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INTRODUCTION 
 

Lung carcinoma (LC) demonstrates a substantial global 

incidence and remains the predominant contributor to 

cancer-associated mortalities [1]. From a pathological 

perspective, LC can be broadly classified into two 

categories: small cell lung carcinoma (SCLC) and non-
small cell lung carcinoma (NSCLC), with NSCLC 

being the more prevalent type [2]. Within NSCLC, 

adenocarcinoma (ADC) stands out as the predominant 
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ABSTRACT 
 

Background: Research on immunogenic cell death (ICD) in lung adenocarcinoma (LUAD) has been relatively 
limited. This study aims to create ICD-related signatures for accurate survival prognosis prediction in LUAD 
patients, addressing the challenge of lacking reliable early prognostic indicators for this type of cancer. 
Methods: Using single-cell RNA sequencing (scRNA-seq) analysis, ICD activity in cells was calculated by AUCell 
algorithm, divided into high- and low-ICD groups according to median values, and key ICD regulatory genes 
were identified through differential analysis, and these genes were integrated into TCGA data to construct 
prognostic signatures using LASSO and COX regression analysis, and multi-dimensional analysis of ICD-related 
signatures in terms of prognosis, immunotherapy, tumor microenvironment (TME), and mutational landscape. 
Results: The constructed signature reveals a pronounced disparity in prognosis between the high- and low-risk 
groups of LUAD patients. The statistical discrepancies in survival times among LUAD patients from both the  
TCGA and GEO databases further corroborate this observation. Additionally, heightened levels of immune cell 
infiltration expression are evidenced in the low-risk group, suggesting a potential benefit from immunotherapeutic 
interventions for these patients. The expression levels of pivotal risk-associated genes in tissue samples were 
assessed utilizing qRT-PCR, thereby unveiling PITX3 as a plausible therapeutic target in the context of LUAD. 
Conclusions: Our constructed ICD-related signatures provide help in predicting the prognosis and 
immunotherapy of LUAD patients, and to some extent guide the clinical treatment of LUAD patients. 
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histological subtype, accounting for approximately  

40% of all instances of LC [3]. Over the past decade, 

significant attention has been directed towards early 

surgical intervention for LC, leading to improved 

survival prospects for individuals diagnosed at an early 

disease stage [4]. However, despite the advancements  

in understanding LC, the aggressive nature of lung 

adenocarcinoma (LUAD) and its associated risks 

continue to adversely impact patient survival and 

prognostic outlooks. In recent years, there have been 

notable strides in utilizing targeted therapies based on 

biomarkers, resulting in certain improvements in the 

survival outcomes of LC patients. Nevertheless, the 

broader adoption of such treatment modalities requires 

further comprehensive investigation [5]. As a result, 

delving into additional insights regarding LUAD and 

the identification of emerging factors linked to patient 

survival prognosis assume crucial significance in 

enhancing patient outcomes. 

 
The utilization of single-cell RNA sequencing (scRNA-

seq) technology facilitates the examination of gene 

expression patterns within individual cells and the 

elucidation of intercellular signaling networks [6– 

12]. This technological innovation enables the direct 

quantification of the transcriptional output of neoplastic 

cells, thereby reflecting the integration of genetic, 

epigenetic, and environmental cues that modulate the 

behavior, adaptability, and response of cancer cells to 

therapeutic interventions [13–19]. The integration of 

clinicopathological data with scRNA-seq information 

derived from tumor samples holds the potential to 

unveil innovative diagnostic and prognostic biomarkers, 

as well as cell types that may prove therapeutically 

relevant [20–22]. 

 
Under normal circumstances, millions of cells within the 

bodies of healthy adult individuals undergo programmed 

cell death mechanisms without inciting localized or 

systemic inflammation [23]. However, when certain 

cells exhibit adequate antigenicity, such as infected or 

malignant cells, their demise can engender an adaptive 

immune response mediated by cytotoxic T lymphocytes, 

thereby instigating immune memory. Immunogenic  

cell death (ICD) assumes a pivotal role in immune 

surveillance; nevertheless, both pathogens and cancer 

cells have developed strategies to elude ICD recognition 

[24]. ICD is typified by the exposure and release of  

a multitude of damage-associated molecular patterns 

(DAMPs), which significantly aid dying cancer cells by 

fostering the recruitment and activation of antigen-

presenting cells [25]. Therapeutically induced ICD  

can stimulate anti-cancer immune responses, thereby 

enhancing the therapeutic efficacy of conventional 

chemotherapy and radiotherapy. 

This drives the necessity to investigate signatures 

associated with ICD in LUAD. Unraveling these 

signatures holds the promise of prognostic insights and 

informs the potential for immunotherapeutic inter-

ventions. The identification of such signatures enables 

the prediction of patient prognosis and facilitates the 

identification of individuals who might benefit from 

immune-based therapies. Consequently, exploring the 

interplay between ICD, prognosis, and immunotherapy 

stands to revolutionize our approach to managing 

LUAD and improving patient outcomes. 

 
MATERIALS AND METHODS 

 
Data search 

 
The scRNA-seq dataset with the accession code 

GSE150938 was procured from the Gene Expression 

Omnibus (GEO) repository, encompassing a cohort  

of 12 samples originating from patients diagnosed  

with LUAD. Additionally, microarray sequencing data 

and clinical information were amassed from various 

datasets, including GSE13213 (Samples number=119), 

GSE26939 (Samples number=115), GSE29016 (Samples 

number=39), GSE30219 (Samples number=86), and 

GSE31210 (Samples number=227). Immunogenic cell 

death-related genes are summarized in the Supplementary 

Table 1. To ensure harmonization across different datasets 

and mitigate potential batch effects, a transformation to 

transcripts per million (TPM) format was performed  

on the expression data, followed by the application  

of the “combat” function from the “sva” package [26]. 

Moreover, bulk RNA-seq data, mutation profiles, and 

comprehensive clinical particulars of patients afflicted 

with lung adenocarcinoma were sourced from the 

TCGA database. A uniform log2 transformation was 

systematically applied to all datasets before embarking 

on the subsequent analytical procedures. 

 
scRNA-seq data processing 

 
The scRNA-seq dataset underwent processing using  

the “Seurat” R program [27, 28]. Cells with a count 

below 3 and a features count below 200 were excluded. 

Subsequently, cells with an nFeature RNA count below 

200 and mitochondrial count exceeding 10% of the 

sequencing count were eliminated, resulting in a total of 

45,986 cells retained for further analysis. The dataset  

was normalized and scaled using Seurat's NormalizeData 

and ScaleData functions, respectively, while mitigating 

batch effect through CCA. The “FindVariableFeatures” 
algorithm was employed to identify the top 2000  

variable genes. Employing Seurat’s Uniform Manifold 

Approximation and Projection (UMAP) technique in 



www.aging-us.com 10307 AGING 

conjunction with the “FindClusters” function, clustering 

analysis was carried out with a specified resolution of 

0.8. Identification of marker genes was executed utilizing 

Seurat’s “FindAllMarkers” function, where selection of 

cluster-specific markers hinged on a log2 fold change 

(log2 FC) threshold set at 0.25. Commonly established 

cell markers were harnessed for the purpose of cell 

classification. For quantifying gene set activity within 

individual cells, the “AUCell” R package was employed, 

computing gene expression rankings grounded on the 

area under the curve (AUC) value derived from model 

genes [29]. Cells exhibiting heightened expression  

levels for the targeted gene set were associated with 

correspondingly elevated AUC values. Determination of 

the threshold for discerning cells featuring active gene 

sets was accomplished through the utilization of the 

“AUCell exploreThresholds” function. Furthermore, the 

UMAP embedding of each cell’s AUC score was visually 

represented using the “ggplot2” R package, facilitating 

the identification of clusters characterized by active gene 

set profiles. 

 
Signature construction 

 
The FindAllMarkers function was used to identify 

differential genes between high-ICD-active and low-ICD-

active cell populations. These genes were subsequently 

integrated into transcriptome sequencing to construct a 

model. A total of 68 genes associated with prognosis 

were discerned via univariate regression analysis. To 

further refine the gene selection for model construction, 

lasso regression and multifactorial analysis were 

implemented [30, 31]. Risk scores were assigned to 

each LUAD patient utilizing the coefficients derived 

from the multivariate analysis. Based on the median risk 

score, patients from the TCGA-LUAD dataset were 

classified into high- and low-risk groups. Prognostic 

implications were evaluated by generating survival 

curves employing the Kaplan-Meier technique, and 

statistical significance was determined through log- 

rank tests. The evaluation of the model’s predictive 

efficacy was conducted through the utilization of 

receiver operating characteristic (ROC) curves, where a 

threshold AUC value exceeding 0.65 denoted exceptional 

performance. The validation of the predictive potential 

of the identified signature encompassed a comprehensive 

analysis across five distinct datasets from the GEO 

repository, involving survival analysis and AUC 

assessments. Furthermore, to provide a visual depiction 

of the patient distribution across varying risk strata, both 

principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE) techniques were 

employed. The application of analogous methodologies 

was extended to the validation cohorts, yielding 

analogous insights into the distribution patterns of 

patients within those contexts. 

The establishment of the nomogram and evaluation 

 
By integrating the risk score with clinical features, a 

more precise and refined nomogram was formulated 

using the ‘rms’ R package [32], resulting in the 

augmentation of prognostic predictive capability. The 

effectiveness of the nomogram was evaluated through 

the calculation of c-index and analysis of ROC curves. 

Stratified evaluations were undertaken, segregating 

analyses according to factors such as age, pathological 

T status, N status, and clinical stage. This approach 

served to assess the predictive relevance of both the risk 

score derived from the signature and the inherent 

clinical characteristics. 

 
Enrichment pathway exploration 

 
For the GSVA analysis, integration involved the 

utilization of the “h.all.v7.5.1.symbols.gmt” gene  

sets sourced from MSigDB, accessible at the link 

(https://www.gseamsigdb.org/gsea/msigdb/index.jsp) [33]. 

Following this, the examination of gene set activities 

within each sample was carried out employing the 

GSEABase software package. Subsequently, GSEA 

methodology was implemented to uncover the signaling 

pathways and biological processes that exhibited 

significant enrichment within the high- and low-risk 

groups [34]. To gauge the enrichment scores associated 

with infiltrating immune cells and immunological 

processes, the ssGSEA method was deployed [35].  

In the context of performing Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Gene Ontology (GO) 

enrichment analyses for the differentially expressed 

genes across the three distinct risk groups, the R 

packages “clusterProfiler” and “org.Hs.eg.db” were 

utilized [36]. Visualization of the outcomes derived 

from the enrichment analyses was effectively accom-

plished using the “ggplot2” and “GseaVis” R software 

packages. 

 
Mutations in different risk groups 

 
The “maftools” R package was employed to analyze 

somatic mutations within the high- and low-risk  

cohorts of LUAD patients [37]. Utilizing data from the 

TCGA database, we generated mutation annotation 

format (MAF) files to capture the mutational landscape. 

The evaluation of tumor mutation burden (TMB)  

was conducted for each individual in the LUAD  

cohort. Visual representation of the mutation landscape 

alongside immune infiltration scores was achieved 

through the application of the “ComplexHeatmap” R 

package [38]. Categorization of TCGA-LUAD patients 

into four distinct groups was carried out, followed  

by the comparison of their survival disparities based on 

the median risk score and TMB levels. 

https://www.gseamsigdb.org/gsea/msigdb/index.jsp
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Immunotherapeutic strategies and assessment of the 

immune microenvironment 

 

Patient data derived from the TIMER 2.0 database  

were procured for lung adenocarcinoma (LUAD),  

and the evaluation of immune cell infiltration was 

undertaken through the utilization of seven distinct 

methodologies within the TCGA dataset. Heatmaps 

were harnessed as a visual tool to illustrate variations in 

immune cell infiltration across diverse risk groups. 

Disparities and correlations among immune checkpoint 

genes specific to the high- and low-risk cohorts were 

systematically explored, employing boxplots and scatter 

plots. The quantification of enrichment scores encom-

passing a diverse spectrum of 29 immune signatures 

was accomplished through the implementation of the 

ssGSEA methodology. In parallel, the assessment of 

immunological scores, Stromal Scores, and ESTIMATE 

Scores for the LUAD patient cohort was executed  

via the utilization of the “estimate” R package [39]. 

Leveraging the potential to predict the responsiveness to 

immunotherapeutic interventions, the Cancer Immunome 

Atlas (TCIA) database was harnessed, serving as a 

repository to access the Immunophenoscores (IPS)  

data specific to the TCGA-LUAD population [40].  

In the course of this comprehensive exploration, a 

rigorous juxtaposition of IPS profiles was meticulously 

conducted, enabling a discerning comparison between 

the high-risk and low-risk subgroups. This analytical 

endeavor elucidates valuable insights into the nuanced 

immunotherapeutic propensities residing within these 

distinct risk categories. 

 
qRT-PCR assay 

 

The process of extracting total RNA from LUAD tissues 

was successfully executed through the utilization of 

TRIzol reagent (Thermo Fisher Scientific, Waltham, 

MA, USA). In strict adherence to the stipulated protocols 

provided by the manufacturer, the cDNA synthesis step 

was performed, facilitated by the RevertAid™ First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific). 

Subsequently, the application of a qRT-PCR assay trans-

pired, employing the StepOne Real-Time PCR system 

(Thermo Fisher Scientific) in conjunction with a SYBR 

Green PCR kit (Takara Bio, Otsu, Japan). In the pursuit 

of quantifying the levels of relative gene expression,  

the 2-ΔΔCT method was aptly engaged. This systematic 

procedure underscores the meticulous attention to 

methodological precision, ensuring the robustness and 

reliability of the ensuing molecular analyses. 

 
Statistical analysis  

 

R version 4.1.3 was the platform employed for all 

statistical analyses and data processing endeavors. 

Survival analysis encompassed the utilization of Kaplan-

Meier curves, with the determination of statistical 

significance achieved through application of the log-

rank test. The generation of survival curves was 

facilitated by the utilization of the “survminer” R 

package [41]. Furthermore, the creation of heatmaps 

was executed using the “Pheatmap” R package. For 

variables exhibiting a normal distribution, quantitative 

disparities were evaluated using either a two-tailed  

t-test or a one-way analysis of variance. Non-normally 

distributed data was subjected to analysis through  

either the Wilcoxon test or the Kruskal-Wallis test. The 

entire spectrum of statistical analyses was undertaken 

within the R environment, with statistical significance 

deemed present at a threshold of P < 0.05. 

 

Availability of supporting data 

 

The datasets analyzed in the current study are available 

in the TCGA repository (http://cancergenome.nih.gov/), 

and GEO (https://www.ncbi.nlm.nih.gov/geo/). 

 

Consent for publication 

 

All authors consent to the publication of this study. 

 

RESULTS 
 

Cells clustering results and AUC value calculation 

 

The study’s schematic representation was visually 

outlined in Figure 1. Depiction of gene expression  

level distributions, sequencing depth characteristics, 

proportions of red blood cell genes, mitochondrial gene 

proportions, and ribosome gene proportions across  

the 12 samples was presented in Figure 2A. The 

visualization of correlations between sequencing depth 

and gene expression levels, along with the proportions 

of mitochondrial genes, red blood cell genes, and 

ribosome genes, was rendered in Figure 2B. Following 

meticulous data processing and rigorous filtration, gene 

expression profiles derived from a collective total of 

45,986 cells spanning across 12 LUAD samples were 

obtained for subsequent comprehensive analysis. The 

consistent distribution of cells within each individual 

sample indicated a notable absence of pronounced batch 

effects, a beneficial facet for forthcoming investigations 

(Supplementary Figure 1A). The PCA reduction plot, 

depicted in Figure 2C, showed that there were no 

apparent distinctions observed among the various  

cell cycles. Subsequently, employing UMAP as the 

dimensionality reduction method, all cells were 

classified into 13 clusters (Supplementary Figure 1B). 

The bubble and UMAP plots in Figure 2D displayed  

the typical marker genes for different cell types and 

their corresponding clusters. Figure 2E presented the 

http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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proportion of each cell type within each of the 12 

samples, while Figure 2F showed the distribution of 

each cell type. Figure 2G illustrated the differential 

genes between the different cell types, with the top 4 

markers randomly labeled on the left side, and the right 

side utilizing GO enrichment analysis to demonstrate 

the pathways in which the marker genes were primarily 

enriched. Finally, the ICD activity was calculated as  

a gene set for each cell, and Figure 2H displayed the 

variation in ICD activity among different cell types, 

indicating relatively higher ICD activity in NK/T cells 

and Myeloid cell types. 

 

 
 

Figure 1. The flowchart of this investigation. To integrate multiple datasets to explore the role of ICD in the TME of LUAD, and to 

construct a signature to predict the prognosis and immunotherapy of LUAD patients. 
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Figure 2. The single-cell analysis process was executed as follows: (A) The distribution of gene expression levels, sequencing depth, the 
percentage of red blood cell genes, the percentage of mitochondrial genes, and the percentage of ribosome genes was assessed across the 
12 samples. (B) Correlations between sequencing depth and gene expression levels, as well as the percentages of mitochondrial genes, red 
blood cell genes, and ribosome genes, were examined. (C) The distribution of observation samples slated for clustering based on cycle-
related marker scores was analyzed. (D) The expression of marker genes within diverse subpopulations of classical cell types was depicted.  
(E) The distribution of distinct cell populations across the 12 LUAD samples was illustrated. (F) An UMAP plot displayed the comprehensive 
composition of cell types. (G) Differential expression markers between various enriched cell types, aligned with pathway profiles, were 
identified. (H) Divergent ICD activity within distinct cell groups was ascertained. 
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Identifying the genes most relevant to ICD 

 

In Figure 3A, the visualization of ICD activity in cells 

was presented using the AUCell algorithm. In order to 

offer a more visual portrayal of the ICD scores in 

cells, the cells were dichotomized based on the 

median value of these scores. Through the execution 

of GSVA enrichment analysis, the observation 

emerged that cells categorized within the high ICD 

group manifested noteworthy enrichment in pathways 

related to Allograft Rejection, Inflammatory Response, 

and Interferon Gamma Response (Figure 3B). In 

contrast, the Estrogen Response Early pathway 

demonstrated marked enrichment in the low ICD 

group. Moving forward, the marker genes that 

exhibited differential expression in the high and low 

ICD groups, as acquired from Bulk RNA-seq data, 

were harnessed to formulate prognostic models via 

COX and Lasso regression analyses. The process of 

identifying pivotal prognostic variables was depicted 

in Figure 3C, 3D. The subsequent Figure 3E depicted 

the hazard ratio (HR) values corresponding to each 

variable integrated into the model, while Figure 3F 

showcased the coefficients attributed to specific 

variables within the model. 

 

Evaluation of the model 

 

The computation of individual patient risk scores 

entailed the multiplication of model gene expression 

values by their respective coefficients. Subsequent to 

this, patient stratification into high and low-risk 

categories was conducted based on the median risk 

score value. It is noteworthy that both the TCGA dataset 

and the five GEO cohorts consistently exhibited inferior 

prognosis outcomes within the high-risk group, thereby 

substantiating the precision and robustness of the 

developed model (Figure 4A). The distribution of 

samples was visually presented through a PCA plot, 

elucidated in Figure 4B. Furthermore, the spatial 

arrangement of samples within the high- and low-risk 

groups was depicted in the t-SNE plot, accessible in 

Supplementary Figure 2. 

 

The construction of a nomogram 

 

The predictive performance of the model regarding 

prognosis was meticulously evaluated through the 

utilization of ROC curves across both the TCGA dataset 

and the five GEO datasets, thereby substantiating the 

robustness and consistency of our developed model 

within the ambit of multi-dataset validation. Remarkably, 

a substantial majority of the AUC values surpassed the 
threshold of 0.6 across both the TCGA and GEO 

datasets, as evidenced in Figure 5A. To comprehensively 

assess the risk associated with TCGA-LUAD patients, a 

nomogram was meticulously formulated, integrating 

crucial clinical features alongside risk group strati-

fication. As depicted in Figure 5B, this nomogram 

visually encapsulates patient stage, age, and risk  

score, thereby serving as a valuable tool for enhanced 

precision in risk assessment and informing forthcoming 

treatment strategies. Inclusive of C-index curves,  

the analysis demonstrated the superior predictive 

performance of the nomogram scores when compared 

against alternative clinical features and risk scores, as 

illustrated in Figure 5C. Moreover, the nomogram’s 

accuracy was methodically gauged via prognostic ROC 

analysis, consistently showcasing markedly superior 

performance in comparison to other clinical features 

and risk scores. Notably, the AUC values for various 

time horizons including 1, 3, 5, 7, and 10 years were 

0.781, 0.790, 0.763, 0.777, and 0.862, respectively, 

underscoring the substantial predictive capability of the 

nomogram across diverse temporal scopes (Figure 5D–

5H). 

 

Relationship between model and clinical 

characteristics 

 

To visually depict the distribution of clinical  

attributes within distinct risk subgroups, a heatmap  

was meticulously generated. This heatmap seamlessly 

amalgamates pertinent clinical information with the 

high- and low-risk subgroups, as vividly depicted in 

Figure 6A. Notably, the high-risk cohort exhibited  

a discernible association with more advanced T-stage, 

N-stage, and clinical stage statuses. These findings, 

showcased in Figure 6B–6F, collectively signify an 

unfavorable prognostic outlook for patients encompassed 

within the high-risk subgroup. 

 

Functional analysis of ICD-related signatures 

 

The GSVA results unveiled that considerable 

enrichment in pathways such as glycolysis, mTORC1 

signaling, and the G2M checkpoint was evident among 

patients belonging to the high-risk group (Figure  

7A). The KEGG enrichment analysis map visually 

showcased significant enrichment in pathways like 

porphyrin and chlorophyll metabolism, alongside pentose 

and glucuronate interconversions (Figure 7B). Through 

ssGSEA analysis of the corresponding data, it was 

observed that the low-risk group exhibited a greater 

abundance of infiltrating immune cells, including B-

cells and aDCs (Figure 7C).  

 

Assessment of immune microenvironment  

 
The utilization of immune checkpoint blockade has 

been extensively integrated into the treatment paradigm 

for advanced LUAD patients. An in-depth analysis was 



www.aging-us.com 10312 AGING 

 
 

Figure 3. Construction of the signature. Model construction. (A) Distribution of ICD activity in the cell population. (B) GSVA enrichment 
analysis between high and low ICD groupings. (C, D) Variable screening and model construction for differential genes between high and low 
ICD subgroups using lasso regression. (E) HR values of model genes. (F) Coefficients of model genes. 
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conducted to explore the intricate relationship between 

risk scores and established immune checkpoint genes 

(ICGs) within the TCGA-LUAD cohort. Remarkably, 

discernible trends emerged as the low-risk group 

exhibited elevated expression levels across a multi- 

tude of immune checkpoint genes including CD48, 

CD40LG, and CD27, as visually represented in Figure 

8A. Interactions between model genes, risk scores, and 

ICGs were thoroughly examined, the outcomes of 

which were encapsulated within bubble plots for 

visualization purposes (Figure 8B). The shade of blue 

denoted negative correlation, while orange hues 

represented positive correlation. Intriguingly, a positive 

correlation emerged between the expression levels of 

model genes and a significant proportion of immune 

checkpoints. In stark contrast, risk scores displayed a 

negative correlation with select prevalent immune 

checkpoint genes, notably BTLA, BTNL2, CD160,  

and CD244. These revelations collectively underscore 

the potential promise of immune checkpoint blockade 

therapy for individuals afflicted by LUAD. To gauge 

the potential therapeutic implications of immunotherapy 

 

 
 

Figure 4. Assessment of risk models. (A) Kaplan-Meier survival analysis of signatures in the TCGA and five GEO datasets. (B) Observation 

of the distribution of samples in high- and low-risk groups using PCA analysis. 
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Figure 5. Building a more accurate nomogram. (A) The ROC curve was used to evaluate the performance of the model in the TCGA and 

five GEO datasets. (B) Nomogram was constructed by combining clinical features with risk groups. (C) C-index curves were utilized to evaluate 
the predictive performance of different clinical characteristics, nomogram scores, and risk scores. (D–H) ROC curves for 1, 3, 5, 7, and 10 
years showed AUC values for various clinical factors, risk scores, and nomogram scores.  
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within distinct risk strata, an assessment of immune 

checkpoint inhibitor response prediction scores (IPS) 

was executed across diverse risk categories. This 

endeavor aimed to pinpoint those patients who might 

derive enhanced benefits from immunotherapeutic 

interventions. The analysis deduced that tumor samples 

from patients in the low-risk group were more likely to 

exhibit favorable immune responses to PD-1/PD- 

L1 or CTLA4 inhibitors, or a combination thereof  

(Figure 8C). Substantiated by notably higher IPS scores, 

the low-risk group emerged as candidates with the 

greatest potential gains from this therapeutic approach. 

Exploiting data from seven immune infiltration 

algorithms resident within the TIMER database,  

an extensive evaluation was carried out to discern 

discrepancies in immune infiltration between the high- 

and low-risk groups within the TCGA-LUAD context, 

as revealed in Supplementary Figure 3. Furthermore, 

the ESTIMATE methodology was harnessed to  

validate immune infiltration levels across distinct risk 

groups. Spearman correlation analysis was engaged to 

elucidate the intricate interplay between risk scores and 

immune infiltration scores. Evidently, the low-risk 

cohort exhibited heightened Immune Scores (P<0.05),  

as depicted in Figure 8D. Significantly, a notable  

negative correlation emerged between risk scores and 

Immune Scores (R = -0.15, FDR<0.001, Figure 8E), 

underscoring the intrinsic association between risk 

scores and the extent of immune cell infiltration within 

the TME. This dynamic relationship might contribute to 

 

 
 

Figure 6. This figure provides insights into the connection between risk scores and various clinical attributes. The specific 

details are as follows: (A) Clinical characteristics are integrated with risk grouping to facilitate an examination of the distribution of clinical 
attributes and the expression patterns of model genes across distinct risk groups. (B–F) The distribution of age, T-stage, clinical stage, N-
stage, and M-stage among LUAD patients in different risk groups is observed and presented as percentages. 
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Figure 7. Enrichment analysis. (A) Exploring differences in GSVA enrichment analysis across risk groups. (B) Enrichment analysis of KEGG 

for differential genes in high and low risk groups. (C) Study of immune cell infiltration and immune-related pathway enrichment in high- and 
low-risk groups using ssGSEA. 
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Figure 8. Analysis of immune cell content and immune checkpoint. (A) A box plot showed that differences in immune checkpoint 
gene expression between high- and low-risk groups. (B) Correlation between model genes and immune checkpoint. (C) The low-risk group 
has significantly greater IPS, IPS-CTLA4-neg-PD-1-neg, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-neg-PD-1-pos, and IPS-CTLA4-pos-PD-1-pos.  
(D) The violin plot demonstrated the difference in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the 
ESTIMATE algorithm between the two risk subgroups. (E) The correlations in Stromal Score, Immune Score, ESTIMATE Score, and tumor 
purity were calculated using the ESTIMATE algorithm between the two risk subgroups. Note: *P < 0.05, **P < 0.01, ***P < 0.001. 
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variances in disease progression and the efficacy of 

immunotherapy in LUAD patients.  

 
Association between mutation and prognosis  

 

The impact of somatic mutations on the outcomes  

of cancer immunotherapy is inherently variable.  

The mutational landscape inherent to TCGA-LUAD 

was subject to meticulous examination, with the 

outcomes comprehensively illustrated in Figure 9A. 

Furthermore, an intricate and systematic juxtaposition 

was orchestrated to meticulously unravel the variances 

in TMB that might distinguish the high and low-risk 

groups. Evidently, this analytical endeavor unveiled a 

discernible augmentation in the frequency of mutations 

within the high-risk contingent of LUAD (Figure 9B). 

This assertion was corroborated through an intensive 

Spearman correlation analysis, which underscored a 

statistically significant and positive correlation between 

risk scores and TMB (R = 0.094, P = 0.043, Figure  

9C). Utilizing a pragmatic approach predicated on the 

median benchmarks of TMB and risk scores, a judicious 

stratification of LUAD patients occurred, subsequently 

yielding four distinct categories: high-mutation+high-

risk, high-mutation+low-risk, low-mutation+high-risk, 

and low-mutation+low-risk. The ensuing elucidation of 

outcomes distinctly delineated that individuals contending 

with high-mutation+low-risk LUAD exhibited a notably 

promising prognostic trajectory, in stark contrast to  

their counterparts grappling with low-mutation+high-

risk LUAD, who faced a markedly less favorable 

prognostic landscape (Figure 9D). 

 
The role of PITX3 

 

For further analysis, the PITX3 gene, which exhibited 

the highest HR value, was selected from the model 

gene. Figure 10A illustrates the elevated expression 

levels of PITX3 in tumor samples. Additionally, the 

high expression of the PITX3 gene was associated  

with a poorer prognosis compared to the low expression 

group (P<0.001, Figure 10B). These conspicuous 

differences align with our bioinformatic findings, 

suggesting that PITX3 could serve as a promising 

 

 
 

Figure 9. Mutation analysis. (A) Mutation landscape of the top 20 genes with mutation frequency in the high-low risk group. (B) TMB 
differences between high- and low-risk patients. (C) Relationship between risk score and tumor mutation burden. (D) Survival analysis 
between four different groups (High-TMB+High-Risk, High-TMB+Low-Risk, Low-TMB+High-risk, and Low-TMB+low-risk). 
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biomarker for early detection of LUAD. Subsequently, 

LUAD patients were divided into high and low 

expression groups based on PITX3 expression, and 

differential analysis was performed. Figure 10C 

showcases the differentially expressed genes, high-

lighting the top 10 genes with the most significant 

differences. Furthermore, GO and GSEA enrichment 

analyses of these differentially expressed genes revealed 

significant enrichment in pathways related to collagen-

containing extracellular matrix and cell-cell junctions in 

the highly expressed PITX3 group (Figure 10D, 10E). 
 

DISCUSSION 
 

Despite the progress achieved in comprehending  

LC’s susceptibility, progression, immune regulation, 

and treatment options, it continues to retain its position 

as the primary cause of cancer-related mortality [42].

 

 
 

Figure 10. The role of PITX3. (A) Differential expression of PITX3 in normal and tumor samples of TCGA. (B) Survival differences in high and 

low PITX3-expressing samples. (C) Differential genes between samples with high and low expression of PITX3, results are presented in volcano 
plots. (D) Pathways of differential gene enrichment in GO. (E, F) GSEA enrichment analysis in the high- and low-PITX3 expressing groups. 
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NSCLC represents the most common form within the 

pathological classification of LC. Specifically, LUAD is 

the predominant subtype of NSCLC and the most 

frequent primary LC [43]. Despite ongoing exploration 

and research in LC treatment, the lack of reliable  

early prognostic indicators hinder treatment efficacy 

[44]. Regulated cell death (RCD), a form of cell death 

controlled by gene-encoded molecular mechanisms,  

has long been recognized as an event associated with 

immune suppression or even tolerance [45]. Releasing  

a diverse array of damage-associated molecular patterns 

(DAMPs), the phenomenon of RCD operates to 

orchestrate the recruitment and activation of antigen-

presenting cells, thereby offering significant potential 

for the development of innovative approaches to  

cancer therapy [25]. The overarching concept of cancer 

immunotherapy aims to harness the immune system's 

intrinsic capabilities to induce an immune response 

against tumors. Through the initiation of ICD, the 

sustained effectiveness of anticancer medications can be 

attained, thereby merging direct elimination of cancer 

cells with the stimulation of antitumor immune 

responses [46]. Noteworthy antecedent investigations 

have underscored the prognostic significance of genes 

implicated in ICD within patients afflicted by head and 

neck squamous cell carcinoma (HNSCC) [47, 48]. 

However, the precise role of ICD within the context  

of LUAD remains enigmatic. The primary goal of  

this study is to meticulously unravel the prognostic 

implications and therapeutic prospects that ICD 

potentially harbors within the realm of LUAD. 

 

Unprecedented resolution is provided by single-cell 

analysis for the exploration of intratumoral heterogeneity, 

cell differentiation trajectories, and intercellular com-

munication, offering a range of promising applications 

[29]. By examining cell clustering within scRNA-seq 

datasets, genes exclusively expressed in tumor cells 

were identified. This shift redirects attention away from 

conventional comparisons between tumors and normal 

tissues, as observed in previous database analyses, 

towards the investigation of disparities among tumor 

cells themselves [30]. In this investigation, pivotal 

regulatory genes governing ICD were pinpointed through 

the utilization of scRNA-seq data. Leveraging clinical 

data, a prognostic signature composed of 14 genes  

was formulated. Subsequent calculations of risk  

scores facilitated the categorization of LUAD patients 

into high-risk and low-risk groups. When comparing 

survival curves between the high-risk and low-risk 

cohorts, a favorable prognostic trend was evident for 

patients within the low-risk group in the TCGA  

cohort (P<0.0001). Consistent survival outcomes were 
also observed in the TCGA-test group, TCGA-train 

group, and GEO verification group (P<0.05). However, 

no statistically significant differentiation between the 

high-risk and low-risk cohorts was observed within the 

GEO30219 group (P=0.057). The considerable accuracy 

of the constructed prognostic signature in assessing the 

prognosis of LUAD patients within intervals of 1, 3, 5, 

7, and 10 years in both the TCGA and GEO cohorts was 

confirmed through ROC curve analysis. Impressively, 

these findings closely aligned with the predictions of the 

nomogram. 

 

Functional enrichment analysis unveiled significant 

enrichment of ICD-related signatures in the glycolysis, 

mTORC1-signaling, and G2M-checkpoint pathways. 

Altered energy metabolism, such as glycolysis, 

represents a distinct feature of cancer cells, serving as 

one of the “hallmarks of cancer.” Glycolysis metabolism 

provides selective advantages to cancer cells in 

environments with limited nutrient supply [49]. TBK1 

inhibition impaired CRC cell proliferation, migration, 

drug resistance, and tumor growth. Overexpression  

of TBK1 inhibited mTORC1-signaling activation in 

CRC [50]. Although there is no clear evidence that 

mTORC1-signaling is involved in the progression of 

LUAD, we can speculate that mTORC1-signaling  

also plays an important role in LUAD. Significant 

prominence is accorded to the G2M-CHECKPOINT 

pathway in a spectrum of related malignancies, 

encompassing pancreatic cancer [51], colorectal cancer 

[52], breast cancer [53], among others. It is discernible 

that the intricate regulatory mechanisms governing  

the G2M-CHECKPOINT pathway might equally exert 

an influential impact on the trajectory of LUAD 

progression. 

 

An all-encompassing scrutiny of the immune cell 

infiltration within TME can serve as a conduit for 

comprehending the intricate mechanisms underpinning 

cancer's evasive maneuvers against immune responses, 

thereby opening avenues for the formulation of 

innovative therapeutic strategies [54]. The meticulous 

investigation of immune cell infiltration disparities 

between the high-risk and low-risk cohorts unveiled a 

conspicuous augmentation of immune cell abundance 

within the low-risk group in contrast to their high-risk 

counterparts. It is noteworthy that prior investigations 

have underscored the interrelation between immune 

checkpoint gene expression levels and the efficacy of 

immunotherapeutic interventions [55]. Delving into the 

variations of immune checkpoint genes between the 

high-risk and low-risk groups proposed the potential for 

the low-risk group to glean added therapeutic advantage 

from targeting supplementary immune checkpoints. 

Within the realm of cancer treatment, therapeutic 

modalities geared towards the TME have risen to 
prominence, recognized for their promise in leveraging 

the pivotal role that the TME holds in steering tumor 

progression and influencing responses to standard 
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therapeutic regimens [56–59]. Notably, assessment of 

TME scoring unveiled a notable elevation in immune 

scores within the TME of the low-risk cohort, distinct 

from their high-risk counterparts, with a statistically 

significant divergence. This compelling observation lends 

credence to the notion that patients harboring low-risk 

profiles might exhibit heightened responsiveness to 

immunotherapy. Adding to these insights, a systematic 

analysis appraising the comparative immunotherapy 

advantages between the high-risk and low-risk groups 

corroborated the prospective amplified therapeutic  

gains for individuals encompassed within the low-risk 

classification.  

 

Although PITX3’s role in brain development is well 

established, its involvement in tumorigenesis remains 

largely unknown. Reports have indicated high methy-

lation levels of PITX3 in breast cancer [60]. PITX3 

promoter methylation also impacts the recurrence-free 

survival of prostate cancer patients [61]. However,  

the precise role of PITX3 in LUAD progression has yet 

to be elucidated. Our study revealed that PITX3 

exhibited the highest HR among all prognostic signature 

genes. PITX3 may contribute to LUAD progression. 

The survival analysis yielded compelling evidence 

linking heightened PITX3 expression with unfavorable 

prognostic outcomes among LUAD patients, thus under-

lining its potential as a viable therapeutic target. Of 

noteworthy significance, the ECM-receptor interaction 

pathway emerges as a pivotal participant in a multitude 

of tumor-associated processes, encompassing shedding, 

adhesion, degradation, motility, and proliferation [62]. 

This pathway's pivotal role in tumor invasion and meta-

stasis has been decisively affirmed within the context  

of gastric cancer [63]. Furthermore, comprehensive 

investigations have unequivocally demonstrated that the 

intricate interplay between the extracellular matrix 

(ECM) and cellular receptors constitutes a fundamental 

conduit underpinning the progression and metastasis of 

colorectal cancer [64]. Within the high-risk subgroup, 

PITX3 manifested conspicuous enrichment within  

the ECM-receptor interaction pathway. This observation 

notably intimates that PITX3's influence might extend to 

interfering with the trajectory of LUAD progression by 

active involvement within the ECM-receptor interaction 

pathway, potentially engendering adverse prognostic 

implications for patients grappling with LUAD. 

 
Despite its limitations, valuable insights are offered by 

this study into the expression of prognostic genes 

associated with LUAD, thereby laying the groundwork 

for subsequent investigations into their underlying 

molecular mechanisms. 

 
In summary, the ICD-related signatures formulated 

within this study facilitate the prognostic prediction of 

LUAD patients grounded in the expression of pertinent 

genes. Furthermore, this work paves the way for potential 

applications of immunotherapy in the realm of LUAD 

treatment. It is important to note, however, that further 

experimental endeavors are warranted to substantiate 

and validate these findings. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Single-cell dimensionality reduction clustering. (A) A UMAP plot showing the cell distribution 
characteristics in 12 samples. (B) A UMAP plot showing all cells were clustered into 13 clusters. 
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Supplementary Figure 2. t-SNE plot showing the distribution characteristics of samples in bulk RNA-seq.  
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Supplementary Figure 3. Assessing differences in immune cell infiltration in high- and low-risk groups using 7 algorithms. 
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Supplementary Table 
 

Supplementary Table 1. 
Genes involved in 
immunogenic cell death. 

ATG5 

BAX 

CALR 

CASP1 

CASP8 

CD4 

CD8A 

CD8B 

CXCR3 

EIF2AK3 

ENTPD1 

FOXP3 

HMGB1 

HSP90AA1 

IFNA1 

IFNB1 

IFNG 

IFNGR1 

IL10 

IL17A 

IL17RA 

IL1B 

IL1R1 

IL6 

LY96 

MYD88 

NLRP3 

NT5E 

P2RX7 

PDIA3 

PIK3CA 

PRF1 

TLR4 

TNF 

 

 

 
 


