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INTRODUCTION 
 

Osteosarcoma is an aggressive malignancy of the 

skeletal system [1, 2]. It develops rapidly and has a poor 

prognosis and is associated with high mortality rates in 

children and adolescents [3, 4]. The prognosis of 

osteosarcoma patients has greatly improved over the 

last few decades, due to advances in chemotherapy and 

surgical resection [5, 6]. However, given the lack of 

early screening markers, it was estimated that about 

20% of osteosarcoma patients have metastases at 

diagnosis, especially lung metastases [7]. There was 

also no significant improvement in the 5-year survival 

rate [8, 9]. As a result, identifying potential biomarkers 

for osteosarcoma is of great clinical importance. 
 

Mitochondria have a vital role in the regulation of 

cellular life activities in eukaryotic cells [10, 11]. 

Mitochondria participate in the regulation of various 

physiological mechanisms such as the maintenance of 

Ca2+ homeostasis [12], cell death [13], and cell 

proliferation [14]. As a key site of cellular metabolism, 

major biochemical reactions such as the tricarboxylic 

acid cycle, oxidative phosphorylation, and fatty acid 

oxidation occur in mitochondria [15, 16]. In addition, 

despite the extremely active glycolytic function of 

tumor cells, many of them still have functional 

mitochondria, and their function is closely related to the 

migration and invasion of tumor cells [17, 18]. In 

osteosarcoma cells, it has been demonstrated recently 

that mitochondria can regulate various death 

mechanisms [19, 20]. Furthermore, through influencing 

metabolism, mitochondria can change how an 
osteosarcoma behaves biologically [21, 22]. However, 

the specific involvement of mitochondrial-related genes 

(MRGs) in the development and prognosis prediction of 
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ABSTRACT 
 

Mitochondria play a vital role in osteosarcoma. Therefore, the purpose of this study was to investigate the 
potential role of mitochondrial-related genes (MRGs) in osteosarcoma. Based on 92 differentially expressed 
MRGs, osteosarcoma samples were divided into two subtypes using the nonnegative matrix factorization 
(NMF). Ultimately, a univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox 
analysis were performed to construct a prognostic risk model. The single-sample gene set enrichment analysis 
assessed the immune infiltration characteristics of osteosarcoma patients. Finally, we identified an 
osteosarcoma biomarker, malonyl-CoA decarboxylase (MLYCD), which showed downregulation. Osteosarcoma 
cells proliferation, migration, and invasion were effectively inhibited by the overexpression of MLYCD. Our 
findings will help us to further understand the molecular mechanisms of osteosarcoma and contribute to the 
discovery of new diagnostic biomarkers and therapeutic targets. 
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osteosarcoma remains unknown. Therefore, elucidation 

of the abnormal expression mechanism of MRGs and 

exploration of their specific role as potential biomarkers 

for the effective diagnosis and prognostic evaluation of 

patients with osteosarcoma are of utmost importance. 

 

A systematic study was conducted on MRGs in 

osteosarcoma, identifying two subtypes of patients with 

different prognostic features. In this study, a prognostic 

model was established to distinguish patients with 

different risks of osteosarcoma. The model demonstrated 

robust prognostic performance and was validated in the 

GSE21257 cohort. Furthermore, levels of immune 

infiltration in patients with osteosarcoma were assessed 

and their relationship to risk was explored. Malonyl-

CoA decarboxylase (MLYCD) was downregulated in 

osteosarcoma cells compared to osteoblasts and may 

serve as a promising biomarker. Last, overexpression of 

MLYCD inhibited proliferation, migration, and invasion 

of the osteosarcoma cell line MG63. In conclusion, this 

study offers novel evidence for the exploration of 

prognostic biomarkers and therapeutic targets for 

osteosarcoma. 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

The study’s summary is presented in Figure 1.  

From the TARGET database, osteosarcoma samples 

with clinical information and transcriptome data  

were obtained (https://ocg.cancer.gov/programs/target). 

Sequencing data and clinical information were 

complete in 84 cases. Using the GTEx database, we 

obtained gene expression data for musculoskeletal 

tissues (http://www.gtexportal.org), comprising a total 

of 396 healthy individuals. Prior to analysis, log-

transformation of FPKM (fragments per kilobase of 

transcript per million mapped reads) transcriptome data 

and conversion to transcripts per million (TPM).  

A total of 1,136 mitochondrial-localized genes 

(Supplementary Table 1) were obtained from MitoCarta 

3.0 (https://www.broadinstitute.org/mitocarta/), based 

on subcellular localization [23]. From the GEO 

database, we downloaded the GSE21257 dataset, which 

contained 53 osteosarcoma patients (https://www.ncbi. 

nlm.nih.gov/geo/). The GSE225588 dataset comprises 

 

 
 

Figure 1. Flow chart of the program process. 

https://ocg.cancer.gov/programs/target
http://www.gtexportal.org/
https://www.broadinstitute.org/mitocarta/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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six adjacent normal tissues and six osteosarcoma 

tissues, and GSE99671 dataset comprises eighteen 

adjacent normal tissues and eighteen osteosarcoma 

tissues. 

 

Biological functions and protein-protein interaction 

(PPI) networks 

 

The GTEx gene expression dataset was merged with 

the TARGET gene expression dataset. “VennDiagram” 

package was used to identify MRGs from the three 

gene groups TARGET, GSE21257, and GTEX.  

Cut-off values for screening differentially expressed 

MRGs in osteosarcoma patients were set as expression 

>0.5, log2 FC>1, and adjusted P<0.05. Gene Ontology 

(GO) analysis was used to explore the biological 

function, pathway, or cellular localization of the 

enrichment. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) was used to explore the enrichment 

pathways. Interactions between differentially expressed 

MRGs were analyzed by the STRING online tool 

(http://www.string-db.org/). Cytoscape software (version 

3.7.2) was used for the construction and visualization of 

PPI networks. 

 

The clustering analysis 

 

The subtypes based on MRGs in the osteosarcoma were 

determined using the non-negative matrix factorization 

(NMF) algorithm, through the “NMF” R package. The 

NMF algorithm is an effective method in bioinformatics 

to reduce the dimensionality of data such as gene 

expression microarrays. Clustering k-values ranging 

from 2 to 10 were tested, with the optimal k-value 

determined to be 2 based on the affinity coefficient. The 

levels of immune infiltration between clusters were 

compared using the MCPcounter algorithm. 

 

Development of the prognostic signature 

 

A univariate Cox regression analysis was performed 

utilizing the “survival” R package, considering a 

significance level of p<0.05 to determine the prognostic 

relevance of 92 MRGs. The “glmnet” R package was 

employed to conduct 1000 iterations of LASSO 

analysis. Finally, through multivariate regression 

analysis, the key prognostic genes were determined and 

acquisition of risk coefficients for each gene were 

accomplished. Based on gene expression, a risk score 

equation was constructed as shown: 
 

1
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=
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The Coefi denotes the risk coefficients, and xi denotes 

the MRG expression value. 

Evaluation and validation of prognostic signature 

 

Patients with osteosarcoma were subjected to risk score 

calculation, and subsequently sorted by ascending order. 

Based on the median, the patients were then categorized 

into low and high-risk groups. The analysis of prognosis 

disparity between the two groups was conducted, and 

time-related ROC curves were plotted using the 

“timeROC” R package. Univariate and multivariate Cox 

regression analyses were used to explore independent 

prognostic factors in clinical characteristics. By using 

the “rms” package, a nomogram was established, and 

calibration curves was used to compare actual and 

predicted results. 

 

Immune infiltration analysis 

 

The relative levels of immune infiltration were 

estimated by utilizing the single-sample Gene Set 

Enrichment Analysis (ssGSEA). Enrichment scores 

derived from ssGSEA were then used to represent the 

relative abundance of each leukocyte subpopulation, 

which was normalized to a unit distribution ranging 

from 0 to 1. The biological similarity of infiltrating 

immune cells was estimated via the application of 

multidimensional scaling and a Gaussian fitting model. 

 

Cell culture 

 

Two osteosarcoma cell lines (143B and MG63) and 

osteoblasts (hFOB 1.19) were obtained from the Cell 

Bank of the Chinese Academy of Sciences (Shanghai, 

China). Cells were cultured accordingly in DMEM 

(Procell, China) supplemented with 1% penicillin–

streptomycin solution (Biosharp, China) and10% fetal 

bovine serum (FBS, Gibco, USA). A 37° C and 5% 

CO2 environment was used for osteosarcoma cells, 

and 34° C and 5% CO2 environment for osteoblasts. 

Trypsin-EDTA (Gibco, USA) was used to digest the 

cells. 

 

Extraction of RNA and RT-qPCR 

 

Triazole treatment was applied to the cells, followed by 

extraction of total RNA and subsequent generation of 

cDNA through reverse transcription. Using qPCR kits 

and GAPDH as an internal reference, MLYCD 

expression was detected and quantified using relative 

qPCR. The primers used for MLYCD were those 

previously reported by Chen et al. [24]. The specific 

sequences are shown in Supplementary Table 2. 

 

Lentivirus infection 

 

The ability of the stable transfection strain to elevate 

MLYCD levels was measured in the MG63 cell line and 

http://www.string-db.org/
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compared to a negative control lentivirus. The stable 

transfectants were selected with puromycin (1.0µg/mL), 

and the overexpression of MLYCD was confirmed by 

Western blot. 

 

Western blotting 

 

Protein extraction from cells was performed using 

RIPA lysis buffer, followed by quantification using  

the BCA method. Subsequently, the protein samples 

were then separated by 10% SDS-PAGE gel electro-

phoresis and transferred onto a PVDF membrane. 

Blocking was performed with 5% skim milk, followed 

by incubation with anti-MLYCD (Proteintech: 15265-

1-AP) antibody at 4° C overnight. To remove unbound 

antibodies, the membranes underwent three 10-min 

washes with TBST solution. Next, the second antibody 

was incubated for 2 h at room temperature. Finally, the 

expression of MLYCD was observed. 

 

CCK-8 and colony formation assays 

 

A CCK-8 and colony formation assay were used  

to evaluate osteosarcoma cell proliferation. A total  

of 2000 cells with 100 μL medium were seeded  

in 96-well dishes. At the times indicated, each  

well was incubated for 2.5 hours at 37° C with  

10 ul of CCK-8 solution. The absorbance of each  

well was measured at 450 nm. Regarding the  

clone formation assay, 1000 transfected cells were 

cultivated in 6-well culture dishes, and subsequent to a 

14-day incubation period, the cells were fixed and 

stained. 

 

Cell migration and invasion assays 

 

Transwell assays and wound healing assays were  

used to assess osteosarcoma cell migration and 

invasion. For the wound healing assay, approximately 

95% confluence was reached after osteosarcoma  

cells were seeded onto a 6-well plate. The cell bed 

was scratch wounded with a 100-ul tip, after which 

the cells were cultured in serum-free medium. 

Intercellular spaces were observed and photographed 

with an inverted microscope within 0 and 24 h. For 

transwell experiments, osteosarcoma cells were 

seeded into the upper cell compartment, and 600 μL 

of medium containing 10% FBS was added to the 

lower cell compartment. The cells were fixed and 

stained 24 hours after incubation. 

 

Clinical specimens 

 

Three samples of osteosarcoma and three samples of 

adjacent healthy tissues were collected. 

Immunohistochemical staining 
 

The levels of MLYCD were assessed using immuno-

histochemistry in accordance with established protocols. 

The tissue sections of osteosarcoma underwent staining 

using a primary antibody, namely rabbit anti-MLYCD 

antibody (Proteintech, 15265-1-AP, diluted at a ratio of 

1:200), after which the application of goat anti-rabbit 

IgG antibody. 

 

Statistical analysis 
 

Data were analyzed using SPSS Statistics 22.0 and R 

software (v4.2.0). Students’ t-test was used to compare 

the differences between the two groups. A significance 

level of P<0.05 was used to determine whether the 

differences were statistically significant. 

 

Data availability 
 

The datasets supporting the conclusions of this  

article are available in the TARGET-OS (https://ocg. 

cancer.gov/programs/target), the Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/), the TCGA 

database (https://portal.gdc.cancer.gov/). 

 

RESULTS 
 

Identification and evaluation of subgroups 
 

We considered the intersection of MRGs with the three 

datasets, and the Venn diagram showed that 804 MRGs 

were present in all three datasets (Supplementary Figure 

1). After merging TARGET and GTEx and post-

transforming them with TPM, a total of 111 MRGs 

were identified by differential analysis. To filter out 

low-expressed genes, we selected MRGs with 

expression greater than 0.5 in the osteosarcoma, and a 

total of 92 MRGs were selected and visualized using 

heatmaps (Figure 2A). The GO analysis showed 92 

MRGs were mainly enriched in mitochondrial 

metabolic process (Supplementary Figure 2). The 

KEGG results showed that these MRGs were mainly 

enriched in oxidative phosphorylation (Supplementary 

Figure 3). Additionally, we conducted a PPI analysis; 

the larger the node, the darker the color, and the more 

interacting proteins. A significant role was played by 

MLYCD in the PPI network (Supplementary Figure 4). 
 

To determine the molecular subtypes of patients with 

osteosarcoma, the following studies were performed. 

First, 92 differentially expressed MRGs matrices were 

constructed. Second, 84 samples from the TARGET 

cohort were included in the NMF analysis, and C1 and 

C2 were formed based on covariance and RSS when 

k=2 (Figure 2B–2D). We further evaluated the 

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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difference in survival between the two subtypes and 

found that the C1 subtype had a better survival rate 

than the C2 subtype (Figure 1E, P<0.001). The C2 

subtype exhibited low levels of immune infiltration, 

with significant differences in B lineage and CD8 T 

cells, which was consistent with the concept of 

immune response inhibition in cancer (Figure 2F, 2G). 

In Sankey’s study, it was found that patients with the 

C1 subtype had a better prognosis (Supplementary 

Figure 5). 

Construction of prognostic signature 

 

For the purpose of determining prognostic risk models, 

92 MRGs were analyzed. First, 12 prognosis-related 

MRGs were identified using univariate regression 

analysis (Figure 3A). Next, LASSO regression analysis 

was performed on the 12 MRGs to obtain 11 genes 

(Figure 3B, 3C). Finally, the modeling parameters and 

six model genes (EPHX2, NUDT13, MLYCD, 
ALDH1L2, ABCB6, COX6A2) were obtained using 

 

 
 

Figure 2. Clustering based on NMF. (A) The heatmaps of differentially expressed mitochondrial genes. (B) The cophenetic correlation 

coefficient is used to reflect the stability of the cluster obtained from NMF. (C) RSS is used to reflect the clustering performance of the model. 
(D) Consensus map clustered via the NMF algorithm. (E) Kaplan–Meier curve analysis for the two subtypes. (F, G) Immune scores of cells of 
the tumor microenvironment (TME) showing significant differences. 
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multivariate regression analysis. Upon visualizing the 

parameters of the model genes and their coefficients, it 

was observed that only MLYCD exhibited a negative 

correlation with the risk feature, whereas the other five 

genes exhibited a positive correlation with the risk 

feature (Figure 3D). We also performed correlation 

analysis and visualized the model genes (Figure 3E). 

 

Evaluation of the prognostic signature 

 

Osteosarcoma samples were divided into high-risk score 

and low-risk score groups according to the score 

medians, and survival curves were plotted using the 

Kaplan–Meier (KM) curve. The low-risk group had a 

significantly better prognosis than the high-risk group 

(Figure 4A, P<0.001). ROC analysis showed that the 

area under the curve (AUC) of the model was >0.77  

at 1, 3, and 5 years (Figure 4B). Additionally, the 

distribution of risk scores and survival status revealed a 

higher risk score was associated with a higher 

probability of death. (Figure 4C). We performed 

principal component analysis (PCA) to demonstrate the 

predictive power of our model, which indicated 

significant differences in patient distribution (Sup-

plementary Figure 6). We also performed survival 

analysis for each model gene and found that NUDT13, 

MLYCD, ALDH1L2, ABCB6, and COX6A2 were 

associated with patient prognosis (Figure 4D–4I). In 

addition, MLYCD was shown to be the sole protective 

factor (P=0.004). 

 

Verification of the prognostic signature 

 

To demonstrate the predictive power of our established 

model, the GSE2125 cohort was used as a test set for 

validation. It was also significant that the low-risk 

group had a better prognosis than the high-risk group 

(Figure 5A, p<0.05). As the patient’s risk increased, 

their mortality rate also increased (Figure 5B). The 

AUC for overall survival at 1, 3, and 5 years was 

greater than 0.66 (Figure 5C). PCA analysis showed 

that the model could well differentiate between 

 

 
 

Figure 3. Construction of mitochondrial-related gene signature. (A) Univariate analysis of potential prognostic factors. (B, C) Lasso 
regression for MRGs in univariate Cox regression. (D) The coefficients and P-value of the six MRGs. (E) Correlation diagram of six gene 
expression levels. 
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high- and low-risk patients (Figure 5D). According  

to the single gene survival analysis, the GSE21257 

cohort had similar results (Supplementary Figure 7). In 

summary, our model also had good predictive power in 

the external dataset GSE21257. 

 

Independent prognosis and clinical relevance 

 

Univariate Cox analyses were performed for the 

TARGET cohort after integrating the risk scores and 

clinical information. The risk score was a significant 

predictor of osteosarcoma, as shown in Figure 6A. 

Multivariate Cox analysis indicated that poor prognosis 

was significantly associated with risk score (Figure 6B). 

The AUC of the risk score was 0.770 (Figure 6C). This 

indicates that our risk model was capable of effectively 

predicting patient prognosis. After that, we plotted a 

heatmap of model genes versus clinical traits to roughly 

demonstrate the relationship between genes and clinical 

traits (Figure 6D). The MLYCD expression levels were 

negatively correlated with risk scores, suggesting that 

MLYCD may act as a protective factor; however, 

ABCB6 was positively correlated with the risk score. 

Box plots showing the relationship between clinical and 

risk scores (including metastasis, sex, and age) revealed 

that age and sex did not differ between subgroups 

(Figure 6E–6J). 

 

Clinical nomogram and immune characteristics 

 

To predict the risk of osteosarcoma in patients  

and understand the relationships between variables, a 

 

 
 

Figure 4. Prognostic analysis of the MRGs signature. (A) Kaplan–Meier survival curve analysis of patients in the high-risk group and 

low-risk group. (B) The AUC of time-dependent ROC curves. (C) The distributions of survival status and risk score. (D–I) Kaplan–Meier survival 
analysis of single genes in the TARGET cohort. 
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nomogram was constructed. The results showed that our 

constructed risk model contributed the most to 

predicting the outcome (Figure 7A). In addition, 

prediction accuracy of the columnar graph was 

evaluated using the C-index. The column line graph 

showed an ideal predictive ability for the 1-, 3-, and 5-

years’ survival probability of patients (Figure 7B, 7C 

and Supplementary Figure 8). Using the TARGET 

dataset, an ssGSEA was conducted to evaluate immune 

cell infiltration levels. Immune cell infiltration and 

related functions in the high-risk group showed a 

downward trend (Figure 7D). To investigate the 

relationship between six genes (EPHX2, NUDT13, 

MLYCD, ALDH1L2, ABCB6, COX6A2) and immune 

infiltration, correlation plots were generated. Positive 

correlations were found between immune infiltration 

and MLYCD expression (Figure 7E). There was 

evidence to show that low-risk patients may experience 

higher levels of immune cell infiltration. 

 

MLYCD is lowly expressed in osteosarcoma 

 

Only MLYCD was identified as a protective gene 

(Figure 3D), so further experiments on this gene were 

performed. First, its expression was verified using the 

GEO dataset, and both GSE225588 and GSE99671 

showed that MLYCD was lowly expressed in 

osteosarcoma tissues (Figure 8A, 8B). Next, the 

expression level of MLYCD gene in osteosarcoma cell 

lines (MG63 and 143B) and osteoblasts (hFOB 1.19) 

were verified by PCR (Figure 8C) and western blotting 

(Figure 8D, 8E). The expression level of MLYCD in 

osteosarcoma cells was lower than osteoblasts. Finally, 

by IHC staining of three pairs of osteosarcoma tissues 

and adjacent tissues, MLYCD was found to be lowly 

expressed in in osteosarcoma tissues (Figure 8F). All of 

the above results suggested that MLYCD was lowly 

expressed in osteosarcoma tissues. 

 

MLYCD suppressed osteosarcoma cell proliferation, 

migration, and invasion 

 

To further investigate the role of MLYCD in 

osteosarcoma, overexpression of MLYCD in the MG63 

cell line. Western blot confirmed the up-regulated 

expression of MLYCD in MG63 cells by lentiviral 

transduction (Figure 9A). CCK8 and plate colony 

formation assay showed that MLYCD overexpression 

led to decreased MG63 cell proliferation (Figure 9B–

9D). In wound healing assays, MLYCD overexpression 

significantly suppressed MG63 cell migration (Figure 

9E, 9F). In addition, transwell assays showed that 

MLYCD overexpression significantly reduced MG63 

cell migration and invasion (Figure 9G–9J). In this 

study, the upregulation of MLYCD inhibits MG63 cell 

proliferation, migration, and invasion. 

 

 
 

Figure 5. Validation of the MRGs signature in the GSE21257 dataset. (A) Kaplan–Meier survival curve analysis of patients in the high-

risk group and low-risk group. (B) The distributions of survival status and risk score. (C) The AUC of time-dependent ROC curves. (D) PCA plot 
based on the MRGs signature. 
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DISCUSSION 
 

Osteosarcoma is the most common primary malignant 

bone tumor worldwide, and it primarily affects children 

and young adults [25, 26]. Despite progress in surgical 

and comprehensive treatment strategies, prognostic 

markers and effective targeted therapies are still lacking 

[27–30]. Mitochondria are central nodes of cellular 

metabolism and fate determination [31]. Mitochondria 

are important bioenergetic organelles that produce ATP 

to meet the energy needs of cells. In addition, they are 

essential for the regulation of Ca2+ homeostasis and 

signaling [32], redox homeostasis [33], and for 

determining cell survival or death [34]. In osteosarcoma, 

synthesizing and catabolizing reactions provide cancer 

cells with the ability to cope with the demands of 

proliferation and adapt to unfavorable survival 

conditions. Therefore, identifying MRGs may help 

discover new therapeutic targets and improve patient 

survival. 

 

In this study, we utilized the NMF algorithm to perform 

cohesive clustering on patients with osteosarcoma, 

identifying two distinct groups with different prognosis. 

 

 
 

Figure 6. Clinical correlation analyses. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) AUC value predicts clinical 
characteristics and risk score. (D) Heatmap and the clinical characteristics of the two groups. (E–G) Relationship between risk score and 
clinical pathological factors. 
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Subsequently, we constructed a robust prognostic model 

whose accurate predictive ability was validated using an 

external validation set. Additionally, we discovered that 

MLYCD serves as a protective factor in the model. The 

study demonstrated that MRGs can serve as indepen-

dent predictors of osteosarcoma. A line chart was 

constructed using age, sex, signature, and metastasis to 

display good predictability of the 1-, 3-, and 5-year 

survival rates, which may help promote individualized 

treatment for osteosarcoma patients. Additionally, we 

found that high-risk groups exhibit a low degree of 

immune infiltration. Furthermore, we identified a 

potential therapeutic target, MLYCD, which is positively 

correlated with immune cells. 

 

Various prognostic models associated with mitochondria 

have been developed. For example, Li et al. (2022) 

analyzed RNAseq data from 594 patients with Lung 

adenocarcinoma from TCGA and obtained a 6-gene 

signature with predictive prognostic value [35]. Jiang et 

al. (2021) also proposed a 16-gene prognostic marker as 

a potential survival predictive marker [36]. However, the 

 

 
 

Figure 7. Nomogram and immune signature of the risk model. (A) Nomogram based on risk score, age, sex, and metastasis for 
predicting the 1-, 3-, and 5-year death rate. (B, C) Calibration plots of the nomogram for predicting the 3- and 5-year’ survival of 
osteosarcoma. (D) Relationship between risk score and immune cell infiltration and related functions via ssGSEA analysis. (E) Relationship 
between MRGs signature and immune cell infiltration and related functions via ssGSEA analysis. 
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results of these studies have not been validated in 

experiments. In addition, Zhang et al. (2022) established 

a 16-mitochondrial gene signature in osteosarcoma [37]. 

In this study, the TARGET tumor dataset and the normal 

tissue GTEx dataset were combined to develop a 

prognostic model for osteosarcoma osteosarcoma-related 

markers. The model was validated using an independent 

database and its reliability was verified in experiments. 

MLYCD is a type of enzyme called propionyl-CoA 

carboxylase, which can catalyze the breakdown of 

propionyl-CoA into acetyl-CoA and carbon dioxide, 

providing a metabolic pathway for propionyl-CoA in 

mitochondria and peroxisomes. Mutations in the 

MLYCD gene can lead to a deficiency in propionyl-CoA 

carboxylase, a rare inherited metabolic disorder that 

presents as metabolic acidosis, hypoglycemia, and/or 

 

 
 

Figure 8. The expression levels of MLYCD. (A, B) The MLYCD expression level in osteosarcoma and adjacent paired samples, based on 
the GSE99671 and GSE225588 cohort. (C) The qRT-PCR result of MLYCD in hFOB 1.19, 143B, MG63 cell lines. (D, E) The western blotting result 
of MLYCD in hFOB 1.19, 143B, MG63 cell lines. (F) The expressions of MLYCD in tumor and adjacent normal tissues. *P<0.05, **P<0.01 and 
***P<0.001. 
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cardiomyopathy [38–40]. Currently, there is limited 

research on the role of MLYCD in cancers. Yizhak et al. 

found that silencing the MLYCD gene with small 

interfering RNA (siRNA) significantly inhibited the 

proliferation of RPMI-8226 and K562 [41], but MLYCD 

was not been studied in osteosarcoma at the time. Our 

KM survival curves showed that MLYCD was a good 

prognostic indicator and that its expression level was 

 

 
 

Figure 9. The effect of MLYCD on osteosarcoma cell proliferation, migration, and invasion. (A) Protein expression levels of MLYCD 

were measured by western blotting. (B–D) CCK-8 and colony-formation assays were used to assess osteosarcoma cell proliferation. (E, F) The 
wound healing assay was performed to estimate the effect of MLYCD overexpression on cell migration. (G–J) The transwell assay was 
conducted to assess the effect of MLYCD overexpression on osteosarcoma cell invasion and migration. Scale bar = 100um. *P<0.05, **P<0.01, 
and ***P<0.001. 
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positively correlated with immune cells. Therefore, we 

investigated whether MLYCD was downregulated in 

osteosarcoma cells and found that overexpression of 

MLYCD significantly suppressed osteosarcoma cell 

proliferation, migration, and invasion. According to 

these findings, MLYCD may be a potentially useful 

therapeutic target. 

 

The main limitation of our study was the small number 

of tumor samples. In future research, we plan to apply a 

larger sample size to build a more accurate prediction 

model. In addition, the mechanism of action of MLYCD 

on osteosarcoma progression needs further to be 

investigated by further molecular biology experiments. 

 

CONCLUSIONS 
 

In summary, we identify molecular subtypes of 

osteosarcoma and establish prognostic models based on 

MRGs. The model showed good predictive performance 

in training and independent testing. We also confirmed 

the cancer suppressive function of MLYCD by pro-

liferation and migration related experiments. The results 

of this study suggest that our signature may be used to 

evaluate the prognosis and provide a potential target for 

the treatment of osteosarcoma. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Venn diagram of mitochondrial-related genes of the four data sets. 
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Supplementary Figure 2. Results of GO enrichment analysis. 
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Supplementary Figure 3. Results of KEGG enrichment analysis. 
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Supplementary Figure 4. PPI network of the 92 MRGs. 
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Supplementary Figure 5. Sankey diagram to reveal the distribution of samples. 
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Supplementary Figure 6. Distribution of samples after PCA. 

 

 
 

Supplementary Figure 7. Kaplan–Meier survival analysis of the six genes in the GSE21257 dataset. 



www.aging-us.com 12815 AGING 

 
 

Supplementary Figure 8. The calibration curve at 1-year. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. MRGs list from MitoCarta3.0. 

 

Supplementary Table 2. The primer sequences of MLYCD. 

Gene Forward Reverse 

MLYCD 5- TTG CAC GTG GCA CTG ACT-3 5- GGA TGT TCC TTC ACG ATT GC-3 

 


