
www.aging-us.com 13486 AGING 

INTRODUCTION 
 

Acute myeloid leukemia (AML) comprises a group of 

heterogeneous hematologic malignancies characterized 

by an increased number of cytogenetic and molecular 

abnormalities, imposing a profound burden on affected 

individuals worldwide [1, 2]. Despite advancements in 

AML treatment, such as risk stratification, combination 

chemotherapy, and stem cell transplantation, the over-

all survival rate remains unsatisfactory [3, 4]. While  

the genomic landscape of AML has been extensively 

characterized, revealing numerous potential therapeutic 

targets, but how to effectively kill AML cells while 

leaving healthy cells uninjured remains a fundamental 

challenge. 

 

Ferroptosis induction, an iron-dependent form of necrotic 

cell death triggered by excessive peroxidation of poly-

unsaturated fatty acids (PUFAs), is being explored as  

an alternative approach to eradicate apoptosis-resistant 

cancer cells [5, 6]. Ferroptosis is identified with hall-

marks that are distinct from those of apoptosis; it is 

characterized by excessive iron-catalyzed peroxidation of 

PUFA-containing phospholipids (PLs) and is extensive 

in the mammalian cell membrane [7–9]. PL peroxidation 

is primarily mediated by reactive oxygen species (ROS) 
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ABSTRACT 
 

Ferroptosis induction through the suppression of glutathione peroxidase 4 (GPX4) and apoptosis-inducing 
factor mitochondria-associated 2 (AIFM2) has proven to be an effective approach in eliminating chemotherapy-
resistant cells of various types. However, a comprehensive understanding of the roles of GPX4 and AIFM2 in 
acute myeloid leukemia (AML) has not yet been achieved. Using cBioPortal, DepMap, GEPIA, Metascape, and 
ONCOMINE, we compared the transcriptional expression, survival data, gene mutation, methylation, and 
network analyses of GPX4- and AIFM2-associated signaling pathways in AML. The results revealed that high 
expression levels of GPX4 and AIFM2 are associated with an adverse prognosis for AML patients. 
Overexpression of AIFM2 correlated with elevated mutation frequencies in NPM1 and DNMT3A. GPX4 
upregulation modulated the following pathways: GO:0045333, cellular respiration; R-HSA-5389840, 
mitochondrial translation elongation; GO:0009060, aerobic respiration; R-HSA-9609507, protein localization; 
and R-HSA-8953854, metabolism of RNA. On the other hand, the overexpression of AIFM2 influenced the 
following processes: GO:0048704, embryonic skeletal system morphogenesis; GO:0021546, rhombomere 
development; GO:0009954, proximal/distal pattern formation; and GO:0048732, gland development. This study 
identifies the high expression of GPX4 and AIFM2 as novel biomarkers predicting a poor prognosis for AML 
patients. Furthermore, ferroptosis induction may improve the stratified treatment of AML. 
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and the activity of the lipoxygenase (LOX) family. 

Failure to initiate protective mechanisms against 

peroxidation-induced membrane rupture leads to the 

induction of ferroptosis [10, 11]. Consequently, ferrop-

tosis is associated with a series of metabolic disorders, 

including those involving ROS, iron, and PLs. Abnormal 

genes and pathways related to the metabolism of iron, 

energy, oxidative stress, and lipid peroxidation may 

potentially modify cell sensitivity to ferroptosis. 

 

Phospholipid (PL) detoxification is typically regulated 

by the glutathione peroxidase (GPX) family [12]. To 

date, GPX4 stands out as the sole GPX responsible for 

safeguarding membranes against peroxidative damage, 

and GPX4 functions in a glutathione (GSH)-dependent 

manner to reduce lipid hydroperoxide levels [13, 14]. 

Depletion of intracellular GSH or the inhibition of 

GSH synthesis can indirectly deactivate GPX4, leading 

to the induction of ferroptosis [15]. 

 

Beyond GPX4, ferroptosis suppressor protein 1 (FSP1), 

also known as apoptosis-inducing factor mitochondria-

associated 2 (AIFM2), has recently been identified  

as another player in suppressing ferroptosis, particularly 

in the context of GPX4 knockout. AIFM2 protects 

against ferroptosis through a glutathione-independent 

mechanism mediated by ubiquinone (CoQ10). This 

compound neutralizes lipid peroxyl radicals, moderating 

PL peroxidation. AIFM2 catalyzes the production of 

CoQ10 via NAD(P)H. Therefore, the AIFM2-CoQ10-

NAD(P)H pathway constitutes a parallel system that 

coordinates with GPX4 and glutathione to maintain  

the homeostasis of phospholipid peroxidation and 

ferroptosis [16]. 

 

Studies have demonstrated that inducing ferroptosis may 

effectively eliminate chemotherapy-resistant cancer 

cells in ovarian cancer, breast cancer, and lung cancer, 

highlighting the potential of ferroptosis induction as a 

novel anticancer therapy [17, 18]. Consequently, various 

ferroptosis inducers (FIs) have gained approval from  

the Food and Drug Administration (FDA) for clinical 

use [19]. However, the evaluation of the ferroptosis 

landscape has not been conducted in the context of 

AML. In this study, we utilized widely accepted public 

databases to assess ferroptosis resistance in AML, 

revealing a relationship between ferroptosis regulatory 

genes and the pathogenesis and progression of AML. 

 

RESULTS 
 

Transcriptional levels of GPX4 and AIFM2 in 

patients with AML 

 

GPX4 and AIFM2 are genes identified in the human 

genome. To compare their transcriptional levels in 

cancer and normal controls, we utilized the ONCOMINE 

database (Figure 1). ONCOMINE analysis revealed an 

upregulation of GPX4 and AIFM2 mRNA expression  

in patients with AML (Table 1). Specifically, GPX4 

showed upregulation in 3 datasets, while AIFM2  

was overexpressed in 1 dataset. Haferlach’s research 

indicated a 1.334-fold increase in GPX4 mRNA in 

AML [20]. Andersson and colleagues reported a 1.74-

fold elevation of GPX4 in AML [21], and Valk 

identified GPX4 with a fold change of 1.257 in AML 

[22]. Regarding AIFM2 mRNA expression, Haferlach 

found a 1.069-fold increase in AML [20]. 

 

To deepen our understanding of ferroptosis in AML, 

we analyzed GPX4 and AIFM2 transcriptional levels 

in AML FAB subtypes. In Gutierrez’s dataset, GPX4 

was upregulated in M1, M4E0, and M5 with fold 

changes of 1.47, 1.861, and 1.297, respectively [23]. 

Bullinger’s data showed fold changes of 1.643 and 

1.392 in the M3 and M5 subtypes [24]. Debernardi’s 

dataset revealed GPX4 overexpression with a fold 

change of 1.268 in the M4E0 subtype [25]. Notably, 

AIFM2 was significantly overexpressed in the M5 and 

M6 subtypes, with no obvious change in the entire 

AML cohort. Heuser’s dataset indicated AIFM2 

increases with a fold change of 2.918 in M5, as well as 

fold changes of 1.946 and 1.419 in a TCGA study and 

Metzeler’s dataset [26, 27]. In Wouters’ dataset, 

AIFM2 increased by 2.066-fold for the M6 subtype 

[28] (Table 2). 

 
GPX4 and AIFM2 translational factor expression in 

leukemia cell lines and AML patients 

 

By using the EMBL-EBI bioinformatics website, 

GPX4 and AIFM2 expression levels were analyzed  

in leukemia cell lines. The results showed that GPX4 

is generally highly expressed in leukemia cell lines. 

AIFM2 was highly expressed in AML cell lines, 

including SKIM-1, OCI-AML2, OCI-AML3, OCI-

AML5, THP-1, PL-21, and BDCM cells (Figure 2A). 

Interestingly, the GEPIA assay revealed that both 

GPX4 and AIFM2 expression levels in the GTEx 

database of healthy people were higher than those of 

AML patients in the TCGA database (Figure 2B–2E). 

 
The dependency of leukemia cells on GPX4 and 

AIFM2 

 

Due to conflicting results between the ONCOMINE 

and GEPIA data, we further studied the dependency  

of AML cells on GPX4 and AIFM2. The DepMap 

assay illustrated that AML cells significantly relied  

on GPX4 (Figure 3A, Supplementary Figure 1A) and 

AIFM2 (Figure 3B, Supplementary Figure 1B), with a 

particularly notable dependence on GPX4. 
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Table 1. The significant changes of GPX4 and AIFM2 expression in transcription level between different types of 
leukemia and normal control. 

GENE Type of leukemia versus normal samples Fold change P value T test References 

GPX4 Acute myeloid leukemia versus normal 1.334 3.91E-18 10.639 Haferlach [20]  
Acute myeloid leukemia versus normal 1.257 4.00E-03 NA Valk [22]  
Acute myeloid leukemia versus normal 1.74 1.73E-04 4.865 Andersson [21] 

AIFM2 Acute myeloid leukemia versus normal 1.069 1.02E-04 3.812 Haferlach [20] 

 

 
 

Figure 1. The transcription levels of GPX4 and AIFM2 in different types of cancers. 
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Table 2. The significant changes of GPX4 and AIFM2 expression in FAB subtype of AML. 

GENE FAB subtype Fold change P value T test References 

GPX4 M0 1.047 0.004 2.718 TCGA Leukemia 2 
 M5 1.059 0.029 1.979 TCGA Leukemia 2 
 M5 1.392 7.05E-04 3.536 Bullinger [24] 
 M3 1.643 0.001 3.549 Bullinger [24] 
 M4E0 1.268 0.005 3.021 Debernardi [25] 
 M4E0 1.861 0.038 2.2 Gutierrez [23] 
 M1 1.47 0.035 2.116 Gutierrez [23] 
 M5 1.297 0.042 1.906 Gutierrez [23] 
 M4 1.106 0.047 1.693 Valk [22] 
 M5 1.197 0.008 2.54 Metzeler [27] 
 M5 1.139 1.87E-04 3.624 Wouters [28] 
 M1 1.153 0.025 1.991 TCGA Leukemia 

AIFM2 M5 2.918 0.002 3.291 Heuser [26] 
 M5 1.946 1.12E-05 4.753 TCGA Leukemia 
 M6 2.066 0.043 2.045 Wouters [28] 
 M5 1.122 2.03E-04 3.611 Wouters [28] 
 M5 1.419 0.028 2.426 Metzeler [27] 
 M4 1.151 4.90E-02 1.78 Metzeler [27] 

 

 
The prognostic significance of GPX4 and AIFM2 in 

AML 

 

To assess the significance of GPX4 and AIFM2  

in the survival of AML patients, we utilized the 

GEPIA and UCSC Xena online tools. Results from 

both databases indicated that increased expression  

of GPX4 and AIFM2 significantly correlated with 

poor overall survival (OS) of AML patients (Figure 

4). 

 

Correlation between gene mutations and 

GPX4/AIFM2 expression 

 

Given that gene mutations are prevalent in  

AML, we examined the correlation between GPX4  

and AIFM2 transcriptional levels and gene mutations 

using the cBioPortal tool. Results demonstrated that 

AIFM2 overexpression correlated with a high mutation 

frequency of nucleophosmin (NPM1) and DNA methyl-

transferase 3A (DNMT3A) (Figure 5A). The combined 

use of UCSC Xena and cBioPortal tools unveiled that 

AML individuals with DNMT3A mutations exhibited 

hypomethylation of the AIFM2 promoter region and 

high mRNA expression (Figure 5B). Hypomethylation 

in the AIFM2 promoter region is inversely related  

to AIFM2 expression (Figure 5C). However, the GPX4 
expression level showed no correlation with gene 

mutations or promoter methylation (Supplementary 

Figure 2 and Figure 5D–5F). 

Functional prediction and pathway enrichment 

analysis of GPX4 and AIFM2 in AML 

 

We examined genes coexpressed with GPX4 and 

AIFM2 in the TCGA-AML dataset using the cBioPortal 

tool. The expression of GPX4 exhibited a positive  

correlation with the upregulation of several genes,  

including POLR2E, ATP5F1D, NDUFS8, NAA10,  

PLEKHJ1, C19ORF24, CIAO2B, NDUFB7, SIRT6,  

MRPS12, UQCR11, C19ORF53, CCDC124, TBCB, and  

NDUFS6. Similarly, AIFM2 expression was positively  

correlated with elevated levels of genes such as  

ABHD11, LINC00899, HOXA10, HOXA6, HOXA3,  

HOXA7, H2AFY2, CPNE8, RINL, HOXA4, ITM2A,  

HOXA9, HOXA11, HOXA5, and SHISA4. Subsequently,  

two lists of the most frequently coexpressed genes,  

one list of genes related to GPX4 and another related  

to AIFM2, were compiled to show the results of the  

pathway enrichment assays using GO and KEGG tools in  

Metascape. The results illustrated that GPX4 affected the  

following processes: GO:0045333, cellular respiration;  

R-HSA-5389840, mitochondrial translation elongation;  

GO:0009060, aerobic respiration; R-HSA-9609507,  

protein localization; R-HSA-8953854, metabolism of  

RNA, GO:0043161, proteasome-mediated ubiquitin-

dependent protein catabolic process; GO:0009127, 

purine nucleoside monophosphate biosynthetic process; 
GO:0034660, NcRNA metabolic process; GO:0006122, 

mitochondrial electron transport from ubiquinol to cyto-

chrome c; CORUM:2914, respiratory chain complex I 
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(beta subunit) mitochondria; GO:1990542, 

mitochondrial transmembrane transport; GO:0009451, 

RNA modification; GO:0006515, protein quality 

control for misfolded or incompletely synthesized 

protein; hsa01200, carbon metabolism; GO:0044743, 

protein transmembrane import into intracellular 

organelle; R-HSA-73894, DNA repair; R-HSA- 

70895, branched-chain amino acid catabolism;  

R-HSA-9609523, insertion of tail-anchored proteins 

into the endoplasmic reticulum membrane; GO: 

0032787, monocarboxylic acid metabolic process;  

and GO:0042147, retrograde transport from 

 

 
 

Figure 2. The expression of GPX4 and AIFM2 in leukemia cell lines (A) and cancer types (B–E). 
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endosomes to Golgi (Figure 6A–6C). AIFM2  

gene alterations influenced the following pathways: 

GO:0048704, embryonic skeletal system morphogenesis; 

GO:0021546, rhombomere developmental R-HSA-

5617472, activation of anterior HOX genes in hindbrain 

development during early embryogenesis; GO:0009954, 

proximal/distal pattern formation; GO:0048732, gland 

development; GO:0045616, regulation of keratinocyte 

differentiation; GO:0009791, postembryonic development; 

GO:0001101, response to acid chemical; GO:0042471, 

ear morphogenesis; and GO:0072006, nephron develop-

ment (Figure 6D–6F). 

 

 
 

Figure 3. The dependency of leukemia cells on GPX4 (A) and AIFM2 (B). The blue circle represents the SHI-1 AML cell line with 

nonconserved gene mutations. A score < 0 means that the selected cell line is more likely to be dependent on the gene. A score = 0 is 
equivalent to a gene that is not essential, whereas a score of -1 corresponds to the median of all common essential genes. 
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DISCUSSION 
 

Cancer cells with dysregulated ROS production, altered 

iron levels, and increased lipid peroxidation are  

more susceptible to ferroptosis, a phenomenon that  

has garnered significant attention in recent decades. 

While studies across various cancers have highlighted 

the efficacy of ferroptosis induction, particularly by 

inhibiting GPX4 and AIFM2, in eliminating apoptosis-

resistant cancer cells, the exploration of ferroptosis in 

the context of AML remains relatively limited. In this 

study, we conducted a bioinformatics analysis to assess 

ferroptosis inducibility in AML patients. The findings 

revealed that high expression levels of both GPX4  

and AIFM2 are associated with an adverse prognosis, 

suggesting the potential therapeutic use of ferroptosis 

inducers in treating AML patients. 

 
Intracellular iron should be tightly controlled, and iron 

overload induces the overproduction of ROS through 

the “Fenton reaction” and “Haber-Weiss reaction” [29, 

30]. ROS are regarded as double-edged swords and are 

 

 
 

Figure 4. The prognostic significance of GPX4 and AIFM2 in AML patients. (A, B) were analyzed in the GEPIA database, and (C, D) 

were obtained via the UCSC Xena platform. 
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the main contributors to oxidative stress. Low levels  

of ROS function as vital second messengers, but  

at high concentrations, they are cytotoxic agents in  

both cancer cells and healthy cells [31]. Elevated ROS 

reduces the differentiation and self-renewal capacity of 

hematopoietic stem cells (HSCs), resulting in rapid 

bone marrow failure for which there is no successful 

treatment [32, 33]. In addition, ROS participates in 

multilevel biological behaviors through the oxidation of 

critical cysteine residues in signaling proteins to drive 

leukemogenesis in AML [34]. 

 

Excessive production of extracellular ROS (mean >  

10-fold change) was observed in >60% of primary 

AML blasts, and this change was not correlated with the 

molecular subtype of AML. These accumulated ROS 

promote the proliferation of AML cell lines and primary 

AML blasts but promote normal CD34+ cell growth  

to a lesser extent [35]. Interestingly, studies have also 

shown that ROS overproduction is related to molecular 

mutations, including Fms-like tyrosine kinase 3 internal 

tandem duplications (FLT3-ITDs), in NPM1, isocitrate 

dehydrogenase (IDH), and DNMT3A. 

 

FLT3 mutation occurs in almost 30–35% of AML, and 

FLT3-ITD is considered closely related to increased 

ROS production in AML [36, 37]. For example,  

ROS overproduction was observed in the primary  

MV4-11 and MOLM-13 AML cell lines containing 

FLT3-ITD mutation compared to the level in the wild-

type FLT3 cell line. In the mouse-derived 32D and 

Ba/F3 hematopoietic progenitor cell lines, which  

are transduced to stably express human FLT3-ITD  

or FLT3-TKD (D835Y) mutations, high levels of 

endogenous ROS are produced and result in higher 

oxidative DNA damage compared to that in un-

transfected cells [37, 38]. AML patients with FLT3- 

ITD have lower levels of ROS in the condition of 

coexisting NPM1 mutations, which occur in up to 30% 

of AML cases [39, 40]. This information may provide 

 

 
 

Figure 5. The relationship between AIFM2 expression and the mutation frequency of related genes, including NPM1, DNMT3A, FLT3, IDH1, 

and IDH2 (A). Methylation at the DNA promoters of AIFM2 in the FAB subtype (B). The correlation of AIFM2 expression levels and 
methylation (C). The relationship between GPX4 expression and the mutation frequency of related genes, including NPM1, DNMT3A, FLT3, 
IDH1, and IDH2 (D). Methylation at the DNA promoters of GPX4 in the FAB subtype (E). The correlation of GPX4 expression levels and 
methylation (F). 
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insights into the unfavorable prognosis associated  

with AML patients with FLT3-ITD mutations and wild-

type NPM1 compared to those with both NPM1 and 

FLT3-ITD mutations [41]. The clinical outcomes align 

with evidence of increased DNA damage, suggesting a 

mechanistic link between FLT3-mutant AML, genomic 

instability, and lipid peroxidation through elevated ROS 

production. 

 

IDH1 and IDH2 mutations are identified in nearly 10-

15% of AML cases [42, 43]. These mutations lead to 

the production of R-2-hydroxyglutarate (R-2-HG), an 

 

 
 

Figure 6. The functions of the GPX4 and AIFM2 genes and the variant genes significantly associated with GPX4 and AIFM2. Heat 

map of the GO and KEGG enriched terms colored by P-values. (A) GPX4-related genes enriched. (B) Network of GO and KEGG enriched terms for 
GPX4 colored by cluster. (C) Network of GO and KEGG enriched terms for GPX4 colored by P-value. (D) AIFM2-related genes enriched. (E) Network 
of GO and KEGG enriched terms for AIFM2 colored by cluster. (F) Network of GO and KEGG enriched terms for AIFM2 colored by P-value. 
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oncometabolite that interferes with myeloid 

differentiation through epigenetic modifications [44]. 

Additionally, accumulated R-2-HG has been shown  

to increase intracellular ROS levels, phosphorylate 

NF-κB, and stimulate the proliferation of IDH-mutated 

AML cells via an extracellular signal-regulated kinase-

dependent pathway [45]. 

 

DNMT3A mutations, found in approximately 20%  

of AML cases, particularly in M4-AML and M5- 

AML, result in the dysfunction of DNMT3A protein 

and alterations in DNA methylation patterns [46,  

47]. Notably, hypomethylation in the AIFM2 promoter 

region, compared with the GPX4 promoter, leads  

to high AIFM2 expression in AML patients with 

DNMT3A mutations. This novel finding suggests a 

distinctive mode of ferroptosis regulation by AIFM2 in 

the context of DNMT3A mutation (see Supplemen-

tary Figure 3). Reports indicate that introducing  

the DNMT3A-Arg 882His/Cys mutant into U937  

cells decreases ROS levels [48]. However, further 

validation is required, especially considering the 

unique characteristics of U937 cells derived from the 

pleural fluid of lymphoma patients, which may not 

fully represent AML characteristics. 

 

Iron overload contributes to cellular dysfunction by 

upregulating ROS levels in AML cells. Interestingly, 

high levels of both GPX4 and AIFM2 protect AML 

cells from ferroptosis, underscoring the dependency  

of AML cells on GPX4 and AIFM2 for survival. 

Moreover, AML patients exhibiting elevated levels of 

either GPX4 or AIFM2 experienced worse overall 

survival (OS) compared to those with lower levels of 

either GPX4 or AIFM2. 

 

These findings provide valuable insights into the 

intricate interplay between genetic mutations, ROS 

regulation, and the roles of GPX4 and AIFM2 in AML 

pathogenesis and prognosis. 

 

Metabolomics studies have revealed that AML cells 

exhibit an increased demand for glucose and glutamine, 

channeling these resources to sustain proliferation 

advantages compared to normal cells [49, 50]. Addiction 

to glucose produces more α-ketoglutaric acid (α- 

KG), an intermediate product of the mitochondrial 

tricarboxylic acid cycle, converted to glutamate by 

aminotransferase [51]. Increased uptake of glutamine 

shunts more glutamine into the glutaminolysis pathway 

to produce glutamate through glutaminase 2 (GLS2) 

[52]. Accumulated glutamate facilitates the oxidized 

form of cysteine and cystine exchange from the 
extracellular space by system Xc

- [53]. Overall, high 

concentrations of glucose and glutamine lead to 

abundant glutamate and cystine, which facilitates the 

synthesis of GSH, an essential cofactor of GPX4,  

to counteract ferroptosis in AML cells. Therefore, 

targeting key genes involved with ferroptosis cofactors 

should also be considered, as GPX4 inhibition alone 

has only modest effects on AML [54]. 

 

Certain ferroptosis inducers (FIs) have entered clinical 

trials and have shown promise in hematological 

malignancies. System Xc
- inhibition, for instance, 

effectively suppresses tumor growth in experimental 

models of fibrosarcoma and diffuse large B-cell 

lymphoma. Depletion of GSH has been found to 

increase the survival of chronic lymphocytic leukemia 

model mice [55–58]. In addition, the FLT3 inhibitor 

sorafenib has also been validated as a useful FI that 

significantly improves the survival of patients with 

FLT3-ITD [59, 60]. This outcome may be due to 

sorafenib not only being an inhibitor of FLT3 but  

also a prohibitor of system Xc
-, thereby inducing the 

ferroptosis of AML cells [61]. In addition, all-trans 

retinoic acid derivatives also induce ferroptosis and the 

differentiation of AML cells through the NRF2 pathway 

[62]. However, it’s noteworthy that there are limited 

studies targeting GPX4 and AIFM2 in hematological 

malignancies to date. 

 

These findings underscore the potential of targeting 

ferroptosis pathways and associated cofactors as a 

therapeutic strategy in AML, opening avenues for further 

exploration and development of novel treatments. 

 

In this study, the utilization of GO and KEGG online 

analysis tools allowed us to elucidate the intricate 

association patterns between GPX4, AIFM2, and their 

most frequently altered linked genes in AML initiation 

and prognosis. Several enriched pathways emerged  

as noteworthy for future investigations, including 

GO:0045333, cellular respiration, R-HSA-5389840, 

mitochondrial translation elongation; GO:0009060, 

aerobic respiration; R-HSA-9609507, protein locali-

zation; R-HSA-8953854, metabolism of RNA; GO: 

0048704, embryonic skeletal system morphogenesis; 

and R-HSA-5617472, activation of anterior HOX genes 

in hindbrain development during early embryogenesis. 

Among these frequently altered correlated genes,  

R-HSA-8953854, related to the metabolism of RNA, 

inspired us to discover the correlation between RNA 

stability and ferroptosis. 

 

The apparent paradox observed in the GEPIA  

and ONCOMINE studies may be attributed to the 

different acquisition sites of normal samples in the 

GTEx database and AML patients in the TCGA 
database. Healthy control samples in the GTEx 

database are derived from bone marrow, the body’s 

most abundant source of iron. This suggests that 
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hematopoietic stem cells (HSCs) and differentiated 

cells in bone marrow must upregulate GPX4 and 

AIFM2 to protect themselves against ferroptosis under 

iron overload conditions, maintaining normal hemato-

poietic function. On the other hand, samples from 

AML patients in the TCGA dataset were obtained 

from peripheral blood, an environment with lower iron 

levels. This seeming paradox prompted consideration 

for using a uniform sample type to more accurately 

evaluate the inducibility of ferroptosis. 

 
CONCLUSION 

 
The challenge of chemo-drug resistance in traditional 

AML treatment has prompted the exploration of novel 

cell death mechanisms. Ferroptosis, a recently observed 

form of cell death, holds promise for overcoming 

chemo-drug resistance and eliminating resilient cancer 

cells. This study delves into the correlation between the 

expression of key genes involved in ferroptosis and the 

occurrence and progression of AML. The elevated 

expression of GPX4 and AIFM2 emerges as a potential 

indicator, suggesting their utility as biomarkers for 

predicting poor prognosis in AML patients. These genes 

not only serve as prognostic biomarkers but also present 

themselves as potential targets for treatment in AML. 

The induction of ferroptosis, combined with traditional 

treatments, may pave the way for improved stratified 

therapy in AML. In conclusion, the exploration of 

ferroptosis in the context of AML opens avenues for 

innovative therapeutic strategies, offering hope for 

enhanced treatment outcomes and a step forward in 

overcoming drug resistance challenges. 

 
MATERIALS AND METHODS 

 
Cancer dependency map 

 
The Cancer Dependency Map portal (DepMap) 

(https://depmap.org/portal/) is a processor used to 

identify essential genes across cancer cell lines by 

genome-wide CRISPR and shRNA screening, DepMap 

has already been validated as a powerful tool useful  

for discovering the genetic vulnerabilities of cancer 

cells and identifying potential targets for candidate  

drug screening. For a candidate gene, the calculated 

“perturbation score” represents the degree to which its 

loss prohibits cell proliferation in a selected cell line.  

A lower score (<0) means that the candidate gene is 

more likely to be required in the selected cell line.  

A score = 0 is equivalent to a gene that is not essential 

whereas a score of −1 corresponds to the median of  

all common essential genes. We used the DepMap 

portal to assay the dependence of AML cell lines on 

GPX4 and AIFM2. 

Functional enrichment and bioinformatics analysis 

 

The Metascape portal (http://metascape.org) provides an 

online assay tool, that covers more than 40 independent 

knowledge bases in an integrated database including 

functional enrichment, interactome analysis, gene 

annotation, and a membership search in combination 

with Gene Ontology (GO) and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) tools within Metascape 

[63]. Genes with a correlation value > 0.5 were selected 

for pathway enrichment. We generated two lists of 

enriched genes associated with GPX4 and AIFM2 

respectively, to identify the most frequently altered 

linked genes. 

 
Gene expression profiling interactive analysis 

(GEPIA) dataset 

 

GEPIA is a web-based tool that enables researchers  

to perform fast and customizable assays based on 

TCGA and Genotype-Tissue Expression (GTEx) data 

[64]. Using GEPIA, we validated the expression and 

prognostic significance of GPX4 and AIFM2 in AML 

patients. 

 
ONCOMINE database analyses 

 

The ONCOMINE database serves as an online analysis 

tool that enables users to assay the transcriptional level 

of genes of interest in different cancer types based  

on a microarray database [65]. GPX4 and AIFM2  

gene transcription levels were analyzed in multiple 

cancer types using a gene expression array within 

ONCOMINE. GPX4 and AIFM2 mRNA expression 

levels in tumor specimens were compared with those 

of a normal control. The cutoff P value was defined as 

0.05, the fold change was defined as all. 

 
UCSC Xena and cBioPortal tools 

 

The UCSC Xena (http://xena.ucsc.edu/) is regarded as 

a visual integration and exploration tool for use with 

public and private multiomics datasets. The Xena 

browser enables researchers to explore data across 

multiple Xena hubs using a variety of visualization 

types and analyses [66]. We used UCSC Xena to  

assay the methylation in the promotor region of  

GPX4 and AIFM2 as indicated in The Cancer  

Genome Atlas (TCGA) AML dataset. The cBioPortal 

(http://www.cbioportal.org/) is designed for the 

interactive exploration of multidimensional cancer 

genomics databases. It supports and stores data that 

include mutations, copy number alterations, mRNA 

expression changes, and DNA methylation values, as 

well as clinical parameters. The online analyses tool  

in cBioPortal allows researchers to interrogate datasets 

https://depmap.org/portal/
http://metascape.org/
http://xena.ucsc.edu/
http://www.cbioportal.org/
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across genes, samples, and data types, allowing  

them to examine several different biologically and/ 

or clinically relevant hypotheses. Ferroptosis-related  

gene mRNA expression analyses in adult patients  

with the FAB subtype of AML and in AML cell lines 

were conducted by cBioPortal [67]. Moreover, the 

expression levels of GPX4 and AIFM2 in the AML 

cell lines were also evaluated with the European 

Bioinformatic Institute (EMBL-EBI) database (https:// 

www.ebi.ac.uk/gxa/home), and the expression values 

were log-transformed and a heat map was generated 

using GraphPad Prism 7.0. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The dependency of leukemia cells on GPX4 (A) and AIFM2 (B), figures are obtained from Depmap and screenshotted. 
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Supplementary Figure 2. Expression of GPX4 and AIFM2 in AML patients and the methylation profile of promotors in AML 
FAB subtype. 
 

 

 
 

Supplementary Figure 3. CpG island methylation of GPX4 (A) and AIFM2 (B) promotors, figures are obtained from Depmap. 

 


