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ABSTRACT 
 

Objective: To investigate the prognostic significance of optic atrophy 1 (OPA1) in pan-cancer and analyze the 
relationship between OPA1 and immune infiltration in cancer.  
Results: OPA1 exhibited high expression levels or mutations in various types of tumor cells, and its expression 
levels were significantly correlated with the survival rate of tumor patients. In different tumor tissues, there 
was a notable positive correlation between OPA1 expression levels and the infiltration of cancer-associated 
fibroblasts in the immune microenvironment. Additionally, OPA1 and its related genes were found to be 
involved in several crucial biological processes, including protein phosphorylation, protein import into the 
nucleus, and protein binding. 
Conclusion: OPA1 is highly expressed or mutated in numerous tumors and is strongly associated with protein 
phosphorylation, patient prognosis, and immune cell infiltration. OPA1 holds promise as a novel prognostic 
marker with potential clinical utility across various tumor types. 
Methods: We examined OPA1 expression in pan-cancer at both the gene and protein levels using various 
databases, including Tumor Immune Estimation Resource 2.0 (TIMER 2.0), Gene Expression Profiling Interactive 
Analysis (GEPIA2), UALCAN, and The Human Protein Atlas (HPA). We utilized the Kaplan-Meier plotter and 
GEPIA datasets to analyze the relationship between OPA1 expression levels and patient prognosis. Through the 
cBioPortal database, we detected OPA1 mutations in tumors and examined their relationship with patient 
prognosis. We employed the TIMER 2.0 database to explore the correlation between OPA1 expression levels in 
tumor tissue and the infiltration of cancer-associated fibroblasts in the immune microenvironment. 
Furthermore, we conducted a gene search associated with OPA1 and performed enrichment analysis to identify 
the main signaling pathways and biological processes linked to them. 
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INTRODUCTION 
 
Tumor development is a complex process, involving 

numerous factors such as altered gene expression, gene 

mutations, changes in protein structure, and changes in 

the tumor immune microenvironment [1–3]. Cancer 

poses a significant danger to human life and health and 

has a significant impact on socio-economic progress. 

Many tumors are also frequently encountered in clinical 

work. Breast cancer, head and neck squamous cell 

carcinoma, sarcoma, and skin cutaneous melanoma are 

all common tumors in plastic and aesthetic (burn) 

surgery [4–7]. As of now, the etiology and mechanisms 

of tumors have not been fully understood [8]. Therefore, 

the identification of those genes that were highly 

expressed in various tumor tissues and the assessment 

of their effects on the survival of tumor patients is 

important for discovering new prognostic markers for 

tumors as well as providing clinicians with new thera-

peutic ideas [9–12]. In recent years, many researchers 

have focused on mitochondria and have found structural 

or functional alterations in mitochondria in patients  

with certain diseases. This suggests that there may be 

some connection between the structure and function of 

mitochondria and the development of disease [13–15]. It 

has been found that in some common diseases including 

neurodegenerative diseases and cancer, pathological 

alterations in the cellular environment can cause changes 

in the function or activity of many proteins associated 

with mitochondrial fusion or cleavage. These changes 

will directly affect mitochondrial fusion or cleavage, 

resulting in altered mitochondrial dynamics [16]. 

 
The OPA1 gene is located at 3q28 and is over 100 kb  

in length with 31 exons [17]. Previous studies have 

revealed the presence of an OPA1 protein encoded  

by the OPA1 gene in mitochondria, which is necessary 

for angiogenesis. On the other hand, angiogenesis is 

necessary for tumor growth and metastasis [18]. In 

addition, mitochondria are key organelles required to 

maintain normal endocrine function, providing energy for 

hormone production and transport [19]. The endocrine 

level is related to the occurrence, development, and 

prognosis of various tumors. Some researchers used 

endocrine disruptors to affect the function of the 

endocrine system and interfere with hormone action, 

which could increase the risk of tumors including 

reproductive damage, metabolic disorder, breast cancer, 

and prostate cancer [20]. In animal models, endocrine 

disruptors have carcinogenic effects on endocrine 

response tissues such as the breast, prostate, testis, 

ovary, and thyroid [21–23]. Therefore, it is important  

to study the factors affecting mitochondrial function  
and its influence on the endocrine level to find out the 

occurrence and development of some cancers and find 

new prevention and treatment measures. 

Mitochondria are highly dynamic cellular organelles, 

exhibiting diverse morphologies such as small spheres, 

short or long tubules, and interconnected structures [24]. 

These shapes are regulated by the processes of fusion 

and fission. Additionally, mitochondria display high 

mobility in numerous cells, traveling through the cytosol 

via the cytoskeletal transport system. Consequently, 

mitochondrial dynamics play a pivotal role in main-

taining mitochondrial quality [25]. Some researchers 

found that mitochondrial fusion was significantly 

increased in the tissues of patients with liver cancer, 

mitochondrial fusion was also inhibited in liver cancer 

cell lines after knockdown of OPA1, and the growth of 

liver cancer cells cultured in vitro and tumor formation 

in mice were inhibited [26]. In LUAD, the mitochondrial 

fusion process caused by OPA1 is activated, enhancing 

mitochondrial metabolism to promote tumor growth 

and inhibit apoptosis. OPA1 overexpression can also 

increase glycolytic activity to enable cancer cells in 

LUAD patients to achieve immune escape [27]. In 

addition, researchers found that upregulation of OPA1 

expression was associated with poor prognosis in breast 

cancer, and the research team reduced proliferation, 

migration, and invasion of breast cancer cells in vitro 

and in vivo by inhibiting OPA1 expression. Further 

research showed that OPA1 silencing inhibited breast 

cancer cell growth and invasion by up-regulating the 

expression levels of the 148/152 miRNA family while 

not reducing mitochondrial respiration [28]. In pancreatic 

ductal adenocarcinoma (PDAC), the presence of cancer 

stem cells (CSCs) was associated with high invasive-

ness of PDAC, while OPA1 overexpression was found 

in CSCs and has a regulatory effect on tumorsphere 

formation [29]. In summary, we make a conjecture 

based on previous studies. The expression level of 

OPA1 may play a very important role in the occurrence 

and development of pan-cancer. 

 

Therefore, we will explore the level of OPA1  

gene expression in pan-cancer, its mutation types,  

and the relationship of these alterations with patient 

prognosis and immune microenvironment, as well as  

the molecular mechanisms that may be involved. This 

will provide a theoretical basis for further investigation 

of the possibility of using OPA1 as a new prognostic 

marker for tumors. 

 

RESULTS 
 

Expression levels of OPA1 in tumors and 

paraneoplastic tissues 

 

The workflow of our study is shown in Figure 1.  

We used the TIMER 2.0 database to compare OPA1 

expression levels in different tumors and normal tissues 

in the TCGA database, and the results were displayed in 
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Figure 2A. The results showed that the expression 

levels of OPA1 in CESC, CHOL, ESCA, GBM, HNSC, 

KIRC, KIRP, LIHC, LUAD, LUSC, and STAD  

were significantly higher than that of the corresponding 

normal tissues (Figure 2A). 

 

Using the GEPIA database, we performed a joint 

analysis of OPA1 expression data in various tumors 

from the TCGA and GTEx databases and found  

that OPA1 was expressed at higher levels in DLBC, 

ESCA, LUSC, PAAD, STAD, and THYM than in 

control normal tissues, with significance (Figure 2B). 

By comparing OPA1 expression at the protein level  

in different tumors and normal tissues using the 

UALCAN database, we found that OPA1 protein 

expression levels were significantly elevated in OV, 

LUAD, PAAD, and LIHC compared to normal tissues 

(Figure 2C). 

 

The results from the GEPIA2 database also demonstrated 

that OPA1 expression levels were increased at different 

stages of KIRC, OV, PAAD, and UCS. (Figure 2D). 

 

In addition, we used the HPA database to observe the 

subcellular localization of OPA1, and we observed by 

immunofluorescence imaging that the OPA1 protein was 

localized both in the nucleus and on the nuclear mem-

brane in A431, U2OS, and U251 cell lines. (Figure 2E). 

 

Prognostic value of OPA1 

 

Based on the median expression level of OPA1 in tumor 

cells of tumor patients, we divided the patients into high 

and low-expression groups. Then use the Kaplan-Meier 

plotter to analyze and visualize the survival of tumor 

patients with different OPA1 expression levels at 

different periods. As shown in Figure 3A, patients with 

tumors including BRCA, HNSC, LUAD, PAAD, 

THCA, and UCEC, in the OPA1 high expression group, 

had significantly lower overall survival rates than the 

patients with these tumors in the OPA1 low expression 

group. However, the overall survival of CESC, KIRC, 

LUCS and READ patients in the high OPA1 expression 

group was higher than that of the low expression group. 

For patients with BLCA, PAAD, PCPG, and THCA, 

 

 
 

Figure 1. The flow chart of the whole study. 
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relapse-free survival was also significantly lower in the 

OPA1 high-expression group than in the low-expression 

group. However, patients with LIHC with high OPA1 

expression levels had significantly higher relapse-free 

survival rates than those with LIHC with low OPA1 

expression levels (Figure 3B). 

 

 
 

Figure 2. The expression levels of OPA1 in different tumors and normal samples. (A) The expression levels of the OPA1 gene in 

different tumors and paratumoral tissues were analyzed by TIMER2. *p < 0.05, **p < 0.01, ***p < 0.001. (B) The expression levels of the OPA1 
gene in DLBC, ESCA, LUSC, PAAD, STAD, THYM, and the normal samples, were analyzed by GEPIA. *p < 0.05. (C) The protein expression of 
OPA1 in OV, LUAD, PAAD, LIHC, and the normal samples was analyzed by UALCAN. (D) The expression level of OPA1 in the different stages 
of KIRC, OV, PAAD, and UCS, was analyzed by GEPIA. (E) The immunofluorescence in osteosarcoma cell lines (A431, U2OS, and U251), was 
analyzed by HPA. 
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The results of the analysis through the GEPIA database 

were similar to those of Kaplan-Meier plotter. ACC, 

BLCA, and PAAD patients with low OPA1 expression 

levels had higher disease-free survival than patients 

with high OPA1 expression levels. However, CHOL 

patients with high OPA1 expression levels had higher 

disease-free survival than those with low OPA1 

expression levels (Figure 4A). The results shown in 

Figure 4B indicated that the overall survival of BRCA, 

LUAD, MESO, and PAAD patients with high OPA1 

expression levels was lower than low-expression group 

patients. However, CHOL and KIRC patients in the 

high OPA1 group had higher overall survival than the 

low OPA1 group (Figure 4B). 

 

OPA1 gene mutation site analysis 

 

We analyzed the genetic alteration status of OPA1 in 

different tumor samples from the TCGA cohort. As 

shown in Figure 5A, the highest frequency of OPA1 

alterations (29%) was found in patients with Lung 

Squamous cell carcinoma, where “amplification” was 

the predominant type. In addition, the amplification rate 

of OPA1 in patients with ESCA, OV, CESC, and HNSC 

all exceeded 10%. Notably, the type of alterations in the 

OPA1 gene in colorectal adenocarcinoma cases were all 

mutations (~2% frequency). 

 

Figure 5B showed the type, locus, type of cases,  

and number of mutations in the OPA1 gene. These 

mutations of unclear significance can neither be 

classified as favorable nor deleterious mutations and 

were referred to as VUS mutations. The most common 

of these were missense mutations. In two UCEC  

and one BRCA patient, both detected alterations  

in the R312* site of the dynamin-N protein, which 

subsequently led to OPA1 protein truncation. Figure  

5C showed the R312* site in the 3D structure of  

the OPA1 protein. We also analyzed the impact of 

OPA1 mutations on the prognosis of UCEC patients. 

The results showed that UCEC patients with  

OPA1 mutations had a significantly higher PFS  

than UCEC patients without OPA1 mutations (P <  

0.05) (Figure 5D). 

 

Relationship between OPA1 expression level and 

tumor immune microenvironment 

 

Tumor filter cells are an important component of  

the tumor immune microenvironment and are closely 

 

 
 

Figure 3. The prognosis comparison of tumor patients in the OPA1 high expression group and the low expression group, 
analyzed by Kaplan-Meier plotter. (A) Overall survival and (B) relapse-free survival. 
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associated with cancer development, progression,  

and metastasis [30, 31]. Here, we used the TIMER tool 

to analyze relevant data from the TCGA database  

to explore the statistical relationship between OPA1 

expression levels and the level of immune cell 

infiltration in pan-cancer. After processing the  

data using the EPIC, MCPCOUNTER, and TIDE 

algorithms, we found a statistically positive correlation 

 

 
 

Figure 4. The prognosis comparison of tumor patients in the OPA1 high expression group and the low expression group, 
analyzed by GEPIA. (A) Disease-free survival and (B) overall survival. 
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between OPA1 expression levels in BRCA, ESCA, 

HNSC, LIHC, LUAD, MESO, OV, PAAD and THYM 

and the estimated infiltration values of cancer-associated 

fibroblasts (Figure 6A, 6B). 

 

Enrichment analysis of OPA1 and its related genes 

 

To further elucidate the molecular mechanisms of 

OPA1 gene involvement in tumor development, we 

screened genes targeting OPA1-binding proteins and 

genes associated with OPA1 expression and performed 

enrichment analysis of these genes to identify the 

signaling pathways in which they function together. 

By using the STRING tool, we screened 50 proteins 

that bind to OPA1. Figure 7A shows the interaction 

network of these proteins. Next, we used the GEPIA2 

tool combined with all tumor expression data of 

TCGA to obtain the top 100 genes associated with 

OPA1 expression. As shown in Figure 7B, OPA1 

expression level was positively correlated with CPSF2 

(R = 0.69), FYTTD1 (R = 0.81), KPNA1 (R = 0.76), 

KPNA4 (R = 0.76), and PAK2 (R = 0.83) genes. The 

heat map in Figure 7C showed a positive correlation 

between the expression levels of OPA1 and the above 

five genes in pan-cancer. Cross-tabulation analysis  

of OPA1-related genes and interacting genes revealed 

a common member of these two groups of genes, 

SFXN1 (Figure 7D). 

 

KEGG analysis revealed that OPA1-related  

genes may affect tumorigenesis and development 

mainly by affecting nucleocytoplasmic transport, 

ribosome biogenesis in eukaryotes, and pathways of 

neurodegeneration-multiple diseases (Figure 7E). GO 

analysis also showed that OPA1-related genes were 

associated with biological processes such as protein 

phosphorylation, protein import into the nucleus, 

protein binding, RNA binding, and others (Figure 7F). 

 

 
 

Figure 5. Mutations of OPA1 in individual tumors in the TCGA database, analyzed by cBioPortal. (A) The mutation types of 
OPA1 in individual tumors. (B) Mutation sites of OPA1 in UCEC and BRCA. (C) 3D structure diagram of OPA1 mutation site. (D) Relationship 
between OPA1 mutations and survival in UCEC patients. 
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DISCUSSION 
 

Our study indicates a significant presence or mutation 

of OPA1 in various tumors, demonstrating strong 

correlations with protein phosphorylation, patient 

prognosis, immune cell infiltration, and tumor 

mutational load. OPA1 was found to play important 

roles in angiogenesis in the physiological state and 

tumors [18]. Angiogenesis is the formation of new 

blood vessel branches from old blood vessels, a 

process that is essential for wound healing and tumor 

growth [32]. Angiogenesis requires energy, which in 

human cells are provided by mitochondria, so some 

researchers have hypothesized that angiogenesis sti-

mulates mitochondrial respiration [33]. However, new 

research suggests that mitochondrial functions were 

not limited to energy conversion, but were also involved 

in complex physiological processes such as cell 

differentiation, apoptosis, and immune signaling [34]. 

 
The function of mitochondria is closely  

related to their morphology [34]. Under normal 

physiological conditions, mitochondria perform their 

corresponding physiological functions by altering the 

balance of fusion and division [35]. Mitochondrial 

fusion proteins (MFN) 1 and 2 were located on the 

outer mitochondrial membrane (OMM) and were 

responsible for outer mitochondrial membrane fusion, 

and the optic nerve atrophy protein OPA1 is located  

on the inner mitochondrial membrane (IMM) and is 

responsible for inner mitochondrial membrane fusion, 

and all three together regulate mitochondrial fusion. 

The cristae formed by the inner membrane invagination 

of mitochondria were essential for cellular metabolism, 

 

 
 

Figure 6. Relationship between OPA1 expression and cancer-associated fibroblast infiltration in pan-cancers. (A) Heat map 

and (B) scatter plot. 



www.aging-us.com 12990 AGING 

and OPA1 plays a crucial role in maintaining the 

mitochondrial cristae structure [36]. OPA1 may play  

a regulatory role during apoptosis by participating in 

cristae junction formation and maintenance [37]. During 

angiogenesis, OPA1 can coordinate angiogenesis by 

affecting the activity of the NF-κB signaling pathway 

and the expression of angiogenic genes [18]. These 

studies suggest that OPA1 plays important roles in  

both cell cycle regulation and tumor-related biological 

processes such as angiogenesis. However, our literature 

search revealed that there is no article on the pan-cancer 

analysis of OPA1, so a comprehensive analysis of OPA1 

in tumors is necessary. To this end, we analyzed OPA1 

expression, genetic alterations, patient survival prognosis, 

and immune infiltration in a total of 33 different tumor 

species based on an online database. 

 

Previous studies have shown that mitochondria play  

a key role in tumor development, including providing 

energy for tumor cell growth, controlling redox, 

calcium homeostasis, transcriptional regulation, and 

controlling cell death. Metabolically, mitochondrial 

metabolites such as fumaric acid, succinic acid, and  

2-hydroxyglutarate (2-HG) drive tumorigenesis, and 

mitochondria provide energy for anabolic processes  

in tumor cells [38]. Mitochondria also promote the 

transformation of normal cells into malignant cells 

through three main mechanisms: (1) Mitochondrial 

reactive oxygen species (ROS) promote the accumulation 

of potential carcinogenic DNA defects. (2) ROS plays 

an important role in activating potential carcinogenic 

signaling pathways [39]. (3) Functional defects in 

mitochondrial permeability transition are necessary  

for the survival of newly formed malignant tumor 

precursors [40, 41]. 

 

We found that OPA1 was highly expressed in most 

tumors but had different prognostic effects in patients 

 

 
 

Figure 7. Enrichment analysis of OPA1-related genes. (A) OPA1-binding proteins analyzed by STRING. (B) Expression correlation 

between OPA1 and the selected top 100 correlated genes including PAK2, KPNA4, KPNA1, FYTTD1, and CPSF2. (C) The corresponding 
heatmap of PAK2, KPNA4, KPNA1, FYTTD1, and CPSF2 in different cancer types. (D) The intersection analysis of genes corrected and 
interacted with OPA1. (E) KEGG pathway analysis of OPA1 the genes correlated and interacted. (F) GO analysis of OPA1 and the corrected 
and interacted genes. 
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with different tumors. Patients with ACC, BRCA, 

HNSC, LUAD, MESO, PAAD, THCA, UCEC, BLCA, 

and PCPG in the OPA1 high expression group had  

a worse prognosis, while OPA1 high expression in 

CHOL, CESC, KIRC, READ, and LIHC patients  

had the opposite prognostic impact. Taking BRCA as  

an example, previous researchers have demonstrated 

through in vivo and in vitro experiments that knockdown 

of OPA1 expression can reduce proliferation migration 

and invasion of breast cancer cells, and OPA1 silencing 

can increase miRNA levels of the 148/152 family that 

inhibit tumor growth and invasion. Therefore, OPA1 

has been listed as a drug target for TNBC inhibition 

[28]. However, there is no conclusive evidence to explain 

why upregulation of OPA1 expression is associated 

with better prognosis in CHOL, CESC, KIRC, READ, 

and LIHC patients. But combining our research with 

previous studies, we make the following inference: The 

reasons may include the following three aspects: First, 

each cancer has its unique mutation spectrum, OPA1 

and a variety of interacting genes play a biological 

function together, and in the OPA1 interacting genes, 

the members that affect the development of different 

tumors are different. Secondly, the high expression of 

OPA1 promotes mitochondrial function, which may 

also affect endocrine levels and different tissues have 

different responses to changes in hormone levels, such 

as the breast, prostate, testis, ovary, and other tissues are 

more sensitive to changes in hormone levels, and are 

more likely to cause cancer due to endocrine inter-

ference [21–23]. Thirdly, whether the high expression 

of OPA1 plays a crucial role in the development of  

the above tumors also needs to be further verified by 

experiments. This is because the elevated expression of 

OPA1 may simply be due to the alteration of normal 

tissues during the anti-tumor process. Fourth, the 

statistical difference may be due to insufficient sample 

size. Taking LIHC as an example, some researchers 

found that OPA1 downregulation can enhance the 

sensitivity of hepatocellular carcinoma to chemotherapy 

drug sorafenib, which indicates that low expression of 

OPA1 is associated with a better prognosis of hepato-

cellular carcinoma. Contrary to our results, we believe 

that this difference may be caused by insufficient sample 

size [42]. Therefore, although we have demonstrated 

that high expression of OPA1 is associated with poor 

prognosis in a variety of tumors, specific analysis is 

needed for specific tumors. 

 

In the present study, we investigated the mutation of  

the OPA1 gene in tumors and its relationship with  

the prognosis of tumor patients. Mutations in OPA1 

were significantly associated with high survival rates  
in CESC. Through gene interaction analysis, we found 

that, OPA1 expression level was positively correlated 

with CPSF2 (R = 0.69), FYTTD1 (R = 0.81), KPNA1 

(R = 0.76), KPNA4 (R = 0.76), and PAK2 (R = 0.83) 

genes. Among them, PTC patients with high expression 

of CPSF2 had a higher risk of recurrence [43], high 

expression of KPNA-1 was associated with tamoxifen 

resistance and metastasis in breast cancer patients [44], 

KPNA-4 can be used as a biomarker for diagnosis and 

prognosis of hepatocellular carcinoma [45], and can 

also promote the metastasis of prostate cancer [46], and 

PAK2 can promote the migration and proliferation of 

salivary adenoid cystic carcinoma [47]. As for SFXN1, 

it is a mitochondrial serine transporter required for 

single-carbon metabolism, which plays an important 

role in the development of LUAD and can be used as an 

independent prognostic marker and therapeutic target 

for LUAD [48, 49]. There is currently no literature 

reporting a direct interaction between SFXN1 and OPA1. 

However, phosphorylation modifications, represented by 

serine residues, play a significant role in mitochondrial 

dynamics [50]. This could potentially serve as a mecha-

nism for the interaction between SFXN1 and OPA1. 

Therefore, OPA1 interacts with a variety of genes that 

affect tumor metastasis and prognosis. OPA1 and these 

genes may work together in some signaling pathways 

and play roles in the occurrence and development of 

tumors. 

 

In addition, we performed an enrichment analysis of 

OPA1 and its related and interacting genes, and the 

results showed that these genes play important roles  

in related signaling pathways such as nucleoplasmic 

transport and ribosome biosynthesis, and may influence 

tumor pathogenesis by affecting protein binding, RNA 

binding, and ATP binding. 

 

The immune microenvironment is also an important 

influencing factor in tumorigenesis and development. 

Previous studies have shown that cancer-associated 

fibroblasts (CAF) are inhibitory intermediates in the 

tumor microenvironment and are associated with poor 

prognosis. They can polarize the responsive immune 

population, including macrophages, by secreting immune 

regulatory factors. Our prognostic analysis results have 

shown that the expression level of OPA1 is significantly 

correlated with the prognosis of cancer patients, so we 

speculate that OPA1 may affect the prognosis of 

patients by affecting the infiltration level of cancer-

associated fibroblasts. As we suspected, the results 

showed a significant correlation between high OPA1 

expression in tumors and high infiltration levels of 

cancer-associated fibroblasts. 

 

CONCLUSION 
 

In our study, we analyzed the role of OPA1  

in the development of pancytopenia. Our findings 

suggest that OPA1 is highly expressed or mutated in  
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a variety of tumors and is strongly associated with  

protein phosphorylation, patient prognosis, immune 

cell infiltration, and tumor mutational load. These 

findings help us to better understand the role of OPA1 

in tumorigenesis development and potentially use it as  

a prognostic marker in some tumors. 

 

METHODS 
 

OPA1 gene expression analysis 

 

We used the TIMER 2.0 database to analyze OPA1 

expression levels in various tumors and normal tissues 

adjacent to tumors [51]. Then, OPA1 expression level 

data from TCGA and GTEx databases were jointly 

analyzed using the GEPIA tool to obtain OPA1 

expression differences in cancer and normal tissues 

[52]. To explore the expression of OPA1 at the protein 

level, we used the UALCAN database to mine the 

TCGA database for OPA1 protein expression data  

[53]. Then, we analyzed OPA1 gene expression level 

changes in various tumors at different stages through 

the GEPIA database. Taking the GEPIA database as  

an example, we can enter “OPA1” in the search box  

of GEPIA to search, then click the “DIY Expression” 

module, select “Boxplot” or “Stage plot”, and then  

click the tumor name to be analyzed in the “Datasets 

Selection” column to obtain the expression level of 

OPA1 in various tumors and tumor stages. 

 

Survival analysis 

 

To explore the association of OPA1 with the prognosis 

of cancer, we used the Kaplan-Meier plotter and the 

GEPIA databases to analyze the relationship between 

OPA1 expression levels and the OS and DFS of tumor 

patients and listed tumor types with significant statistical 

differences [54]. We entered “OPA1” in the search box 

of GEPIA to search, then clicked on the “Survival” 

module, selected “overall survival” or “RFS”, and then 

clicked on the tumor name to be analyzed in the 

“Datasets Selection” column to obtain the relationship 

between OPA1 and various tumor prognosis. The 

Kaplan-Meier plotter database operates similarly. 

 

Analysis of OPA1 gene mutations 

 

The cBioPortal database was used to analyze mutations 

in OPA1 in tumor tissue [55]. First, we found the 

‘Quick selection’ section, then clicked on ‘TCGA Pan-

Cancer Atlas Study’, and then typed ‘OPA1’ in the 

search field to query OPA1 gene alterations. In the 

‘Cancer Type Summary’ module, there is the TCGA 

database of OPA1 alteration frequency, mutation type, 

and CNC in all tumors. By clicking on the “Mutation” 

module, we queried the information of the OPA1 

mutation site displayed as a 3D structure map. In the 

“Comparison” module, we compared the changes in 

OS, DFS, PFS, and DSS of cancer patients with and 

without OPA1 gene alterations in the TCGA database, 

and the results were represented as Kaplan-Meier plots 

and indicated with log-rank p-values on the plots. 

 

OPA1 subcellular localization 

 

The Human Protein Atlas (HPA) database contains  

a wealth of human proteomics, transcriptomics, and 

systems biology data [56]. It contains a variety of 

protein expressions in various tumor tissues and normal 

tissues. Our study used the HPA database to analyze  

the localization of OPA1 proteins in three tumor cell 

lines: A431, U2OS, and U251. 

 

Correlation analysis of OPA1 with tumor-associated 

fibroblast infiltration 

 

To investigate how OPA1 expression in tumor cells 

affects the level of immune cell infiltration in the tumor 

microenvironment, we used the “Immunogene” module 

of the TIMER 2.0 tool to perform an analysis of  

OPA1 expression and infiltration of cancer-associated 

fibroblasts in the TCGA database. The immune cells  

we selected were cancer-related fibroblasts. We used 

three algorithms, TIDE, MCPCOUNTER, and EPIC,  

to assess the level of cancer-associated fibroblast and 

plotted these data as heat and scatter plots. 

 
Enrichment analysis of OPA1 and the related genes 

 

We first opened the STRING database, entered  

‘OPA1’ in the ‘Protein name’ field, and selected ‘Homo 

sapiens’ in the ‘Organism’ field [57]. Subsequently,  

the parameters were set as follows: In the ‘Minimum 

required interaction score’ field, select ‘Low confidence 

(0.150)’. In the ‘Meaning of network edges’ field, select 

‘Evidence’, in the ‘Maximum number of interactors 

shown’ field, select ‘No more than 50 interactors’,  

and in the first shell and ‘Active interaction source’, 

select ‘Experiment’. Finally, click “Update” to obtain 

the experimentally determined proteins bound to OPA1.  

In addition, we used the “Expression Analysis-Similar 

Gene Detection” tool in GEPIA2 to extract the top 100 

genes most associated with OPA1 in the TCGA tumor 

and normal tissue database. We performed coupled  

gene Pearson correlation analysis of OPA1 and selected 

genes using the “Expression Analysis - Correlation 

Analysis” module. The data of these genes were  

then plotted as a heat map using the “Exploration - 

Gene_Corr” module of TIMER 2.0. 

 
In order to cross-tabulate the top 100 genes that  

bind to OPA1 with the top 50 interacting genes,  



www.aging-us.com 12993 AGING 

we used the Jvenn database [58]. Then we uploaded 

the list of all these genes to the DAVID [58] data- 

base and set them up as follows: identifier selection 

(“OFFICIAL_GENE_SYMBOL”), species selection 

(“Homo sapiens”). In addition, we performed KEGG 

and GO analysis of the above gene list using the 

“Functional Annotation Map” module of DAVID. The 

analyzed data were downloaded and those with p-

values less than 0.05 were selected for the next step  

of processing. 

 
Tools and websites 

 
cBioPortal: https://www.cBioPortal.org/; DAVID: 

https://david.ncifcrf.gov/; GEPIA: http://gepia.cancer-

pku.cn/; GEPIA2: http://gepia2.cancer-pku.cn/#index; 

HPA: https://www.proteinatlas.org/; Venn: http:// 

bioinformatics.psb.ugent.be/webtools/Venn/; Kaplan-

Meier plotter: http://kmplot.com/analysis/; STRING: 

https://cn.string-db.org/; TIMER 2.0: http://timer. 

cistrome.org/; UALCAN: http://ualcan.path.uab.edu/ 

index.html. 

 
Availability of data and materials 

 
All data generated or analyzed during this study are 

included in this published article. 
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