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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the major cancer 

type of liver cancer. High mortality, high rates  

of recurrence, and high rates of metastasis are 

characteristics of hepatocellular carcinoma [1]. 

Transarterial chemoembolization (TACE), ablation, 

liver transplantation (LT), and surgical resection are all 

curative-intent therapies for early-stage HCC [2, 3]. 

However, HCC is not entirely cured by the therapies 

due to the characteristics [3]. Hence, it is imperative  

to investigate useful prognostic biomarkers and 

therapeutic targets to address the shortcomings in the 

diagnosis and treatment of HCC. 

 
Long non-coding RNA (lncRNA), a subtype of ncRNAs 

whose length greater than 200nt, could competitively bind 

to the miRNA, a kind of single-stranded ncRNA with 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a malignant tumor with a high prevalence and fatality rate. CBX2 has been 
demonstrated to impact the development and advancement of various cancers, albeit it has received limited 
attention in relation to HCC. In this study, CBX2 and CEP55 were screened out with the refined triple regulatory 
networks constructed by total RNA-seq datasets (TCGA-LIHC, GSE140845) and a robust prognostic model. 
Aberrantly higher expression levels of CBX2 and CEP55 in HCC may be caused by CNV alterations, promoter hypo-
methylation, open chromatin accessibility, and greater active marks such as H3K4me3, H3K4me1, and H3K27ac. 
Functionally, CBX2, which was highly correlated with CD44, shaped a cancer stem cell-like phenotype by positively 
regulating cell-cycle progression, proliferation, invasion, metastasis, wound healing, and radiation resistance, 
revealed by combining bulk RNA-seq and scRNA-seq datasets. CBX2 knockdown validated its role in affecting the 
cell cycle. Importantly, we revealed CBX2 could activate gene by cooperating with co-regulators or not rather than 
a recognizer of the repressive mark H3K27me3. For instance, we uncovered CBX2 bound to promoter of CTNNB1 
and CEP55 to augment their expressions. CBX2 showed a highly positive correlation with CEP55 at pan-cancer 
level. In addition, CBX2 and CEP55 may enhance extracellular matrix reprograming via cancer-associated 
fibroblast. Surprisingly, patients with high expression of CBX2 or CEP55 exhibited a higher response to 
immunotherapy, indicating that CBX2 and CEP55 may be promising therapeutic targets for HCC patients. 
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length 18-25 nt, to regulate the expression of target, that 

is, the regular network [4, 5]. In the regular network, the 

lncRNAs act as the competitive endogenous RNA 

(ceRNA), and this hypothesis was proposed from 

Salmena et al. [6]. So far, increasing evidence have 

reported that lncRNAs could serve as ceRNA to regulate 

the targets by binding the miRNA sponge competitively. 

For instance, in HCC, lncRNA NEAT1 altered the miR-

362-3p/MIOX axis to increase ferroptosis [7]. 

 

DUXAP8, MCM3AP-AS1 and CDKN2B-AS1 are over-

expressed in HCC, could be ceRNAs through miR-

422a/PDK2, miR-194-5p/FOXA1, and let-7c-

5p/NAP1L1 to promote HCC, respectively [8–10]. The 

DUXAP8/MCM3AP-AS1/CDKN2B-AS1 miR-424-

5p/CBX2/CEP55 axis, first mentioned in HCC, was 

discovered in this study.  
 

CBX2, as a key member of PRC1, recognized the sites 

modified by the repressive mark H3K27me3 to prevent 

gene transcription, indicating the abnormal expression 

of CBX2 in HCC could induce a majority of genes to be 

silenced [11].  
 

Here, we showed CBX2 may enhance gene expression of 

CEP55 or CTNNB1 rather than the repressive function, 

especially the genes related to cell cycle, suggesting a 

crucial role of CBX2 for the cell cycle. Additionally, we 

have identified that CBX2 expression is cooperatively 

augmented by miR-425-5p, CNV alterations, DNA hypo-

methylation, and higher active mark signals. CBX2 

affected the drug sensitivity or sensitivity by regulating 

the cell cycle pathway. Importantly, despite having a 

worse prognosis and a more advanced stage or grade, 

patients with high levels of CBX2 or CEP55 expression 

may still benefit more from immunotherapy. Furthermore, 

CBX2 or CEP55 could potentially serve as therapeutic 

targets for pan-cancer. 

 

MATERIALS AND METHODS 
 

RNA-seq data preparation, processing, and 

differential analysis 

 

From the TCGA database, we downloaded the 

expression profiles (mRNA and miRNA) and clinical 

data of human hepatocellular carcinoma (LIHC). 367 

HCC samples and 50 paired solid tumor-normal 

samples, as well as 371 HCC samples and 50 paired 

solid tumor-normal samples, respectively, made up the 

available mRNA and miRNA profiles. Downloaded 

from the GEO database was cohort GSE140845, whose 

miRNA count profile included 3 HCC samples 
connected to HCV and 3 paired normal samples. We 

performed quality control checks, read mapping 

operations, and finally generated the mRNA counts 

matrix using Fastp, HISAT2, and featureCounts, 

respectively, for the total RNA sequencing data in 

GSE140845 that were downloaded from SRP231432. 

The count matrices for mRNA, lncRNA, and miRNA 

were converted into TPM (transcripts per million) 

matrices and CPM (count per million mapped reads) 

matrices, respectively. MiRBaseVersions.db packages 

handled the conversion of immature miRNA names into 

mature miRNA names. 

 

Then, using a count matrix and the DESeq2 R packages, 

we identified the differential lncRNAs, miRNAs, and 

mRNAs between these two cohorts with |logFC| 1 and 

FDR 0.01.Meanwhile, we also download the RNA-seq 

expression profiles from ICGC (LIRI-JP, n = 231), 

GSE12455 (n=70), GSE138485 (n=64), GSE144269 

(n=140), GSE148355 (n=69), GSE25599 (n=20), 

GSE55758 (n=16), GSE94660 (n=42), and the 

microarray expression profiles from GSE22058 

(n=197), GSE25097 (n=511), to further validate the 

aberrant expression of CBX2, and CEP55. 

 

From the TCGA database, we also obtained the 

mutation status and CNV profiles for CBX2 and CEP55. 

 

Establishment of the initial and refined regulatory 

network for HCC 

 

Initial regulatory networks. Given that lncRNA may 

compete with miRNA for binding sites, acting as a 

natural sponge to indirectly control mRNA expression. 

As a result, the initial regulatory network was created 

using the methods described below: (1) DElncRNA-

DEmiRNA pairs were constructed using the lnc2base, 

ENCORI, and miRWalk2.0 databases; (2) DEmiRNA-

DEmRNA pairs were predicted and confirmed using the 

miRWalk2.0, miRWalk3.0 databases, and miRNAtap 

packages; (3) We combined the DElncRNA-DEmiRNA 

pairs and the DEmiRNA-DEmRNA pairs to create  

the triple regulatory network under the following 

circumstances: (a) DElncRNA-DEmiRNA pairs had at 

least one supporting piece of evidence; (b) DEmiRNA-

DEmRNA pairs had more than two supporting pieces of 

evidence; (c) up-regulated DElncRNA might down-

regulate DEmiRNA to up-regulate DEmRNAs; and (d) 

down-regulated DElncRNA might up-regulate 

DEmiRNA to down-regulate DEmRNAs. 

 

Refined regulatory network. In the initial regulatory 

network, the Pearson correlation coefficient (PCC) 

between DElncRNA and DEmRNA was calculated. The 

PCC 0.3 from the initial regulatory network was used to 

define the refined regulatory network. 
 

In order to determine the hub regulatory network, we 

used the Cytoscape plug-in CytoHubba. Based on the 
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sequences we obtained from LNCipedia, we then used 

lncLocator to predict the cellular location of 

DElncRNA. The initial regulatory network was 

visualized in Cytoscape, and the final regulatory 

network was done in R using the ggalluvial package. 

 

Functional enrichment analysis 

 

With the aid of the fgsea package, we conducted Gene 

Set Enrichment Analysis (GSEA) using signatures from 

MsigDB, such as Gene Ontology (C5.GOBP, 

C5.GOCC, and C5.GOMF), KEGG (C2), and Hallmark 

(H). The statistical significance of enriched signatures 

was determined by the false discovery rate (FDR) 

adjusted P 0.05. 

 

The DESeq2 package was used to find the differentially 

expressed genes related to CBX2/CEP55. The 

clusterProfiler package used the DEGs to investigate 

potential functional pathways or Gene Ontology 

(biological processes, molecular functions, and cellular 

components). 

 

Survival analysis, construction of prognosis model, 

and validation for HCC 

 

The CBX2/CEP55-related differentially expressed genes 

were discovered using the DESeq2 package. The DEGs 

were used by the clusterProfiler package to look into 

potential functional pathways or Gene Ontology 

(cellular components, biological processes, and 

molecular functions). 

 

Prognostic variables were chosen using the 

randomForest algorithm from the randomForestRSC 

package and the LASSO algorithm from the “glmnet” 

package. Candidates for prognostic DERNA served as 

the regression’s independent variable, and overall 

survival and overall status in TCGA-LIHC cohorts 

served as the response variables. Further PH testing was 

done on chosen prognostic RNAs. On the chosen, a 

multivariate Cox regression analysis was conducted and 

the ggforest package was used to visualize the results. 

RMS R package was used to confirm nomograms as 

well. The prognostic model’s reliability was verified 

both internally and externally. By randomly dividing the 

TCGA-LIHC into a training cohort and a validation 

cohort 50 times, internal validation was carried out. And 

for external validation, we used the ICGC-LIRI-JR 

expression profile. Calibration curves, the concordance 

index (C-index), and the time-dependent ROC curve 

were used to assess the prognostic model. 

 
The patients’ risk scores were determined using the 

normalized expression of confirmed prognostic RNAs 

and their corresponding regression coefficients in 

accordance with the prognostic model. Using the 

median risk score, the patients were then divided into 

high-risk and low-risk groups. To investigate the 

prognostic value of the risk score, univariate Cox 

regression analysis was used. In the Multiple Cox 

Regression Analysis, the risk score was combined with 

age, gender, and TNM stages. 

 

Methylation and expression analysis of CBX2 and 

CEP55 

 

The TCGA database was used to download the 

Methylation array 450K profiles that correspond to the 

expression profiles. Other methylation profiles, 

including GSE44909 (n=24), GSE73003 (n=40), 

GSE82176 (n=19), GSE37988 (n=124), GSE55752 

(n=16), and GSE113019 (n=60), were downloaded from 

GEO databases. The Spearman correlation coefficient 

was used to assess the relationship between 

CBX2/CEP55 and their DNA methylation level. We 

also investigate the effect of the CBX2/CEP55 

methylation level on overall survival. 

 

ATAC-seq, ChIP-seq analysis across human and 

mouse tumor cell or cell lines 

 

The TCGA database was used to download the ATAC-

seq profiles of the LIHC tumor samples, and the 

GSE173277 database was used to download the ATAC-

seq data of the normal liver. Additionally, we 

downloaded the ATAC-seq data for the following cell 

lines from GEO: GSE172053 for Hep3B, GSE180143 

for HepG2, GSE184796 for HepG2, GSE139190 for 

HepG2, GSE184797 for Huh7, and GSE192771 for 

Huh7. For the ATAC-seq analysis, we used Fastp for 

quality control steps, HISAT2 for read mapping onto 

GRCh38 reference steps, Samtools for bam file sorting, 

Macs2 for peak calling, and bdg2bw.sh for bedgraph 

file conversion into bw file. Finally, the WashU 

Epigenome Browser was used to visualize the tracks. 

 

Active marks H3K4me3, H3K3me1, and H3K27ac 

histone ChIP-seq datasets were downloaded from 

GSE112221 (liver tissues), GSE113879 (liver tissues), 

GSE76344 (HepG2), GSE184796 (HepG2), GSE92328 

(97L, LM3), GSE103730 (Huh7), GSE184797 (Huh7, 

PLC), GSE113879 (Hep3B), GSE172053 (Hep3B), 

GSE208334 (PLC), GSE168178 (Hu1545). We used 

analysis techniques that were similar to those used for 

ATAC-seq datasets. 

 

Data for CBX2 primitive ChIP-seq was downloaded 

from the following GSEs: GSE29611 (K562), 
GSE59395 (HepG2, A549, H1), and GSE34774 (293T). 

The analysis was conducted in the manner described 

above. IDR located the peaks that were shared. 
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HOMER2 also identified the potential motifs and the 

clusterProfiler package was used to conduct enrichment 

analysis on the genes whose close peaks were located 

on the promoters. 

 

As previously mentioned, additional pre-existing data 

referred to as CBX2 knockout or knockdown, such as 

GSE54580 (AML), GSE193477 (AML), GSE112227 

(Mouse bone), and GSE156413 (Mouse embryonic 

fibroblasts), were also gathered and analyzed. 

 

Immune infiltrate levels and immune checkpoint 

blockade therapy prediction 

 

The immune, stromal, and TME scores were estimated 

using the ESTIMATE packages. The Tumor Immune 

Estimation Resource 2 portal (TIMER2) databases’ 

immune infiltration data, including CD4 T cells and 

CD8 T cells, were downloaded using the CIBERSORT, 

MCPCOUNTER, EPIC, and QUANTISEQ algorithms. 

Immune inhibitor genes, immune cell score, and the 

Spearman correlation between CBX2/CEP55 were 

examined.  

 

Based on the genome mutation maf files obtained from 

TCGA-LIHC, the tumor mutational burden (TMB) 

score was calculated. The Tumor Immune Dys-

regulation and Exclusion (TIDE) was used to predict the 

effectiveness of immunotherapy and indicated immune 

dysfunction and escape. A low TIDE score indicated 

good efficacy. 
 

The CancerSEA database [12] and Thorsson 2018 

Immunity [13] were used to download the functional 

state signatures, which included proliferation and cell 

cycle. Kim et al. [14] provided a gene list for radiation 

resistance. Montironi et al. and Li et al. provided the 

inflammatory signature, inflamed signature, and IFN-

gamma signature used to forecast the response to ICB 

[15, 16]. The ssGSEA algorithm in the GSVA package 

was used to determine the scores for the gene sets. 

 

Protein array and pathway activity calculation 

 

The reverse phase protein array (RPPA) protein 

expression data were downloaded from the TCPA 

database. The GSCA database was used to download 

the pathway activity scores for the cancer-related 

pathways TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, 

hormone ER, hormone AR, EMT, DNA damage 

response, cell cycle, and apoptosis. 

 

Prediction of therapeutic agents 

 

Based on the transcriptomic profiles and drug 

sensitivity data in PRISM and CTRP2, we first used the 

oncoPredict package to train a drug sensitivity 

prediction model with tenfold cross-validation. The 

AUC value for each drug was then predicted using the 

fitted model and comparable transcriptomic data. 

 

mRNAsi index analysis 

 

A one-class logistic regression machine learning 

algorithm (OCLR), which built the model using training 

the human stem cell data from Progenitor Cell Biology 

Consortium (PCBC), calculated the mRNAsi scores of 

the TGCA-LIHC samples. 

 

Single-cell transcriptome datasets accession and 

analysis 

 

Human Protein Atlas (normal), GSE140228, 

GSE146115, GSE98638, GSE166635, GSE140228 and 

GSE125449 provided the scRNA datasets for HCC. The 

Seurat version 4 R package was used to process the 

scRNA datasets.  

 

Immunohistochemistry and immunofluorescent 

staining of CBX2 and CEP55 

 

Information on the distribution of proteins in human 

tissue and cells was available in the Human Protein 

Atlas (HPA, https://www.proteinatlas.org/), a database 

of the human proteome. CBX2 and CEP55 

immunohistochemical and immunofluorescent staining 

images in Supplementary Figures 5K, 11A, 11B  

were downloaded from HPA (https://www. 

proteinatlas.org/). Detailed website information is 

provided in the corresponding Supplementary Figure 

Legend. 

 

Statistical analysis 

 

R and RStudio were used to perform the statistical 

analyses. The Fisher’s test for discrete variables was 

used to compare the two groups. For continuous 

variables, Wilcoxon rank-sum tests and Student’s t 

tests were employed. The survival analysis was 

examined using the PH test and the log-rank test. It 

was deemed statistically significant when the adjusted 

p 0.05. 

 

Data and code available statement 

 

The source data and public datasets used in this 

manuscript are uploaded as Supplementary Materials. 

The code used in this project has been uploaded  

to https://github.com/mengqingren/ceRNA.CBX2. All 
data used in this study are available as mentioned in 

methods, and all source data are available from 

corresponding authors upon request. 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://github.com/mengqingren/ceRNA.CBX2
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RESULTS 
 

CBX2/CEP55-center hub-refined regulatory network 

 

Aberrant gene expression and a poor prognosis were 

frequently present at the time of HCC onset and 

progression. To identify the regulatory networks of 

mRNA and ncRNAs in HCC, we collected two total 

RNA sequencing cohorts TCGA-LIHC (HCC=361, 

Adjacent=50) and GSE140845 (HCC=3, Adjacent=3), 

performed differential gene analysis, and found 6980 

DEGs (2573 DElncRNA, 4278 DEmRNA, 129 

DEmiRNA) in TCGA-LIHC and 843 DEGs (113 

DElncRNA, 713 DEmRNA, 17 DEmiRNA). Finally, 

we established the shared genes responsible for the 

upregulation of 28 DElncRNA, 150 DEmRNA, and 6 

DEmiRNA in HCC compared to 24 DElncRNA, 130 

DEmRNA, and 2 DEmiRNA in adjacent tissue among 

these DEGs in two cohorts (Figure 1A and 

Supplementary Table 1). Heatmaps showed the top 20 

genes’ expression in relation to adjacent tissues and 

HCC. (Supplementary Figure 1A–1F).  

 

In order to create the refined regulatory network, we 

first tried to create a basic regulatory network using one 

of two methods: (1) up-regulated lncRNA up-regulated 

mRNA by down-regulating miRNA; and (2) down-

regulated lncRNA down-regulated mRNA by up-

regulating miRNA. By at least one database of 

lnc2base, ENCORI, and miRWalk2.0, the predicted 

lncRNA-miRNA pairs in the initial network were 

verified. While at least two databases - ENCORI, 

miRWalk2.0, miRWalk3.0, and miRNAtap -were used 

to confirm the miRNA-mRNA pairs. Finally, using 37 

DElncRNAs (16 up-regulated, 21 down-regulated), 61 

DEmRNAs (28 up-regulated, 33 down-regulated), and 8 

DEmiRNAs (6 up-regulated, 2 down-regulated), the 

initial regulatory network was completed (Sup-

plementary Figure 1D). We created the refined triple 

regulator network with 246 strategy-one routes (14 

lncRNAs, 2 miRNAs, 25 mRNA), and 77 strategy-two 

routes (11 lncRNAs, 6 miRNAs, 17 mRNAs), by 

filtering out the Pearson Correlation Coefficient greater 

than 0.3 between lncRNA and mRNA (Figure 1D).  

 

CytoHubba, a Cytoscape plug-in, was used to determine 

the hub-refined regulatory network [17]. The refined 

network allowed us to isolate two hub regulatory 

networks: Networks centered on the first strategy 

(CBX2/CEP55/MCM2) and the second strategy (ESR1) 

(Figure 1E and Supplementary Figure 2A). Through 

experimentation, it had been demonstrated that ESR1 

prevented the growth and metastasis of HCC [18]. 

Tumor cell migration and proliferation were facilitated 

by DUXAP8, CDKN2B-AS1, and MCM3AP-AS1 in 

HCC [8–10]. Fortunately, there was little evidence that 

DUAXP8, CDKN2B-AS1, and MCM3AP-AS1 

functioned as ceRNAs to control the expression of 

CBX2, CEP55, and MCM2 by competitively binding 

has-miR-424-5p in the cytoplasm. To determine and 

confirm the target sites of lncRNA-miRNA pairs and 

miRNA-mRNA pairs, we used miRanda [19] (Figure 

1F). As predicted by lncLocator2 [20], the lncRNAs 

DUAXP8, CDKN2B-AS1, lnc-RSG5-1, and MCM2AP-

AS1 were primarily found in the cytoplasm (Figure 1G). 

The beneficial correlations were also demonstrated 

(Figure 1H and Supplementary Figure 1B–1F).  

 

As a result, we chose two hub regulatory networks from 

the refined network, particularly the network that is 

CBX2/CEP5/MCM2-centered. 

 

Construction and validation of the CBX2/CEP55-

featured prognostic model 

 

We first looked at the effect on survival time to 

investigate the clinical relevance of the RNAs in the 

refined network. We used univariate Cox analysis and 

found that 0/8 miRNA, 6/25 lncRNA, and 20/42 mRNA 

all had an impact on the survival time (Supplementary 

Figure 3 and Supplementary Table 2). To further narrow 

down the list of essential RNAs, we used Lasso Cox and 

Random Survival Forest (RSF). This led to the overlap of 

7 RNAs. ANLN, on the other hand, failed the Cox-PH test, 

and has-miR-1269b significantly failed the univariate Cox 

analysis. As a result, we identified 5 key prognostic 

RNAs, including CPEB3, ANXA10, CEP55, CBX2, and 

DUXAP8 (Figure 2A and Supplementary Figure 4A). 

DUXAP8 and CBX2 were found to be independent 

prognostic genes by multivariate Cox analysis, and a 

prognostic model with a C-index of 0.7 was created 

(Figure 2B). The established prognostic model and 

nomogram demonstrated observable performance as 

indicated by calibration plots and time-dependent AUC 

greater than 0.7 (Supplementary Figure 4B–4D). We used 

two techniques to test the prognostic model’s robustness: 

(1) two-fold cross-validation performed 50 times at 

random, and (2) external validation using the ICGC-LIRI-

JP dataset. Time-dependent AUC values greater than 0.7 

and 0.8, respectively, in two-fold cross-validation of 

LIHC and LIRI-JP external validation suggested the 

prognostic model with 5 genes performed well. (Figure 

2C–2E). A worse prognosis was independently linked to 

the risk score determined by the prognostic model  

(Figure 2F, 2G). 

 

Surprisingly, we noticed that DUXAP8, CBX2, and 

CEP55 appeared in both the prognostic model and the 

hub of the regulatory network. Additionally, a worse 
prognosis was indicated in LIRI-JP by higher 

expression of CBX2 and CEP55 (Supplementary Figure 

4E, 4F). The worst overall survival was seen in patients 



www.aging-us.com 12822 AGING 

 
 

Figure 1. Identification and validation of refined hubs in triple regulatory networks. (A–C) The overlapping differential expressed 
genes including lncRNAs (A), miRNAs (B) and mRNAs (C) identified by DESeq2 (FDR:0.01, log2FC:1) with TCGA-LIHC and GSE140845. (D) The 
Sankey plot indicates the triple regulatory network based on the strategies. The thickness of lines do not make sense. (E) Strategy-one hub of 
refined triple regulatory networks determined by a Cytoscape plug-in CytoHubba. (F) The base pairing diagram of binding sites for the 
strategy-one triple regulatory network predicted by miRanda. (G) The predicted cellular localization for 4 lncRNAs in the strategy-one hub 
using lncLocator. (H) The Pearson’s correlation between CBX2 and 4 lncRNAs in the strategy-one hub.  
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Figure 2. Establishment and refinement of DUXAP8/CBX2/CEP55-centered prognostic model. (A) Shared model candidate 
survival-related RNAs from which was selected with Lasso Cox and RSF from the refined regulatory networks. (B) Forest plots of multivariate 
Cox showed the hazard ratio (HR), 95% confidence interval (CI), and corresponding P-values of model-used CPEB3, ANXA10, CEP55, CBX2, and 
DUXAP8 (C) Time-dependent AUC within 5 years of a prognostic model related to 5-survival genes using two-fold cross validation with 50 
randomly repeated replications. (D) The examples of time-dependent ROC at 1-, 3-, and 5-year corresponding to the AUC in (C). (E) Kaplan–
Meier plots of the risk score predicted with the prognostic model in TCGA-LIHC. The high and low risk group was determined with the median 
of risk score. P value was calculated by log-rank test. (F) Forest plots of multivariate Cox showed HR and p value of TNM, age, gender and risk 
score. (G) Time dependent ROC and AUC at 1-, 3-, and 5-year predicted with external validation using ICGC-LIRI-JP by 5-survival-gene 
prognostic model. RSF, Random Survival Forest; AUC, area under the curve; ROC, receiver operating characteristic curve; HR, hazard ratio. 
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with double higher expression of CBX2 and CEP55 

(Supplementary Figure 4G). Notably, there was a 

significant correlation between the biomarker for HCC 

AFP, CBX2, and CEP55 (Supplementary Figure 12G). 

Along with an increase in CBX2 and CEP55, the 

stepwise stage and tumor grade also increased 

(Supplementary Figure 12G). As a result, for the step 

analysis that follows, CBX2 and CEP55 were picked 

as leading actors. 

 

Abnormal CBX2 and CEP55 expression in HCC 

were validated in numerous studies 

 

We gathered numerous cohorts and carried out a 

differential expression analysis in order to confirm the 

abnormal expression of CBX2 and CEP55. In the 

following GSEs: GSE138485, GSE144269, 

GSE148355, GSE54236, GSE22508, GSE25097, 

GSE63898, GSE112790, and ICGC LIRI-JP, higher 

expression of CBX2 in HCC compared to adjacent 

tissue has been approved. These cohorts showed a 

CEP55 trend that was comparable to the CBX2 trend 

(Supplementary Figure 6A–6G). The expression profile 

of the mouse liver tumor model from GSE116463 also 

revealed this outcome (Supplementary Figure 6P). 

Immunohistochemistry staining (IHC) from the HPA 

database also showed similar deregulation of CBX2 and 

CEP55 expression (Supplementary Figure 5K). 

Intriguingly, we found that CBX2 and CEP55 expressed 

more in para-cancerous tissue in GSE25097 compared 

to healthy tissue, suggesting that abnormally expressed 

CBX2 and CEP55 may be responsible for the 

development of cancer (Supplementary Figure 6D) 

 

Genomic and epigenetic alternation regulated 

aberrant CBX2/CEP55 expression 

 

We first characterized the genomic alternations in order 

to investigate the possible causes of the abnormal 

expression of CBX2 and CEP55. For CBX2 and CEP55, 

no more than five single nucleotide mutations were 

found (Supplementary Table 3). In terms of copy 

number variation (CNV), CBX2 underwent major 

amplification, whereas CEP55 underwent major 

deletion. However, only CNV of CBX2 had a favorable 

impact on self-expression (Figure 3A and 

Supplementary Figure 5A). Additionally, we found that 

the CNV of CBX2 had a significant impact on both the 

Disease Free Interval (DFI) and Progression Free 

Survival (PFS) (Figure 3A and Supplementary Table 4).  

 

One method for controlling gene expression was 

thought to be DNA methylation. Additionally, we 
discovered that the levels of three DNA methyl-

transferases (DNMT1, DNMT3A, and DNMT3B) were 

significantly higher in the CBX2high tumor than the 

CBX2low tumor and the CEP55high tumor than the 

CEP55low tumor (Supplementary Figure 5B–5G). 

Additionally, we found that adjacent tissue had 

significantly higher levels of methylation for CBX2 and 

CEP55, indicating coincidentally lower expression. 

Cohorts GSE113019, GSE44909, GSE44909, and 

GSE37988 also supported this outcome (Figure 3B and 

Supplementary Figure 6H–6O). Next, we determined 

the Spearman Correlation coefficient and patient 

survival time using Univariate Cox analysis to 

characterize the effect of particular methylation sites  

on gene expression. Differential methylation sites at 

cg26037614, cg22892904, cg09821032, and 

cg01307507 revealed hyper-methylation harboring 

promoter-associated (TSS1500) CpG island, displaying 

a strong inverse relationship with CBX2 expression and 

a favorable prognosis for patient survival (Figure 3C). 

We also discovered three hyper-methylation CpG 

islands at the promoter-associated (5’UTR) CpG island 

for CEP55, cg25827255, cg25314624, and cg09145139, 

which have an adverse effect on the expression of 

CEP55 and increase the survival time of patients 

(Figure 3C). The MEXPRESS database was used to 

verify this finding [21] (Supplementary Figure 6Q). 

 

The accessible chromatin throughout the genome 

demonstrated the co-operative regulation of gene 

expression by enhancers, promoters, and chromatin-

binding factors [22]. Histone H3 lysine 4 was tri-

methylated (H3K4me3), designating promoters 

associated with transcription start sites, while H3K4 

was mono-methylated (H3K4me1) and histone H3 

lysine 27 was acetylated (H3K27ac), designating 

enhancers to activate gene expression [23, 24]. We 

looked at the H3K27ac signal, H3K4me3, H3K4me1, 

and chromatin accessibility of CBX2 and CEP55. We 

discovered a higher chromatin accessibility signal in 

HCC tissue and HCC cell lines compared to normal 

liver tissue on the CBX2 and CEP55 loci (Figure 3D 

and Supplementary Figure 5H). Likewise, similar 

patterns were seen for H3K4me3, H3K4me1, and 

H3K27ac (Figure 3E and Supplementary Figure 5H–

5J). Thus, in addition to miRNA, genomic and 

epigenomic changes may also control the aberrant 

expression of CBX2 and CEP55. 

 

CBX2/CEP55 affected the cell cycle process 

 

To determine the potential mechanism of CBX2 and 

CEP55 contributing to tumorigenesis, we stratified with 

the median expression of CBX2 and CEP55 and 

identified 1338 CBX2-related and 3177 CEP55-related 

differentially expressed genes, respectively (Figure 4A). 
Up-regulated genes in CBX2high tumors were enriched 

for cell cycle-related terms like nuclear division and 

mitotic nuclear division as well as extracellular matrix 
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Figure 3. Genomic and epigenomic alternations enhanced CBX2 and CEP55 expressions. (A) From left to right, the figures were 
the Spearman’s correlation of CNV and the corresponding expression, the impact of CNV on patients’ survival time, and the percent of CBX2 
and CEP55 CNV type detailly and broadly. KM P indicated the P-value computed with log-rank test. (B) Methylation level of CBX2 and CEP55 
in HCC and adjacent tissues. P-value was performed using Wilcox rank sum test. (C) From left to right, the figures were the effects of 
methylation sites on CBX2 and CEP55 on patients’ survival, the mean methylation level of CBX2 and CEP55 in HCC and adjacent tissues, and 
the Spearman’s correlation between methylation level of methylation sites and expression level. The P-value reflecting differential 
methylation sites was derived from the Wilcox rank sum test. KM P indicated the P-value computed with log-rank test and the median of 
methylation level or expression level was utilized to classify the high and low group. (D) Chromatin accessibility signals on CBX2 and CEP55 in 
normal livers and HCC. (E) H3K4me3 signals on CBX2 and CEP55 in normal livers and HCC. HR, hazard ratio. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 
0.001; OS, Overall Survival; DSS, Disease Specific Survival; DFI, Disease Free Interval; PFI, Progression Free Interval. 
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Figure 4. CBX2 and CEP55 affected the cell cycle. (A) Summary of differential expressed genes identified using DESeq2 in CBX2-stratified 

and CEP55-stratified tumors. The genes in Up indicated the higher expression in CBX2high or CEP55high tumors whereas conversely for those in 
Down. (B, C) Enriched KEGG in 1887 CBX2-related up-regulated genes (B) and 2866 CEP55-related up-regulated genes (C) in stratified tumors. 
(D, E) GSEA analysis of CBX2-related (D) and CEP55-related (E) KEGG pathway. (F) GSEA analysis of CBX2-related and CEP55-related cancer 
hallmarks. (G) The Spearman’s correlation between pathway activity score and CBX2/CEP55 expression. (H) GSEA analysis of CBX2 
knockdown -related KEGG pathways. (I) RNA and ATAC tracks of cell cycle-related genes in shCBX2 and WT group. 



www.aging-us.com 12827 AGING 

organization (Supplementary Figure 7A). GSEA for  

the GO gene set showed comparable results 

(Supplementary Figure 7B). The expression of genes 

involved in the cell cycle, DNA replication, ECM 

receptor interaction, and homologous recombination 

pathways was increased (Figure 4B). This outcome was 

seen when using the KEGG gene set in GSEA analysis 

(Figure 4D). Drug metabolism and fatty acid 

metabolism were enriched for genes up-regulated in 

CBX2low tumors (Supplementary Figure 7C, 7D). In 

tumors that were CEP55-stratified, a similar outcome 

was seen (Figure 4C, 4D and Supplementary Figure 

8A–8D). The cell cycle and DNA replication were 

strongly correlated with CEP55 expression (Figure 4C, 

4D). Along with being positively correlated with cell 

cycle-related pathways (such as E2F targets, G2/M 

checkpoint, mitotic spindle, MYC targets V1 and V2) 

and epithelium mesenchymal transition, DEGs related 

to CBX2 and CEP55 were also found in signature gene 

sets (Supplementary Figure 9A).  

 

To validate that CBX2 and CEP55 expression could 

regulate the cell cycle pathway, we first calculated the 

Pearson Correlation Coefficients (PCC) between all 

genes and CBX2 or CEP55 in LIHC and LIRI-JP 

cohorts. We also identified the cell cycle pathway, DNA 

replication pathway, ribosome pathway, cell cycle-

related hallmark (E2F targets, G2/M checkpoint, mitotic 

spindle, MYC targets V1, MYC targets V2), EMT, 

apoptosis, and WNT beta-catenin signaling using GSEA 

with the KEGG and hallmark gene set based on the 

PCC (Figure 4F and Supplementary Figure 9B–9E). 

The majority of the genes closely linked to the 

expression of CBX2 and CEP55, including those in the 

CENP and KIF families, were found to be related to the 

cell cycle (Supplementary Figure 9H, 9I).  And many of 

these genes—including TOP2A, ORC6, MCM2, and 

PLK1 - were crucial as determined by Chronos scores 

(Supplementary Figure 10A, 10B). Furthermore, we 

observed that CEP55 displayed a high PCC with 

MKI67, which was regarded as a proliferation marker 

(Supplementary Figure 9I). 

 

To further certify CBX2 expression regulated the cell 

cycle pathway, we reanalyzed CBX2-KO datasets 

including GSE193477 (human AML U937), GSE112227 

(mouse long bone), and GSE156413 (mouse embryonic 

fibroblast). We discovered the cell cycle pathway and 

cell cycle-related pathways (DNA replication, E2F 

targets, G2/M checkpoint) were enriched in the CBX2 

WT group (Figure 4H and Supplementary Figure 9F, 

9G). For instance, in GSE156413, CBX2 KO groups 

reduced Ccna1 chromatin accessibility and expression 
level in comparison to WT (Supplementary Figure 9G). 

In GSE193477, we found that CBX2 KO reduced the 

expression of cell cycle-related genes like CCND2 and 

CCNA1, but had few effects on chromatin accessibility 

(Figure 4I).  

 

The Spearman Correlation Coefficient (SCC) between 

the two genes and the cancer-related pathway score 

revealed that CBX2 and CEP55 expression positively 

regulate the cell cycle, apoptosis, and EMT while 

negatively modulating the RAS MARK pathway 

(Figure 4G). Through the MAPK signaling pathway, 

CBX2 has been shown to influence chromatin 

accessibility and promote AML [25]. EMT may be 

brought on by the death of cancer cells [26]. 

 

The overall result showed that CBX2 and CEP55 may 

regulate the cell cycle process to support HCC. 

 

CBX2 impacted the cell cycle directly or indirectly 

 

It was intriguing to see that CBX2 knockout reduced 

CEP55 expression (Figure 4I), which inspired us to 

research the potential functions of CBX2. The CBX2 

ChIP-seq of HepG2 was therefore reanalyzed, and we 

obtained IDR-confirmed 1305 peaks, of which 728 

peaks were found at the gene promoter (Figure 5A). 

Surprisingly, cell cycle-associated ontologies with 

enriched content included co-SMAD binding, bHLH 

transcription factor binding, beta-catenin binding, 

SMAD binding, and beta-catenin-TCF complex (Figure 

5B), indicating that CBX2 might indirectly control the 

cell cycle process by interacting with other transcription 

factors. The discovery of the SMAD and STAT motifs 

(Figure 5C) suggests that CBX2 may work with the 

STAT and SMAD TF family to control the cell cycle. 

The CHR (cell cycle genes homology region) motif 

(Figure 5C), on the other hand, was thought to be a 

suppressor of the cell cycle and was a binding site 

recognized by the DREAM complex, indicating CBX2 

could regulate the cell cycle by repressing or competing 

with the DREAM complex [27–29]. 

 

CBX2 consistently bound to the CEP55 promoter as 

shown by CBX2 ChIP in the HepG2, 293T, K562 and 

H1 cell lines, and ectopic expression of CBX2 in HCC 

increased the transcription of CEP55 (Figure 5E). The 

plasma membrane and nucleoplasm, respectively, were 

the locations of CBX2 and CEP55, according to 

multiplexed immunofluorescence images downloaded 

from the HPA (Supplementary Figure 11A, 11B). 

Additionally, we observed that CBX2 bound to the 

CTNNB1 promoter and increased the expression of 

CTNNB1, which encodes beta-catenin (Figures 4I, 5D), 

in accordance with GO:0008013 enrichment (Figure 

5B) and GSEA enrichment results (Figure 4F). Beta-
catenin had been confirmed to aggravate hepato-

carcinogenesis and promote cancer stem cell properties 

[30], which enforced us to explore the relationship 
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Figure 5. CBX2 regulated CEP55 and CTNNB1 directly. (A) Summary of genomic distribution of CBX2 peaks. (B) Enriched GO terms in 

genes associated with gene promoter CBX2 peaks. (C) DNA motifs enriched within genes associated with gene promoter CBX2 peaks 
determined by HOMER motif analysis. (D, E) Tracks of CBX2 peaks on CEP55 (D) loci and CTNNB1 (E) loci and the corresponding expression 
between CBX2-statified tumors. Statistical significance was calculated using the two-sided Wilcoxon test. (F, G) mRNAsi distribution between 
CBX2-stratified (F) and CEP55-stratified (G) tumors. Statistical significance was calculated using the two-sided Wilcoxon test. (H) Kaplan–
Meier plots of mRNAsi. The high and low group was classified with the median of risk score. P-value was computed with log-rank test. 
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between CBX2, CEP55 and cancer stem cells. A higher 

mRNAsi score was noted in CBX2-high tumors and 

CEP55-high tumors when we calculated the mRNAsi 

score to assess the stem index of tumors with the CBX2-

stratified and CEP55-stratified expression profiles (Figure 

5F, 5G). Besides that, the prognosis of the patients with 

higher mRNAsi was worse (Figure 5H). According to this 

research, CBX2 could control CEP55 or CTNNB1 to 

control the characteristics of cancer stem cells that are 

consistent with more aggressive migration. 

 

CBX2 drove a CSC-like phenotype 

 

To further validate whether CBX2 and CEP55 affect 

malignant cell stemness, we reanalyzed the public datasets 

related to HCC CSC and observed that CBX2 and CEP55 

levels were higher in cancer stem cells that were CD133, 

ALDH, or CD44-labeled (Supplementary Figure 11C). 

Additionally, both CBX2 and CEP55 demonstrated a high 

Pearson correlation with a CSC marker CD44 (Figure 6A 

and Supplementary Figure 12D). Three scRNA-seq 

datasets GSE125449, GSE140228 and GSE166635 

downloaded from the TISCH2 database [31] were 

analyzed, and we found that CBX2 was primarily 

expressed in cancerous tumor cells while CEP55 was 

primarily expressed in T cells that were proliferating (T 

prolif), whose marker gene MKI67 (Figure 6B, 6C and 

Supplementary Figure 12A, 12B). Additionally, it was 

also discovered that CEP55 is expressed in regulatory T-

cells (Tregs) and tumor cells (F). The scRNA-seq data 

from healthy liver tissue downloaded from the HPA 

served as validation for this finding that CBX2 in 

hepatocytes and endothelial cells whereas CEP55 in T 

cell. (Supplementary Figure 12C). CytoTRACE was 

utilized to infer intercellular activity and determine the 

differentiation status of cells with a matrix that counts 

single cells. A higher CytoTRACE score indicate a higher 

level of cell stemness. A total of 842 malignant cells from 

GSE125449 and 4500 malignant cells from GSE166635 

were used to validate the influence of CBX2 on tumor 

stemness using CytoTRACE. The findings showed  

that CBX2-positive malignant tumors demonstrated 

significantly elevated levels of stemness rather than 

CEP55-positive (Figure 6D, 6E and Supplementary 

Figure 12F). Moreover, we conducted differential gene 

identification and GSEA analysis on CBX2-positive and -

negative malignant cells derived from GSE125449. The 

results revealed significant enrichment of glycolysis, 

hypoxia, EMT, cell-cycle-related MYC target V1, E2F 

target, and G2M checkpoint in CBX2-positive malignant 

cells (Supplementary Figure 12E). These findings 

suggested that the expression of CBX2 amplifies tumor 

malignancy and facilitates cancer progression.  
 

Generally, CSC was characterized by the unlimited 

proliferation, high drug resistance, promotion of 

heterogeneity formation, and metastatic recurrence. 

Different tumor phenotypes, reflecting cancer-related 

functional states, were produced throughout the entire 

tumor evolution as a result of functionally hetero-

geneous cancer cells cooperating or competing [12]. 

We then investigate CBX2 and CEP55’s effects on 

cancer-related functional states. Apoptosis, EMT, and 

cell cycle scores were all noticeably higher in 

CBX2high and CEP55high tumors (Figure 6F and 

Supplementary Figure 12G). In addition, CBX2 and 

CEP55 might promote the growth, invasion, wound 

healing score, differentiation, and metastasis of 

tumors (Figure 6F and Supplementary Figure 12G). 

Taken together, CBX2 drove cancer stem cell 

properties. 

 

CBX2/CEP55, affected immune infiltration, 

enhanced radio-resistance and predicted 

immunotherapy response 

 

A highly structured ecosystem of TME can shape 

cancer cells’ capacity for proliferating, migrating, 

developing drug resistance, or responding to 

immunotherapy. Next, we evaluated the stromal score, 

immune score, and TME score using the ESTIMATE 

algorithm, and found that CBX2 had no impact on any 

of them while CEP55 only improved immune 

infiltration (Supplementary Figure 14A, 14B). The 

signature score from Thorsson et al. [13] supported  

the observations (Supplementary Figure 14A, 14B). 

More specifically, we estimated the cell fraction  

using CIBERSORT, EPIC, QUANTISEQ and 

MCPCOUNTER methods and assessed the effect of 

CBX2 and CEP55 on the cells by computing the 

Spearman Correlation Coefficient. We discovered that 

cancer-associated fibroblast (EPIC, MCPCOUNTER) 

strongly connected with CBX2 and CEP55, consistently 

with ECM enrichment (Supplementary Figure 13G, 13I 

and Figure 4B, 4C). Additionally, tumors with high 

levels of CBX2 and CEP55 have higher levels of 

immunosuppressive cells such as regulatory T cells and 

myeloid-derived suppressor cells (Supplementary 

Figure 13E, 13F, 13H, 13J). 

 

In order to understand the regulation of CBX2 or CEP55 

on TME, we looked at the distributions of MHC-related 

genes, immune stimulators, and immune inhibitors in 

LIHC. CBX2high and CEP55high tumors were found to 

have higher levels of the majority of MHC, immune-

stimulating, and immune-inhibiting genes, including 

immune inhibitor PDCD1, CD274, and immune 

stimulator TNFRSF9 (Supplementary Figure 14A, 14B). 

This suggests that these tumors had complex TME. 
Additionally, CBX2 and CEP55 had a significantly 

greater impact on tumor patient survival than PDCD1 

and CD274 (Figure 6G, 6H). 
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Figure 6. CBX2 shaped diverse functional states and enhanced immunotherapy response. (A) The Pearson correlation between 
CBX2 and CD44 in TCGA-LICH dataset. (B, C) UMAP showing the cell clusters (B) and distribution of CBX2 (C) in GSE125449. (D, E) Distribution 
of CytoTRACE score between CBX2-positive and –negative malignant cells from GSE125449 (D) and GSE166635 (E). P-value was calculated 
using the two-sided Wilcoxon test. (F) Heatmap representation of the main functional states, immunotherapy response predictors, 
representative molecular and immune characteristics in CBX2high tumors and CBX2low tumors. (G, H) Kaplan–Meier plots of CBX2 combined 
with PDCD1 (G) and CD274 (H). P-value was computed with log-rank test. (I, J) Distribution of predicted TIDE score between CBX2-stratified (I) 
and CEP55-stratified (J) tumors. P-value was calculated using the two-sided Wilcoxon test. 
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Neoantigen, microsatellite instability (MSI), and tumor 

mutation burden (TMB) were considered new indicators 

of immunotherapy efficacy [13]. Since TMB and 

neoantigen levels were higher in CBX2 while MSI 

levels were higher in CEP55, two molecules could 

improve immunotherapy (Figure 6F and Supplementary 

Figure 12G). In order to further validate it, we 

computed the ssGSEA score using the inflammatory 

signature, the inflammatory signature, and the IFN-

gamma signature, all of which have been shown to 

accurately predict the outcome of immunotherapy [15, 

16]. CBX2high and CEP55high tumors with high signature 

scores had better outcomes from immunotherapy 

(Figure 6F and Supplementary Figure 12G). The Tumor 

Immune Dysfunction and Exclusion (TIDE) score was 

used to verify the findings; a higher TIDE score 

suggested a higher probability of cancers evading the 

immune system [32]. For tumors with high levels of 

CBX2 and CEP55, we found lower TIDE scores, 

indicating a better response to immunotherapy (Figure 

6I–6J and Supplementary Figure 13A–13D). 

Additionally, it was discovered that tumors with 

elevated levels of CBX2 and CEP55 had higher 

concentrations of the chemokines CCL5, CXCL9, and 

CXCL10 linked to immunotherapy response [33] 

(Figure 6F). All of the results demonstrated CBX2high 

and CEP5high tumors could benefit from immuno-

therapy.  

 

The effect of CBX2 and CEP55 on radiation resistance 

was then investigated. Higher radiation resistance up-

regulated gene enrichment was seen in CBX2high and 

CEP55high tumors (Figure 6F and Supplementary Figure 

12G). Additionally, based on the DepMap expression 

profiles, we used oncoPredict to forecast the sensitivity 

of drugs for CBX2-stratified tumors. Patients with high 

levels of CBX2 were compatible with drugs like BAY 

87-2243 (a HIF-1 inhibitor), Binimetinib (a MEK 

inhibitor), Voreloxin (a topoisomerase II inhibitor), 

Floxrudidine (oncology antimetabolites), Lenvatinib, 

Regorafenib, Paclitaxel, and Indisulam but not 

Sorafenib, demonstrating CBX2 affects the effectiveness 

of medications (Supplementary Figure 10C). 

 

Therefore, overexpressing CBX2 and CEP55 may 

cause cancer cells to develop cancer stem cell-like 

phenotypes with high levels of invasion, metastasis, 

and radiation resistance. However, immunotherapy may 

be advantageous for it. 

 

CBX2/CEP55, as drug targets in pan-cancer 

 

Surprisingly, we performed the differential gene 
analysis in another 20 cancers and found CBX2 and 

CEP55 up-regulated in 16 and 18 of 20 cancers. 

Additionally, BRCA and KIRP patients with high-

expressed CBX2 showed worse overall survival while 

BRCA, KIRP, KIRC, LUAD and PAAD patients with 

high-expressed CEP55 showed worse survival (Figure 

7A, 7C). We also observed that CBX2 and CEP55 

enhanced the cell cycle and apoptosis pathway and 

inhibited the RAS MAPK pathway. Next, we computed 

the PCC between CBX2 and CEP55 to validate their 

positive regulatory relationship across cancers and 

confirmed that a significantly positive correlation 

greater than 0.2 was observed in 27/33 cancers, 

especially in THYM (Figure 7E, 7D).  

 

CBX2 and CEP55 had been demonstrated to promote 

HCC through the cell cycle route. A greater TP53 

mutation rate was seen in CBX2high tumors, indicating a 

potential P53 function loss (Figure 6F and 

Supplementary Figure 12G). Additionally, we pointed 

out that the deletion of CBX2 could lower the 

expression of the genes CCND2, which codes for 

cycling D2, and CCNA1, which codes for cycling A1, 

both were the crucial regulators of the cell cycle (Figure 

4I). The tumor suppressor gene CDKN1A, which codes 

for the cell cycle regulator p21, could prevent CDK 

from kinase activity. At the level of all cancers, we 

noticed that CBX2 and CDKN1A exhibited a negative 

trend, strengthening CBX2’s ability to regulate the cell 

cycle (Figure 7F).  

 

DISCUSSION AND CONCLUSION 
 

Due to its poor prognosis and high aggressiveness, 

HCC is one of the main causes of cancer mortality in 

the world [2]. Although patients with HCC have 

received a variety of therapeutic approaches, the 

prognosis is still dismal [3, 34]. Finding new 

therapeutic targets and improving patient outcomes for 

this condition requires a clear understanding of the 

molecular mechanisms and processes underlying the 

pathogenesis of HCC. It had been suggested that the 

regulatory networks were involved in the development 

and progression of HCC [6].  
 

Using the fine-tuned triple regulatory networks and 

reliable prognostic model, we thoroughly identified the 

key up-regulated genes CBX2 and CEP55 in this study. 

Numerous cohorts showed abnormal CBX2 and CEP55 

expression, demonstrating the persistence and 

significance of HCC tumorigenesis and progression. We 

verified the cause of CBX2 and CEP55’s aberrant 

expression. Amplification of CNV, DNA hypo-

methylation, open chromatin accessibility, and high 

active marks signals (H3K4me3, H3K4me1, and 

H3K27ac), in addition to miRNA miR-424-5p (Figure 

1E), cause the expression of CBX2 and CEP55 to be 

higher in tumors than in adjacent tissues. Additionally, 

by specifically targeting E2F7, the tumor suppressor 
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miR-424-5p regulated the cell cycle and decreased 

proliferation [35]. However, it was CBX2 or CEP55 and 

miR-424-5p that were first linked. Meanwhile, it was 

discovered that function as ceRNA to regulate CBX2 

and CEP55 first included DUXAP8, MCM3AP-AS1, and 

CDKN2B-AS1. 

We identified differentially expressed genes and carried 

out enrichment analysis to investigate the potential 

mechanism that may be promoting the HCC of CBX2 

and CEP55. Apoptosis and the cell cycle pathway had a 

strong positive correlation with CBX2 and CEP55. The 

results were supported by CBX2 knockout in numerous 

 

 
 

Figure 7. Aberrantly expressed CBX2 and CEP55 as drug targets as pan-cancer level. (A) Summary of CBX2 and CEP55 expression 
pattern differences and their impact on tumor patient survival time (OS, DSS, DFI, PFI) across 21 cancers. Prognosis was inferred with hazard 
ratio, “risky” indicated HR > 1 whereas “protective” suggested HR < 1 (B) Summary of pathway activation or inhibition by CBX2 and CEP55 
across 33 cancers. “Activation” represented significantly positive Spearman’s correlation conversely “Inhibition” indicated the significantly 
negative. (C) Kaplan–Meier plots of CBX2 expression in BRCA. High and Low groups were determined by the CBX2 expression cutoff 
computed by surv_cutpoint function in survminer package. P-value was computed with log-rank test. (D) Pearson’s correlation between the 
expression of CBX2 and CEP55 in BRCA, an example of pan-cancer. (E) Pearson’s correlation between the expression of CBX2 and CDKN1A 
with all tumors. OS, Overall Survival; DSS, Disease Specific Survival; DFI, Disease Free Interval; PFI, Progression Free Interval. (F) Pearson’s 
correlation of CBX2 and CDKN1A expression level in pan-cancer. 
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cohorts. Nevertheless, CBX2 knockout reduced the 

expression and only slightly the chromatin accessibility 

of the genes involved in the cell cycle (Figure 4I). 

 

The cell cycle was kept in working order by CEP55 

(Centrosomal protein 55) and CBX2 (Chromobox 

homolog 2, also termed cell division cycle associated 

6). We used ChIP-seq in HepG2 to investigate how 

CBX2 improved the cell cycle. Surprisingly, we 

discovered that CBX2 could bind to the promoter of 

CEP55 and CTNNB1, increasing the expression of both 

genes (Figures 4I, 5D, 5E). Additionally, CBX2 could 

work in conjunction with the SMAD transcription factor 

family and beta-catenin to encourage gene expression. 

However, we also discovered the CHR motif, which the 

DREAM complex recognized and bound to stop the cell 

cycle [27, 28]. In most cases, PRC1’s core subunit 

CBX2 inhibited gene expression by enlisting PRC2 to 

change the repressive mark H3K27me3 [11]. The 

contentious findings that CBX2 had both gene-

repressive and gene-active functions could not be 

explained by this. We found that the genes whose 

promoters contained the CBX2 peak were enriched in 

pathways related to co-regulator activity or transcription 

factors, indicating that CBX2’s repressive or active 

function may be dependent on the transcription factors 

(Figure 5B). This demonstrated CBX2 could empower 

the cell cycle indirectly. However, the CHR motif 

suggested that CBX2 might bind to the cell cycle-

related genes in a competitive manner with the DREAM 

complex to lessen the repression of the targets, 

indicating CBX2 directly accelerated the cell cycle. 

 

Furthermore, the p53 was dysregulated in CBX2high 

tumors, destroying the p53-p21-DREAM axis or the p53-

p21-RB-E2F axis, as evidenced by the higher TP53 

mutation rate [36, 37]. Surprisingly, ORC1 and POLD1 

were RB-E2F-controlled genes with strong correlations to 

CBX2, not DREAM targets [37] (Supplementary Figure 

9H). A CBX2 knockout prevented CCND2 expression, 

and CBX2 showed a negative correlation with CDKN1A, 

which encodes p21 (Figure 4I). This supported CBX2 

could pose competition to the DREAM complex [29]. On 

particular mechanisms, though, more study is required. 

 

As anticipated, CBX2 and CEP55 had an impact on the 

function states of cancer, especially the cell cycle. 

Additionally, CBX2 and CEP55 positively regulated the 

following processes: proliferation, metastasis, EMT, 

invasion, differentiation, hypoxia, wound healing, and 

apoptosis (Figure 6F and Supplementary Figures 12G, 

14A, 14B). This suggests that CBX2 and CEP55 

overexpression may lead to cancer stem cell-like 

phenotype and is supported by higher expression of 

CBX2 and CEP55 in cancer stem cells [38] 

(Supplementary Figure 11C). Cancer stem cells had a 

well-known high level of drug resistance. Lenvatinib, 

an immunotherapy, was more sensitive and Sorafenib, a 

radiation therapy, was more resistant to CBX2high tumors 

(Figure 6F and Supplementary Figures 10C, 12E), 

indicating that proper methods should be taken into 

consideration for HCC therapy. Additionally, CBX2high 

tumors could be treated with Voreloxin, a 

Topoisomerase II inhibitor that targets TOP2A, whose 

expression was strongly correlated with CBX2 

(Supplementary Figure 10C). 

 

Previous research suggested that immune infiltration 

may affect the patient’s prognosis [39]. We found that 

CBX2high or CEP55high tumors displayed a highly 

complex tumor environment with both activated and 

suppressor cells (Supplementary Figures 13, 14). 

Additionally, CBX2 was primarily found in hepatocytes 

or cancerous cells, where it drove the remodeling of the 

extracellular matrix and was significantly correlated 

with cancer-associated fibroblast. CBX2 or CEP55’s 

effects on TME need to be specifically investigated. 

 

In conclusion, using the refined regulatory network and 

dependable prognostic model, we verified the abnormal 

CBX2 and CEP55 in HCC. Additionally, CBX2 may 

facilitate the cell cycle by directly working with co-

regulators to control CEP55 and CTNNB1 or by 

indirectly competing with the DREAM complex. The 

phenotype that resembles cancer stem cells may be 

enhanced by the overexpression of CBX2 and CEP55. 

CBX2 and CEP55 may serve as potential drug targets 

and important genes for the effectiveness of immuno-

therapy. The triple regulatory networks predicted by the 

databases, the true impact of CBX2 on CEP55 or 

CTNNB1, and the repressive or active mechanism of 

CBX2 are a few limitations to be aware of. Therefore, 

additional fundamental research is needed to investigate 

the direct functional mechanism. 

 

AUTHOR CONTRIBUTIONS 
 

Jun Chen obtained the funding and supervised the 

study. Qingren Meng and Qian Zhou performed the 

experiments and data analysis. Specifically, Qingren 

Meng collected bulk RNA-seq data from TCGA and 

gathered single-cell transcriptome datasets from Human 

Protein Atlas (HPA, https://www.proteinatlas.org/) 

database and GEO Database. Qingren Meng and Qian 

Zhou collected the IHC and IHF images from HPA.  

All public data sources are available in the 

CBX2.PublicDatasets document in the Supplementary 

Materials. Qingren Meng and Qian Zhou conducted 

bioinformatic analysis and plotted images. Qingren 

Meng and Qian Zhou performed the writing of original 

draft. Jun Chen, Xi Chen and Qian Zhou reviewed and 

edited the final version of the manuscript. 

https://www.proteinatlas.org/


www.aging-us.com 12834 AGING 

ACKNOWLEDGMENTS 
 

We acknowledge TCGA, GEO and HPA database for 

providing their platforms and contributors for uploading 

their meaningful datasets. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study.  

 

ETHICAL STATEMENT  
 

This study is based on open-source data from public 

databases including TCGA, GEO and HPA. There are no 

ethical issues or other conflicts to declare. 

 

FUNDING 
 

This work was supported by the funds for the 

construction of key medical disciplines in Shenzhen 

(No. SZXK076). 

 

REFERENCES 
 
1. Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves 

HL, Wang XW, Gores GJ, Villanueva A. Molecular 
pathogenesis and systemic therapies for hepatocellular 
carcinoma. Nat Cancer. 2022; 3:386–401. 

 https://doi.org/10.1038/s43018-022-00357-2 
PMID:35484418 

2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky 
E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn 
RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 
2021; 7:6. 

 https://doi.org/10.1038/s41572-020-00240-3 
PMID:33479224 

3. Llovet JM, Castet F, Heikenwalder M, Maini MK, 
Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. 
Immunotherapies for hepatocellular carcinoma. Nat 
Rev Clin Oncol. 2022; 19:151–72. 

 https://doi.org/10.1038/s41571-021-00573-2 
PMID:34764464 

4. Peng WX, Koirala P, Mo YY. LncRNA-mediated 
regulation of cell signaling in cancer. Oncogene. 2017; 
36:5661–7. 

 https://doi.org/10.1038/onc.2017.184  
PMID:28604750 

5. Dragomir MP, Knutsen E, Calin GA. Classical and 
noncanonical functions of miRNAs in cancers. Trends 
Genet. 2022; 38:379–94. 

 https://doi.org/10.1016/j.tig.2021.10.002 
PMID:34728089 

6. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A 
ceRNA hypothesis: the Rosetta Stone of a hidden RNA 
language? Cell. 2011; 146:353–8. 

 https://doi.org/10.1016/j.cell.2011.07.014 
PMID:21802130 

7. Zhang Y, Luo M, Cui X, O’Connell D, Yang Y. Long 
noncoding RNA NEAT1 promotes ferroptosis by 
modulating the miR-362-3p/MIOX axis as a ceRNA. Cell 
Death Differ. 2022; 29:1850–63. 

 https://doi.org/10.1038/s41418-022-00970-9 
PMID:35338333 

8. Wei F, Yang L, Jiang D, Pan M, Tang G, Huang M, Zhang 
J. Long noncoding RNA DUXAP8 contributes to the 
progression of hepatocellular carcinoma via regulating 
miR-422a/PDK2 axis. Cancer Med. 2020; 9:2480–90. 

 https://doi.org/10.1002/cam4.2861 PMID:32022476 

9. Wang Y, Yang L, Chen T, Liu X, Guo Y, Zhu Q, Tong X, 
Yang W, Xu Q, Huang D, Tu K. A novel lncRNA 
MCM3AP-AS1 promotes the growth of hepatocellular 
carcinoma by targeting miR-194-5p/FOXA1 axis. Mol 
Cancer. 2019; 18:28. 

 https://doi.org/10.1186/s12943-019-0957-7 
PMID:30782188 

10. Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA 
CDKN2B-AS1 promotes tumor growth and metastasis 
of human hepatocellular carcinoma by targeting let-7c-
5p/NAP1L1 axis. Cancer Lett. 2018; 544:215825. 

 https://doi.org/10.1016/j.canlet.2018.08.024 
PMID:30165194 

11. Glancy E, Wang C, Tuck E, Healy E, Amato S, Neikes HK, 
Mariani A, Mucha M, Vermeulen M, Pasini D, Bracken 
AP. PRC2.1- and PRC2.2-specific accessory proteins 
drive recruitment of different forms of canonical PRC1. 
Mol Cell. 2023; 83:1393–411.e7. 

 https://doi.org/10.1016/j.molcel.2023.03.018 
PMID:37030288 

12. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, Xu L, 
Luo T, Yan H, Long Z, Shi A, Zhao T, Xiao Y, Li X. 
CancerSEA: a cancer single-cell state atlas. Nucleic 
Acids Res. 2019; 47:D900–8. 

 https://doi.org/10.1093/nar/gky939  
PMID:30329142 

13. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, 
Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy 
JA, Ziv E, Culhane AC, Paull EO, et al., and Cancer 
Genome Atlas Research Network. The Immune 
Landscape of Cancer. Immunity. 2018; 48:812–30.e14. 

 https://doi.org/10.1016/j.immuni.2018.03.023 
PMID:29628290 

14. Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, Kim YB, Ahn 
JB, Chung HC, Rha SY. Identification of a 
radiosensitivity signature using integrative 

https://doi.org/10.1038/s43018-022-00357-2
https://pubmed.ncbi.nlm.nih.gov/35484418
https://doi.org/10.1038/s41572-020-00240-3
https://pubmed.ncbi.nlm.nih.gov/33479224
https://doi.org/10.1038/s41571-021-00573-2
https://pubmed.ncbi.nlm.nih.gov/34764464
https://doi.org/10.1038/onc.2017.184
https://pubmed.ncbi.nlm.nih.gov/28604750
https://doi.org/10.1016/j.tig.2021.10.002
https://pubmed.ncbi.nlm.nih.gov/34728089
https://doi.org/10.1016/j.cell.2011.07.014
https://pubmed.ncbi.nlm.nih.gov/21802130
https://doi.org/10.1038/s41418-022-00970-9
https://pubmed.ncbi.nlm.nih.gov/35338333
https://doi.org/10.1002/cam4.2861
https://pubmed.ncbi.nlm.nih.gov/32022476
https://doi.org/10.1186/s12943-019-0957-7
https://pubmed.ncbi.nlm.nih.gov/30782188
https://doi.org/10.1016/j.canlet.2018.08.024
https://pubmed.ncbi.nlm.nih.gov/30165194
https://doi.org/10.1016/j.molcel.2023.03.018
https://pubmed.ncbi.nlm.nih.gov/37030288
https://doi.org/10.1093/nar/gky939
https://pubmed.ncbi.nlm.nih.gov/30329142
https://doi.org/10.1016/j.immuni.2018.03.023
https://pubmed.ncbi.nlm.nih.gov/29628290


www.aging-us.com 12835 AGING 

metaanalysis of published microarray data for NCI-60 
cancer cells. BMC Genomics. 2012; 13:348. 

 https://doi.org/10.1186/1471-2164-13-348 
PMID:22846430 

15. Montironi C, Castet F, Haber PK, Pinyol R, Torres-
Martin M, Torrens L, Mesropian A, Wang H, Puigvehi 
M, Maeda M, Leow WQ, Harrod E, Taik P, et al. 
Inflamed and non-inflamed classes of HCC: a revised 
immunogenomic classification. Gut. 2023; 72:129–40. 

 https://doi.org/10.1136/gutjnl-2021-325918 
PMID:35197323 

16. Li B, Cao Y, Li Y, Cheng C, Yu D. Letter to the editor: the 
inflamed subclass predicts immunotherapy response - 
external validations. Gut. 2022; gutjnl-2022-328130. 
[Epub ahead of print]. 

 https://doi.org/10.1136/gutjnl-2022-328130 
PMID:35842234 

17. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 
cytoHubba: identifying hub objects and sub-networks 
from complex interactome. BMC Syst Biol. 2014 (Suppl 
4); 8:S11. 

 https://doi.org/10.1186/1752-0509-8-S4-S11 
PMID:25521941 

18. Hu X, Pan H, Zhou S, Pang Q, Wang Y, Zhu C, Liu H, Jin 
H, Xu A. HS1BP3, transcriptionally regulated by ESR1, 
promotes hepatocellular carcinoma progression. 
Biochem Biophys Res Commun. 2022; 623:111–9. 

 https://doi.org/10.1016/j.bbrc.2022.07.047 
PMID:35921704 

19. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks 
DS. Human MicroRNA targets. PLoS Biol. 2004; 2:e363. 

 https://doi.org/10.1371/journal.pbio.0020363 
PMID:15502875 

20. Lin Y, Pan X, Shen HB. lncLocator 2.0: a cell-line-specific 
subcellular localization predictor for long non-coding 
RNAs with interpretable deep learning. Bioinformatics. 
2021; 37:2308–16. 

 https://doi.org/10.1093/bioinformatics/btab127 
PMID:33630066 

21. Koch A, Jeschke J, Van Criekinge W, van Engeland M, 
De Meyer T. MEXPRESS update 2019. Nucleic Acids 
Res. 2019; 47:W561–5. 

 https://doi.org/10.1093/nar/gkz445 PMID:31114869 

22. Luo L, Gribskov M, Wang S. Bibliometric review of 
ATAC-Seq and its application in gene expression. Brief 
Bioinform. 2022; 23:bbac061. 

 https://doi.org/10.1093/bib/bbac061 PMID:35255493 

23. Beacon TH, Delcuve GP, López C, Nardocci G, 
Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic 
broad epigenetic (H3K4me3, H3K27ac) domain as a 
mark of essential genes. Clin Epigenetics. 2021; 13:138. 

 https://doi.org/10.1186/s13148-021-01126-1 

PMID:34238359 

24. Local A, Huang H, Albuquerque CP, Singh N, Lee AY, 
Wang W, Wang C, Hsia JE, Shiau AK, Ge K, Corbett KD, 
Wang D, Zhou H, Ren B. Identification of H3K4me1-
associated proteins at mammalian enhancers. Nat 
Genet. 2018; 50:73–82. 

 https://doi.org/10.1038/s41588-017-0015-6 
PMID:29255264 

25. Del Gaudio N, Di Costanzo A, Liu NQ, Conte L, 
Dell’Aversana C, Bove G, Benedetti R, Montella L, 
Ciardiello F, Carafa V, Ambrosino C, Tucci V, Conte M, 
et al. CBX2 shapes chromatin accessibility promoting 
AML via p38 MAPK signaling pathway. Mol Cancer. 
2022; 21:125. 

 https://doi.org/10.1186/s12943-022-01603-y 
PMID:35681235 

26. Park WY, Gray JM, Holewinski RJ, Andresson T, So JY, 
Carmona-Rivera C, Hollander MC, Yang HH, Lee M, 
Kaplan MJ, Cappell SD, Yang L. Apoptosis-induced 
nuclear expulsion in tumor cells drives S100a4-
mediated metastatic outgrowth through the RAGE 
pathway. Nat Cancer. 2023; 4:419–35. 

 https://doi.org/10.1038/s43018-023-00524-z 
PMID:36973439 

27. Sadasivam S, DeCaprio JA. The DREAM complex: 
master coordinator of cell cycle-dependent gene 
expression. Nat Rev Cancer. 2013; 13:585–95. 

 https://doi.org/10.1038/nrc3556 PMID:23842645 

28. Müller GA, Wintsche A, Stangner K, Prohaska SJ, 
Stadler PF, Engeland K. The CHR site: definition and 
genome-wide identification of a cell cycle 
transcriptional element. Nucleic Acids Res. 2014; 
42:10331–50. 

 https://doi.org/10.1093/nar/gku696 PMID:25106871 

29. Bilton LJ, Warren C, Humphries RM, Kalsi S, Waters E, 
Francis T, Dobrowinski W, Beltran-Alvarez P, Wade 
MA. The Epigenetic Regulatory Protein CBX2 Promotes 
mTORC1 Signalling and Inhibits DREAM Complex 
Activity to Drive Breast Cancer Cell Growth. Cancers 
(Basel). 2022; 14:3491. 

 https://doi.org/10.3390/cancers14143491 
PMID:35884550 

30. Li M, Mu XD, Song JR, Zhai PT, Cheng Y, Le Y, Li ZB. PAF 
enhances cancer stem cell properties via β-catenin 
signaling in hepatocellular carcinoma. Cell Cycle. 2021; 
20:1010–20. 

 https://doi.org/10.1080/15384101.2021.1919826 
PMID:33970778 

31. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, Wang H, Li 
T, Wang C. TISCH2: expanded datasets and new tools 
for single-cell transcriptome analyses of the tumor 
microenvironment. Nucleic Acids Res. 2023; 
51:D1425–31. 

https://doi.org/10.1186/1471-2164-13-348
https://pubmed.ncbi.nlm.nih.gov/22846430
https://doi.org/10.1136/gutjnl-2021-325918
https://pubmed.ncbi.nlm.nih.gov/35197323
https://doi.org/10.1136/gutjnl-2022-328130
https://pubmed.ncbi.nlm.nih.gov/35842234
https://doi.org/10.1186/1752-0509-8-S4-S11
https://pubmed.ncbi.nlm.nih.gov/25521941
https://doi.org/10.1016/j.bbrc.2022.07.047
https://pubmed.ncbi.nlm.nih.gov/35921704
https://doi.org/10.1371/journal.pbio.0020363
https://pubmed.ncbi.nlm.nih.gov/15502875
https://doi.org/10.1093/bioinformatics/btab127
https://pubmed.ncbi.nlm.nih.gov/33630066
https://doi.org/10.1093/nar/gkz445
https://pubmed.ncbi.nlm.nih.gov/31114869
https://doi.org/10.1093/bib/bbac061
https://pubmed.ncbi.nlm.nih.gov/35255493
https://doi.org/10.1186/s13148-021-01126-1
https://pubmed.ncbi.nlm.nih.gov/34238359
https://doi.org/10.1038/s41588-017-0015-6
https://pubmed.ncbi.nlm.nih.gov/29255264
https://doi.org/10.1186/s12943-022-01603-y
https://pubmed.ncbi.nlm.nih.gov/35681235
https://doi.org/10.1038/s43018-023-00524-z
https://pubmed.ncbi.nlm.nih.gov/36973439
https://doi.org/10.1038/nrc3556
https://pubmed.ncbi.nlm.nih.gov/23842645
https://doi.org/10.1093/nar/gku696
https://pubmed.ncbi.nlm.nih.gov/25106871
https://doi.org/10.3390/cancers14143491
https://pubmed.ncbi.nlm.nih.gov/35884550
https://doi.org/10.1080/15384101.2021.1919826
https://pubmed.ncbi.nlm.nih.gov/33970778


www.aging-us.com 12836 AGING 

 https://doi.org/10.1093/nar/gkac959 PMID:36321662 

32. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, 
Bu X, Li B, Liu J, Freeman GJ, Brown MA, et al. 
Signatures of T cell dysfunction and exclusion predict 
cancer immunotherapy response. Nat Med. 2018; 
24:1550–8. 

 https://doi.org/10.1038/s41591-018-0136-1 
PMID:30127393 

33. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger 
MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, 
CXCL10, CXCL11/CXCR3 axis for immune activation - A 
target for novel cancer therapy. Cancer Treat Rev. 
2018; 63:40–7 

 https://doi.org/10.1016/j.ctrv.2017.11.007 
PMID:29207310 

34. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, 
Roberts LR. A global view of hepatocellular carcinoma: 
trends, risk, prevention and management. Nat Rev 
Gastroenterol Hepatol. 2019; 16:589–604. 

 https://doi.org/10.1038/s41575-019-0186-y 
PMID:31439937 

35. Zhao Y, Zhu C, Chang Q, Peng P, Yang J, Liu C, Liu Y, 
Chen X, Liu Y, Cheng R, Wu Y, Wu X, Hu L, Yin J. MiR-
424-5p regulates cell cycle and inhibits proliferation of 

hepatocellular carcinoma cells by targeting E2F7. PLoS 
One. 2020; 15:e0242179. 

 https://doi.org/10.1371/journal.pone.0242179 
PMID:33201900 

36. Engeland K. Cell cycle regulation: p53-p21-RB signaling. 
Cell Death Differ. 2022; 29:946–60. 

 https://doi.org/10.1038/s41418-022-00988-z 
PMID:35361964 

37. Fischer M, Grossmann P, Padi M, DeCaprio JA. 
Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F 
target gene analyses identifies cell cycle gene 
regulatory networks. Nucleic Acids Res. 2016; 
44:6070–86. 

 https://doi.org/10.1093/nar/gkw523  
PMID:27280975 

38. Lee TK, Guan XY, Ma S. Cancer stem cells in 
hepatocellular carcinoma - from origin to clinical 
implications. Nat Rev Gastroenterol Hepatol. 2022; 
19:26–44. 

 https://doi.org/10.1038/s41575-021-00508-3 
PMID:34504325 

39. Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, Sun L, Liu Y, Du 
Y, Guo X, Cui T, Zhou H, Wang J, et al. Identification of a 
tumour immune barrier in the HCC microenvironment 
that determines the efficacy of immunotherapy. J 
Hepatol. 2023; 78:770–82. 

 https://doi.org/10.1016/j.jhep.2023.01.011 
PMID:36708811 

  

https://doi.org/10.1093/nar/gkac959
https://pubmed.ncbi.nlm.nih.gov/36321662
https://doi.org/10.1038/s41591-018-0136-1
https://pubmed.ncbi.nlm.nih.gov/30127393
https://doi.org/10.1016/j.ctrv.2017.11.007
https://pubmed.ncbi.nlm.nih.gov/29207310
https://doi.org/10.1038/s41575-019-0186-y
https://pubmed.ncbi.nlm.nih.gov/31439937
https://doi.org/10.1371/journal.pone.0242179
https://pubmed.ncbi.nlm.nih.gov/33201900
https://doi.org/10.1038/s41418-022-00988-z
https://pubmed.ncbi.nlm.nih.gov/35361964
https://doi.org/10.1093/nar/gkw523
https://pubmed.ncbi.nlm.nih.gov/27280975
https://doi.org/10.1038/s41575-021-00508-3
https://pubmed.ncbi.nlm.nih.gov/34504325
https://doi.org/10.1016/j.jhep.2023.01.011
https://pubmed.ncbi.nlm.nih.gov/36708811


www.aging-us.com 12837 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Examples of differentially expressed RNAs and initial network. (A–C) Heatmap representation of top20 
differentially expressed lncRNAs (A), mRNAs (B) and miRNAs (C). (D) Summary of initial regulatory network. Color indicated the differential 
trends Up or Down. The virtual or reality of the straight line indicated the number of databases supporting the interaction. 
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Supplementary Figure 2. Strategy-hub of refined triple regulatory networks. (A) Hub identified using strategy-two method from 

refined regulatory networks. (B) The Pearson’s correlation of lncRNA and mRNAs in the strategy-one hub. (C–F) The Pearson’s correlation 
between lncRNAs, mRNAs and miR-424-5p in the strategy-one hub.  
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Supplementary Figure 3. Kaplan–Meier plots of genes in refined regulatory network. Kaplan–Meier plots of genes (mRNA, 
lncRNA, miRNA) significantly affecting patients’ overall survival time in LIHC. 
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Supplementary Figure 4. Construction and validation of prognostic model. (A) Tenfold cross-validation for tuning parameter 

selection in the LASSO model and the LASSO coefficient profiles of the prognostic genes for HCC. (B) Nomogram to estimate the risk of HCC 
based on the prognostic model. (C) Calibration plot for prognostic nomogram in LIHC. (D) Time dependent ROC and AUC at 1-, 3-, and 5-year 
predicted using LIHC by 5-survival-gene prognostic model. (E, F) Kaplan–Meier plots of CBX2 (E) and CEP55 (F) in ICGC-LIRI-JP. (G) Kaplan–
Meier plots of CBX2 combined with CEP55 in TCGA-LIHC.  
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Supplementary Figure 5. Genomic and epigenomic alternations affected CBX2 and CEP55 expression. (A) Distribution of CBX2 

expression in different CBX2 CNV type. P-value was derived from Kruskal-Wallis test. (B–G) Expression levels of DNA methyltransferases 
DNMT1 (B, E), DNMT3A (C, F) and DNMT3B (D, G) in CBX2-stratified (B, C) and CEP55-stratified (E–G) tumors. (H–J) Open chromatin 
accessibility (H), H3K4me3 (I), H3K27ac and H3K4me1 (J) signals on CBX2 and CEP55 loci in the HCC cell lines. (K) Immunohistochemistry 
examples of CBX2 and CEP55 in HCC or breast cancer. 
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Supplementary Figure 6. Validation of CBX2 and CEP55 expression and methylation. (A) Summary of differential expression for 

CBX2 and CEP55 in 7 human HCC tissue RNA-seq datasets. Differential genes were identified by DESeq2 with log2FC 1 and FDR 0.01. (B–G) 
Validated expression of CBX2 and CEP55 in human RNA-seq datasets and array datasets. (H–O) Validated methylation level of CBX2 and 
CEP55 in 450K methylation array or EPIC methylation array datasets. (P) CBX2 and CEP55 expression in mouse tumors and normal tissues. (Q) 
MEXPRESS validated expression-associated methylation sites. P-value was calculated using the two-sided Wilcoxon test. 
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Supplementary Figure 7. Enrichment analysis for up-regulated and down-regulated genes in CBX2-stratified tumors.  
(A) Enriched GO terms in CBX2-related up-regulated genes. (B) GSEA analysis of CBX2-related GO terms. (C) Enriched GO terms in CBX2-
related down-regulated genes. (D) Enriched KEGG pathways of CXB2-related down-regulated genes. 
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Supplementary Figure 8. Enrichment analysis for up-regulated and down-regulated genes in CEP55-stratified tumors.  
(A) Enriched GO terms in CEP55-related up-regulated genes. (B) GSEA analysis of CEP55-related GO terms. (C) Enriched GO terms in CEP55-
related down-regulated genes. (D) Enriched KEGG pathways of CEP55-related down-regulated genes. 
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Supplementary Figure 9. CBX2 and CEP55 enhanced the cell cycle and cell cycle-related pathway. (A) GSEA analysis of CBX2-
related and CEP55-related cancer hallmarks. (B–E) GSEA analysis for CBX2-related (B, D) and CEP55-related (C, E) KEGG pathways based on 
the Pearson Correlation Coefficient in TCGA-LIHC (B, C) and ICGC-LIRI-JP (D, E). (F) GSEA for CBX2-related KEGG pathways and cancer 
hallmarks using GSE112227 with CBX2 knockdown in bone. (G) GSEA for CBX2-related cancer hallmarks using GSE156413 with CBX2 
knockdown mouse embryonic fibroblast. And the RNA and ATAC signal tracks on Ccna1 loci. (H, I) Examples of the genes that are highly 
correlated with CBX2 (H) and CEP55 (I) in TCGA-LIHC and ICGC-LIRI-JP. 
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Supplementary Figure 10. Identification of the CBX2-sensitive drugs. (A, B) Chronos score of the genes of positively correlated with 
CBX2 (A) and CEP55 (B) shown in Supplementary Figure 9H, 9I. (C) Representative drugs of CBX2-sensitivity or resistance. 
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Supplementary Figure 11. Sub-cellular location and expression level in cancer stem cell of CBX2 and CEP55. (A, B) Multiplexed 
immunofluorescence images of CBX2 (A) and CEP55 (B) in A-431 and U-2 OS cell line. (C) CBX2 and CEP55 expression in CD133, ALDH and 
CD44-labelled HCC cell lines. 
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Supplementary Figure 12. Distribution of CEP55 expression at single-cell level and the impacts on functional states and 
immune characteristics. (A–C) The distribution of CEP55 and CBX2 expression in scRNA-seq dataset GSE140228 (A), GSE166635 (B), HPA 

(C). (D) Pearson’s correlation of CD44 and CEP55 expression level in pan-cancer. (E) GSEA enrichment results for hallmark gene sets with 
CBX2-positive and –negative malignant cells in GSE125449. (F) The distribution of CytoTRACE score in CEP55-positive and -negative malignant 
cell from GSE166635. (G) Heatmap representation of the main functional states, immunotherapy response predictors, representative 
molecular and immune characteristics in CEP55high tumors and CEP55low tumors. 
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Supplementary Figure 13. Impact of CBX2 and CEP55 on tumor microenvironment. (A–D) Dysfunction score (A, C) and exclusion 
score (B, D) in CBX2-stratified (A, B) and CEP55-stratified (C, D) tumors. P value was calculated using the two-sided Wilcoxon rank sum test. 
(E, F) MDSC score in CBX2-stratified (E) and CEP55-stratified (F) tumors. (G–J) Spearman correlation between CBX2 and CEP55 and immune 
cell score estimated by EPIC (G), CIBERSORT (H), MCP-COUNTER (I) and QUANTISEQ (J).  
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Supplementary Figure 14. Immune patterns in CBX2-stratified and CEP55-stratified tumors. (A, B) Heatmap representation of 

immune score, stromal score, MHC genes, immune stimulators and immune suppressors in CBX2-stratified (A) and CEP55-stratified (B) 
tumors. P value was calculated using the two-sided Wilcoxon rank sum test. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

 

Supplementary Table 1. Genes responsible for the upregulation of 28 DElncRNA, 150 DEmRNA, and 6 DEmiRNA 
in HCC compared to 24 DElncRNA, 130 DEmRNA, and 2 DEmiRNA in adjacent tissue among these DEGs in two 
cohorts. 

 

Supplementary Table 2. Univariate Cox analysis of the effects of miRNA, lncRNA, and mRNA on survival time. 

 

Supplementary Table 3. The 
deleterious mutation in CBX2 and 
CEP55. 

Gene symbol Deleterious mutation 

CBX2 0 

CEP55 2 

 

Supplementary Table 4. The effect of 
CNV in CBX2 and CEP55 on different 
survival types. 

Symbol Survival type Logrank P value 

CBX2 OS 0.07 

CBX2 PFS 0.02 

CBX2 DSS 0.11 

CBX2 DFI 0.03 

CEP55 OS 0.12 

CEP55 PFS 0.37 

CEP55 DSS 0.21 

CEP55 DFI 0.39 

 


