongly linked to survival of AML stem cells [27–31]. 

Results in vivo and vitro also verified that inhibiting 

 

 
 

Figure 6. Predictive response of checkpoint blocking-up and drug in training cohort. Correlation between PRS and TIDE score (A), 

Dysfunction score (B), and Exclusion score (C). Boxplot of TIDE/Dysfunction/Exclusion score (D) and IC50 value of Pevonedistat (E) in HRPS-
group/high-risk group and LRPS-group/low-risk group. (F) Relationship between Pevonedistat IC50 and PRS according to 7-ARGs signature, 
and an outlier was removed from curve of Pearson correlation analysis. Correlation analysis of PRS (G) and Pevonedistat’s IC50 (H) with the 
NEDD8 expression level. Boxplot of NEDD8 expression level in HRPS-group/high-risk group and LRPS-group/low-risk group (I). 
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Table 2. The characteristics of 151 acute myeloid leukemia patients in TCGA 
database. 

Characteristic Low-risk (n=76) High-risk (n=75) P value 

Gender    0.284 

Female 38 (25.2%) 30 (19.9%)  

Male 38 (25.2%) 45 (29.8%)  

Race    1.000 

Asian or unavailable 2 (1.3%) 1 (0.7%)  

Black or African American 7 (4.6%) 6 (4.0%)  

White 67 (44.4%) 68 (45.0%)  

Age (Median [IQR]) years 51 [35.8, 62.0] 62 [47.5, 69.5] 0.001 

Cytogenetics risk    0.004 

Favorable 22 (14.8%) 9 (6.0%)  

Intermediate 43 (28.9%) 39 (26.2%)  

Adverse 11 (7.4%) 25 (16.8%)  

FLT3 mutation    0.956 

Negative 52 (35.4%) 50 (34.0%)  

Positive 22 (15.0%) 23 (15.6%)  

RAS mutation    0.719 

Negative 71 (47.3%) 71 (47.3%)  

Positive 5 (3.3%) 3 (2.0%)  

NPM1 mutation    1.000 

Negative 59 (39.3%) 58 (38.7%)  

Positive 17 (11.3%) 16 (10.7%)  

IDH1 mutation    0.593 

Negative 61 (40.9%) 62 (41.6%)  

Positive 15 (10.1%) 11 (7.4%)  

PB-blast (%) 70 [51.0, 85.0] 73 [48.0, 85.0] 0.994 

BM-blast (%) 45.5 [12.5, 70.3] 23 [6.0, 56.0] 0.065 

WBC (×109/L) 14.5 [4.0, 42.3] 26.5 [6.0, 61.3] 0.214 

Hemoglobin (g/L) 90 [60, 130] 90 [60, 130] 0.940 

PLT (×109/L) 45.5 [27.3, 87.3] 44 [30.5, 83.5] 0.669 

Abbreviations: TCGA, The Cancer Genome Atlas; IQR, Interquartile range; FLT3, FMS-like 
tyrosine kinase 3; NPM1, Nucleophosmin; IDH1, Isocitrate dehydrogenase 1; PB, Peripheral 
blood; BM, Bone marrow; WBC, White blood cell; PLT, Platelet. 

 

pathway of NF-κB could provoke cell death in AML, 

while this phenomenon was not obvious in normal bone 

marrow stem cells [31, 32]. Moreover, abnormal 

activation of NF-κB signal has been proven to involve 

in the process of AML resistance to chemotherapeutic 

agents [33]. In addition, excessive activation of RAS 

signaling is also considered to be one of the primary 

pathogenic items of AML [34]. All these may help to 

account for poor prognosis of AML patients in HRPS-

group. 

 

Aging changed the status of immunity and 

microenvironment as always, which might also 

facilitate tumor progression [35]. Our results certified 

that HRPS-group had significantly a higher score of 

ESTIMATE and immunity. Consistent with previous 

studies [36], our results suggested that higher immune 

score could also lead to adverse prognosis. HRPS-group 

had more increased components of immune suppression 

by myeloid cells, monocyte and macrophage, which 

could also lead to a poor survival rate. TAMs (tumor-

associated macrophages) could promote leukemic stem 

cells proliferation and immortality via diverse 

mechanisms, including angiogenesis, extracellular 

matrix remodeling, and lymphangiogenesis [37, 38]. 

Immune suppression by myeloid cells, one of MDSCs, 

could also block the anti-tumor effects by multiple 

mechanisms, which may also help to explain to some 
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extent why HRPS-group was accompanied with poor 

prognosis [39]. 

 

The aging process affects not only immune system by 

enhance or suppress of immune cell function, but also 

immune supervision of checkpoints [40, 41]. 

Nowadays, therapy of blocking checkpoint has led to 

breakthroughs in cancer therapy, such as lymphomas, 

lung cancer and melanoma [42]. Although studies of 

immune checkpoint therapy in AML were limited, some 

studies still had encouraging results [42–44]. It is of 

great significance to find reliable predictive biomarkers 

and therapeutic targets for AML with different risks. 

Positive correlations were found between PRS from 

ARGs signature and four expression genes of 

checkpoints (PDCD1, CTLA4, LAG3 and CD274). 

TIDE algorithm also revealed that higher 7-ARGs 

signature score was highly in relation to lower TIDE 

 

 
 

Figure 7. Development, validation and clinical use of predicted nomogram. (A) Prognostic analysis of Nomogram. VIF indicated 
Variance inflation factor. (B)Construction of Nomogram according to prognostic factors of AML patients in training cohort. Values of 
prognostic risk Score (PRS) were calculated by 7-ARGs signature. (C) Sankey diagram of transitions from cytogenetics risk category to 
reclassification of 7-ARGs signature and Nomogram. (D) Analysis of survival relying on stratification of Nomogram. (E) Calibration curve of 
Nomogram at 1-, 2-, and 3-year. Discrimination with C-statistic at different time (F) and DCA plot at 1-, 2- and 3-year (G–I) for Nomogram and 
clinical features (model with age alone or with age plus cytogenetics risk). 
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score, and lower TIDE score denoted more benefits 

from immune checkpoint therapy. No difference of 

TIDE score between two risk groups may due to higher 

dysfunction of T cells in HRPS-group, which may limit 

benefits of immune checkpoint therapy. Furthermore, 

Pevonedistat was predicted as a potential therapeutic 

drug for patients in HRPS-group. In 7-ARGs signature, 

NF-κB was the primary signaling with abnormal 

activation in HRPS-group, while Pevonedistat can 

inhibit NF-κB signaling [45], those might help to 

explain our results of drug prediction. Pevonedistat may 

be more suitable for AML with higher prognostic score 

of 7-ARGs signature. 

 

Interestingly, subtype analysis of ARGs illustrated a 

consistent result with enrichment analysis. HRPS-group 

had a higher score of ssGSEA in NF-κB related gene 

set, which was the primary enrichment pathway in 

GSEA analysis. Furthermore, deregulated nutrient 

sensing were significant associated with humans’ 

longevity [46]. Inflammation is one of the prominent 

alterations in aging-associated communication of 

intercellular space. This immunosenescence may affect 

the normal function of the body, dysfunction of clearing 

abnormal and/or infected cells, especially for tumor 

cells [10]. This suggests that altered intercellular 

communication may participate in modulating tumor 

development. Higher scores both in purity of tumor and 

genomic instability in LRPS-group may explain why 

this group of patients had a higher ssGSEA score of 

stem cell exhaustion. In addition, patients in HRPS-

group had more frequent mutation of TP53, which was 

confirmed with poor prognosis in AML patients [47]. 

Accordingly, LRPS-group had a higher frequency of 

mutation in UBR4, AHNAK, BOD1L1, and etc. In 

Bladder Cancer, mutation of AHNAK is one sign of 

favorable prognosis [48]. Some of them, including 

MED12, NEB, and ZFHX4, were considered to be poor 

prognostic factors in some solid tumors [49–51], but the 

role of which in AML is unclear. 

 

However, our current study also had some limitations. 

Firstly, although the effectiveness of 7-ARGs 

prognostic signature has been proved both in training 

and validation datasets, the applied AUC of validation 

set is unsatisfactory, which might be on account of 

different sequencing platforms. The training cohort is 

obtained from RNA-sequencing, while the validation 

set (GSE37642) is generated from microarray platform. 

Although the AUC values of validation cohorts are 

lower than that of the training set, predictive power is 

still exhibited in validation sets according to the curves 

of ROC and Kaplan-Meier survival analysis. Secondary, 

more independent cohorts and experimental studies  

(in vitro or in vivo) are required to validate the 

effectiveness and disclose underlying mechanisms. In 

the future, the exact prognostic values of these ARGs 

deserve further study in AML. 

 

CONCLUSIONS 
 

In conclusion, we identified and validated an aging-

related risk signature based on seven-ARGs for 

predicting AML prognosis, and also tried to reveal the 

possible mechanisms from many aspects. These findings 

could be helpful to improve diagnosis, risk stratification 

or treatment of AML. 

 

MATERIALS AND METHODS 
 

Source of data 

 

TCGA-LAML cohort was downloaded as the training set 

for constructing prognostic signature base on ARGs, 

including publicly available gene expression and clinical 

data. The RNA-seq data of which was standardized by 

Transcripts Per Kilobase of exon model per Million 

mapped reads (TPM) and normalized as log2 (TPM + 1). 

Two independent AML datasets of GEO, including 

GSE37642 (GPL570 platform, n = 136) and GSE106291 

(n = 250), were also adopted to validate the reliability of 

prognostic signature. Human ARGs were obtained  

from the website of HAGR (Supplementary Table 1,  

n = 307) (https://www.genomics.senescence.info/). 

Moreover, GSE14468 (n = 461) was also acquired to 

further compare the differences of PRS between several 

gene mutations, including NPM1, IDH1, IDH2, KRAS, 

NRAS, CEBPA, FLT3-ITD, and FLT3-TKD. All data 

used in this study were conducted in accordance with the 

publication guidelines, as a result, informed consent and 

ethical approval were not required. 

 

Development and validation of a 7-ARGs signature 

for AML prognosis 

 

According to the median value of gene expression, 

univariate COX analysis was carried out to select ARGs 

with prognostic values in the training set (Supplementary 

Table 2). A total of 48 ARGs were associated with AML 

prognosis (Supplementary Table 3, P<0.05), with 35 of 

adverse prognostic ARGs and 13 of favorable prognostic 

ARGs. Thirty-two of 35 adverse prognostic ARGs were 

chosen as candidate genes, which were co-expressed in 

GSE37642 cohort. The importance of 32 ARGs was 

ranked using a model of random survival forest 

(ntree=1000, “randomForestSRC” R package) [20]. To 

choose the optimal model for constructing prognostic 

signature, 12 of 32 ARGs with a positive raw 

importance were chosen and screened using method of 
weighted random forest (“Ranger”, “randomForest” and 

“survival” R packages). Finally, seven-ARGs signature 

was identified with a lowest out of bag (OOB) error rate 
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in the training set, and seven ARGs with a relative 

importance greater than 0.52 were transferred to further 

assessment using by COX regression model. The 

expression level and COX regression coefficient of 

ARGs were used to calculate the prognostic risk score 

(PRS) as below: 
 

1

Prognostic risk score (PRS) Coef ( ) ( )
n

i

i X i
=

=  

 

where n indicates the number of ARGs included in the 

prognostic signature, Coef(i) means the coefficient of 

each ARGs in COX regression, and X(i) represents the 

expression level of each ARGs. In the light of median 

PRS value, AML patients were categorized into two 

subgroups. Patients with high value of PRS were 

defined as HRPS-group/high-risk group, while others 

were deemed as LRPS-group/low-risk group. Curves 

of survival analysis and time-dependent ROC analysis 

were performed to evaluate the survival differences 

and discrimination of ARGs signature, using R 

packages of “survival”, “ggrisk”, “survminer” and 

“timeROC”. 

 

Enrichment analyses 

 

To assess biological functions and signaling pathways 

associated with HRPS-group, gene set enrichment 

analysis (GSEA) was carried out using programs of 

Hallmark and c2 KEGG from MSigDB. The significant 

difference was set as |normalized enrichment score| >1, 

False Discovery Rate < 0.25, and the adjusted P value 

lower than 0.05. 

 

Immune characteristics of microenvironment 

 

Differences of immune-related characteristics were 

analyzed between the HRPS- and LRPS-group, 

adopting R package of ESTIMATE for calculating 

stromal-score, immune-related score, purity of tumor, 

and ESTIMATE-related score [52]. Meanwhile, using R 

packages of GSVA and GSEABase, ssGSEA was 

performed to quantify different types of immune-related 

cells. The immune-related gene sets were collected from 

previous studies (Supplementary Tables 4, 5) [53, 54]. 

To further identify the potential therapeutic targets of 

checkpoints for ARGs signature, we also evaluated the 

correlations of PRS with the expressed levels of 8 

immune-related checkpoints (HAVCR2, SIGLEC15, 

PDCD1, PDCD1LG2, CD274, LAG3, CTLA4 and 

TIGIT). 

 

ssGSEA analysis of twelve aging-related gene signals 

 

According to previous studies [55], all ARGs can be 

divided into 12 sub-categories, which may help to 

conceptualize the essence of cancers and their 

underlying mechanisms. To depict the distributions of 

different subtypes and possible pathogenic mechanisms 

between these two different risk groups, ssGSEA was 

also performed in 12 aging-related gene sets from 

National Genomics Data Center (Supplementary Table 

6, https://ngdc.cncb.ac.cn), including NF-κB related 

gene, senescence-associated secretory phenotype, stem 

cell exhaustion, telomere attrition and others. We 

compared the difference of 12 ssGSEA scores between 

the HRPS- and LRPS-group. 

 

Mutational features 

 

To better understand the difference of driver genes 

between HRPS- and LRPS-group, the somatic 

mutations of TCGA-LAML were acquired and analyzed 

using R package of “maftools” [56]. The mutational 

landscape of two different PRS groups were 

investigated by Fisher exact test, and visualized 

graphically using by waterfall curve and forest plot. 

Enrichment analysis of Oncogenic Signaling Pathways 

was also performed to exhibit the difference between 

these two groups. Moreover, recent studies have 

demonstrated that a higher tumor mutated burden 

(TMB) was strongly associated with a better anti-tumor 

immune response [57], so we also compared the 

difference of TMB between HRPS- and LRPS-group. In 

addition, the distributions of PRS between different 

gene mutations were also compared and visualized 

through box plots. 

 

Prediction of response to checkpoint blocking-up 

and drugs 

 

To further probe whether HRPS-group can benefit 

from checkpoint blocking-up and potential drugs, 

possibility of response to immunotherapy was 

predicted using an algorithm reported previously, 

including dysfunction and exclusion of anti-tumor 

immune (TIDE) [58]. The predicted responses to drugs 

were done using the R package “oncoPredict” based 

on version 2 database of Genomics of Drug Sensitivity 

in Cancer [59]. Using PRS from ARGs signature, 

Pearson correlation analysis was used to scan the 

candidate drugs, which had a P value less than 0.001 

and correlation coefficient less than -0.3. Correlation 

coefficients reflected the relations between PRS and 

IC50 of candidate therapeutic agents. And then the 

differences of candidate agents were also compared 

between HRPS- and LRPS-group. 

 

Construction of a nomogram using 7-ARGs signature 

 

To appraise clinical applicability, we established a 

nomogram using variables with independent prognostic 
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values in multivariable analysis of COX proportional 

hazards regression model in the training set. Variance 

inflation factor (VIF) was calculated to test the 

collinearity among predictors, and variables with a VIF 

value less than 5 were excluded from collinearity. 

Curves of C-statistic and calibration were draw to 

demonstrate the efficacy and accuracy of nomogram, 

while decision curve analysis (DCA) was executed for 

evaluation of clinical utility. 

 

Statistical settings 
 

Statistical processes were conducted by related 

packages of R 4.1 software. Tests of Fisher exact/Chi-

square were run to analyse categorical variables, 

whereas tests of Kruskal-Wallis/Wilcoxon rank-sum 

were done for numerical variables. Curves of Kaplan-

Meier with test of Log-rank/COX analysis were  

utilized to estimate the difference of overall survival 

(OS). When the values of P less than a threshold  

(< 0.05), the results were deemed to be statistically 

different. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Work flow of the current study. ARGs indicated aging-related genes. TIME indicated immune 
microenvironment of tumor. 
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Supplementary Figure 2. Prognostic analyses of 84 ARGs in training cohort. Median expression values of genes were used as the 
threshold values, and patients with high value than which were set as a reference group. 



www.aging-us.com 5846 AGING 

 
 

Supplementary Figure 3. Characteristics of immune-related microenvironment in HRPS-group/high-risk group and LRPS-
group/low-risk group. (A) Immune Scores. (B) ESTIMATE Scores. (C) Stromal scores. (D) Tumor Purity. (*P < 0.05, **P <0.01, ***P < 0.001). 
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Supplementary Figure 4. Different cell abundance of forty-one immune categories between HRPS-group/high-risk group and 
LRPS-group/low-risk group. (*P < 0.05, **P <0.01, ***P < 0.001). 
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Supplementary Figure 5. Relationship between PRS and 8 checkpoints’ expression. (A) The heatmap of correlation between PRS 

score and 8 immune checkpoint expression levels. (B–I) Scatter plot of correlation between PRS score and expression level of each immune 
checkpoint. 
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Supplementary Figure 6. Difference of ssGSEA scores about 12 aging-related gene signals between two different PRS groups 
according to ARGs prognostic signature. (*P < 0.05, **P <0.01, ***P < 0.001). 
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Supplementary Figure 7. Differences of PRS between wild-type and mutation of several common genes. (A) FLT3-TKD, (B) 

CEBPA, (C) IDH2, (D) FLT3-ITD, (E) NPM1, (F) IDH1, (G) KRAS, (H) NRAS. (*P < 0.05, **P <0.01, ***P < 0.001). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4–6, 8. 

 

Supplementary Table 1. Three hundred seven human genes related to aging. 

 

Supplementary Table 2. Univariate analyses of 303 ARGs for overall survival. 

 

Supplementary Table 3. 48 ARGs were associated with prognosis by univariate analyses. 

Gene name Coef Se P HR 95%CI low 95%CI High 

LMNA -0.845  0.223  <0.001 0.429  0.277  0.665  

HSPA1B -0.844  0.224  <0.001 0.430  0.277  0.666  

PTPN1 -0.780  0.221  <0.001 0.458  0.297  0.706  

UCP2 -0.748  0.220  0.001  0.473  0.308  0.728  

GPX1 -0.739  0.220  0.001  0.478  0.310  0.735  

SIRT6 -0.721  0.218  0.001  0.486  0.317  0.746  

BAK1 -0.708  0.218  0.001  0.493  0.321  0.756  

TERF2 -0.694  0.218  0.001  0.500  0.326  0.766  

TGFB1 -0.673  0.220  0.002  0.510  0.331  0.785  

NUDT1 -0.656  0.218  0.003  0.519  0.339  0.795  

ELN -0.631  0.220  0.004  0.532  0.346  0.819  

TRAP1 -0.606  0.217  0.005  0.545  0.356  0.835  

PPP1CA -0.606  0.217  0.005  0.546  0.357  0.834  

ERCC1 -0.599  0.218  0.006  0.549  0.358  0.843  

HDAC3 -0.581  0.218  0.008  0.559  0.365  0.857  

GPX4 -0.578  0.219  0.008  0.561  0.365  0.862  

GSTP1 -0.571  0.218  0.009  0.565  0.369  0.865  

STK11 -0.551  0.219  0.012  0.576  0.375  0.886  

GSK3A -0.551  0.217  0.011  0.576  0.377  0.881  

SOCS2 -0.530  0.216  0.014  0.589  0.385  0.900  

SOD1 -0.521  0.217  0.016  0.594  0.388  0.908  

NFKB2 -0.510  0.217  0.019  0.600  0.393  0.918  

HSPA1A -0.506  0.218  0.020  0.603  0.393  0.924  

EMD -0.498  0.216  0.021  0.608  0.398  0.928  

PRKCD -0.492  0.218  0.024  0.611  0.399  0.936  

ERCC2 -0.483  0.217  0.026  0.617  0.403  0.944  

PRDX1 -0.482  0.216  0.026  0.618  0.404  0.944  

DGAT1 -0.481  0.217  0.026  0.618  0.404  0.945  

UCP3 -0.470  0.216  0.030  0.625  0.410  0.955  

SPRTN -0.460  0.219  0.036  0.631  0.411  0.971  

PTK2B -0.461  0.217  0.034  0.631  0.412  0.966  

MAP3K5 -0.458  0.218  0.035  0.633  0.413  0.969  

MT1E -0.443  0.219  0.043  0.642  0.418  0.987  

GCLM -0.437  0.217  0.043  0.646  0.422  0.987  

BMI1 -0.435  0.217  0.044  0.647  0.423  0.989  

IGF1R 0.433  0.217  0.046  1.542  1.008  2.358  

PIK3CB 0.455  0.218  0.037  1.576  1.028  2.418  

IGFBP3 0.473  0.217  0.029  1.605  1.049  2.455  

IGF2 0.479  0.216  0.027  1.615  1.057  2.467  

INSR 0.484  0.217  0.026  1.623  1.061  2.484  

MXD1 0.491  0.219  0.025  1.633  1.063  2.510  
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TPP2 0.511  0.219  0.020  1.668  1.085  2.563  

EGFR 0.517  0.218  0.018  1.676  1.094  2.568  

AR 0.518  0.217  0.017  1.678  1.096  2.569  

GHR 0.530  0.218  0.015  1.699  1.108  2.606  

HBP1 0.537  0.219  0.014  1.712  1.115  2.628  

LEP 0.602  0.217  0.006  1.826  1.193  2.796  

PDGFRA 0.659  0.222  0.003  1.932  1.250  2.986  
 

 

Supplementary Table 4. List of pan-cancer immune metagenes. 

 

Supplementary Table 5. Single-sample gene-set for tumor immune microenvironment analysis. 

 

Supplementary Table 6. Twelve aging-related gene sets. 

 

Supplementary Table 7. Pearson correlation analysis for 
scanning candidate therapeutic drugs. 

Drug Correlation coefficient P value 

Temozolomide_1375 -0.498212053 7.55E-11 

PF-4708671_1129 -0.456825471 3.73E-09 

Dactolisib_1057 -0.449715456 6.92E-09 

5-Fluorouracil_1073 -0.433863895 2.62E-08 

Entospletinib_1630 -0.431496025 3.18E-08 

GNE-317_1926 -0.428702113 3.98E-08 

Docetaxel_1007 -0.422628101 6.46E-08 

Buparlisib_1873 -0.404751894 0.000000254 

Pictilisib_1058 -0.401218856 0.00000033 

VE821_2111 -0.398435368 0.000000405 

MK-1775_1179 -0.384249796 0.00000111 

AZD6738_1917 -0.383087068 0.0000012 

Ribociclib_1632 -0.378656045 0.00000163 

I-BRD9_1928 -0.378593752 0.00000164 

Epirubicin_1511 -0.374221827 0.00000221 

Axitinib_1021 -0.371145192 0.00000271 

Bortezomib_1191 -0.366131208 0.00000378 

YK-4-279_1239 -0.365077256 0.00000405 

BDP-00009066_1866 -0.361748895 0.00000502 

Camptothecin_1003 -0.357320265 0.00000667 

Dabrafenib_1373 -0.351902382 0.00000938 

BMS-345541_1249 -0.347824221 0.0000121 

LGK974_1598 -0.347573101 0.0000123 

Pevonedistat_1529 -0.346222958 0.0000133 

Rapamycin_1084 -0.344928758 0.0000144 

Luminespib_1559 -0.327708687 0.00004 

BMS-536924_1091 -0.32390617 0.0000497 

Leflunomide_1578 -0.321775903 0.000056 

Wnt-C59_1622 -0.315870815 0.0000779 

Dihydrorotenone_1827 -0.314568802 0.0000836 

OTX015_1626 -0.31079521 0.000102746 

Wee1 Inhibitor_1046 -0.309397471 0.000110801 
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Palbociclib_1054 -0.305193518 0.000138723 

Ulixertinib_2047 -0.305018131 0.000140019 

Taselisib_1561 -0.304662036 0.000142686 

Sinularin_1838 -0.304160416 0.000146524 

Vincristine_1818 -0.301715921 0.000166641 

 

 

Supplementary Table 8. Predicted IC50 of candidate therapeutic drugs. 

 

Supplementary Table 9. Univariate COX regression analysis for the overall survival. 

Characteristics Total (N) 
Univariate analysis 

Hazard ratio (95% CI) P value 

Risk Score 140 2.718 (1.810-4.081) <0.001 

Age 140 1.042 (1.026-1.058) <0.001 

Cytogenetics risk 138   

Favorable 31 1  

Intermediate 76 2.957 (1.498-5.836) 0.002 

Poor 31 4.157 (1.944-8.893) <0.001 

PB-Blast (%)  140 1.003 (0.995-1.012) 0.445 

BM-blast (%) 140 1.002 (0.995-1.009) 0.572 

Hemoglobin (g/L) 139 1.117 (0.958-1.301) 0.157 

WBC (×109/L) 139 1.005 (1.000-1.010) 0.069 

PLT (×109/L) 140 1.000 (0.997-1.004) 0.842 

Gender 140   

Male 77 1  

Female 63 0.971 (0.636-1.483) 0.892 

Race 140   

 White 127 1  

Others 10 1.154 (0.377-1.991) 0.736 

FLT3 mutation 136   

Negative 97 1  

Positive 39 1.271 (0.801-2.016) 0.309 

RAS mutation 139   

Negative 131 1  

Positive 8 0.643 (0.235-1.760) 0.39 

NPM1 mutation 139   

Negative 106 1  

Positive 33 1.137 (0.706-1.832) 0.596 

IDH1 mutation 138   

Negative 126 1  

Positive 12 0.588 (0.238-1.452) 0.249 

Abbreviations: CI, confidence interval; FLT3, FMS-like tyrosine kinase 3; NPM1, 
Nucleophosmin; IDH1, Isocitrate dehydrogenase 1; PB, Peripheral blood; BM, Bone 
marrow; WBC, White blood cell; PLT, Platelet. 

 

 


