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INTRODUCTION 
 

Alcohol-related liver disease (ALD) causes approximately 

25 % of deaths associated with alcohol consumption [1, 

2]. ALD includes parenchymal injury, fibrosis, 

inflammation, cirrhosis, and hepatocellular carcinoma [3]. 

Ethanol directly damages the liver by increasing oxidative 

stress, endoplasmic reticulum (ER) stress, inflammatory 

responses, and apoptosis [4]. Oxidative stress is activated 

during alcohol metabolism, which produces excessive 

reactive oxygen species (ROS) in hepatocytes [5]. ROS 

activates lipid synthesis genes to protect liver cells from 
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ABSTRACT 
 

The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic 
steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, 
their potential mechanisms are unclear. An objective of the current study was to examine the effects of 
extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet 
were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and 
administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring 
plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal 
damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-
induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum 
stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that 
LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress 
via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via 
another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment. 
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alcohol toxicity and causes the accumulation of lipids 

in liver cells, finally developing into other alcoholic 

liver diseases [6, 7]. Alcohol damages intestinal 

epithelial barrier function and promotes intestinal 

permeability, endotoxin leakage, and serum endotoxin 

levels, leading to alcoholic liver damage [1]. The liver-

gut theory of alcoholic fatty liver disease states that 

alcohol exposure increases intestinal permeability, 

releases gram-negative bacterial lipopolysaccharide 

(LPS), and activates immune responses [2]. LPS enters 

the liver through the enterohepatic axis and activates 

Kupffer cells to release inflammatory interleukins 

(e.g., IL-1β and IL-6) and tumor necrosis factor-alpha 

(TNF-α), resulting in ALD [8]. 

 

Despite extensive studies of ALD pathophysiology, 

there are no targeted therapies available. The treatment 

approach for ALD remains corticosteroids (or 

pentoxifylline as an alternative if steroids are 

contraindicated), abstinence, and nutritional support 

[9]. In recent years, researchers have turned their 

attention to probiotics, which possess many beneficial 

effects on intestinal function, including promoting 

intestinal development and mucosal immunity, 

reducing intestinal oxidative stress, alleviating 

diarrhea, and improving or maintaining gut barrier 

function [10]. They positively regulate intestinal flora, 

temporarily colonize the gastrointestinal tract, correct 

gut dysbiosis, and inhibit the growth and virulence of 

several enteric pathogens [8]. The therapeutic potential 

of probiotics was reported in animal models of ALD 

and clinical studies [11–13]. Human studies highlighted 

that the administration of probiotics improved liver 

function by decreasing oxidative damage/stress [14]. A 

clinical study showed that supplementation with 

Lactobacillus plantarum 8PA3 and Bifidobacterium 

bifidum restored intestinal flora and improved liver 

enzyme levels in patients with ALD [15]. Lactobacillus 

rhamnosus CCFM1107 protects against alcoholic liver 

injury (ALI) by restoring bowel flora and reducing 

oxidative stress [16]. 

 

Several studies showed that probiotics protected the liver 

from alcohol injury; however, no consensus intervention 

exists. Another study showed that Lactobacillus 
rhamnoses supernatant maintained the integrity of the 

intestinal barrier and attenuated endotoxemia-centered 

liver injury [17]. Heat-killed lactic acid bacteria cells also 

reduced inflammation and oxidative stress in ALI [18]. 

These studies above reported Lactobacillus, supernatant 

of Lactobacillus, and heat-killed Lactobacillus might 

mediate its benefits. However, some reports noted 

adverse cases with probiotic utilization, including 
fungemia [19], bacteremia [20], and worsened severe 

pancreatitis, with a high incidence of intestinal ischemia 

and mortality [21]. Furthermore, research on heat-killed 

bacteria is insufficient. These studies suggested that the 

supernatant might be safer and more effective. 

 

Lactobacillus plantarum ST-III, isolated initially from 

Kimchi, Japan, underwent complete genome sequencing 

with analysis of the oligosaccharide metabolic pathway 

in 2011 [22]. Other studies showed that Lactobacillus 

plantarum ST-III was a potential probiotic for treating 

hyperlipidemia [23]. However, studies of Lactobacillus 
plantarum ST-III in alcoholic diseases have not been 

reported. The present study investigated LP-cs' effects 

on acute ALI and provided a potential ALD prevention 

and treatment strategy. 

 

MATERIALS AND METHODS 
 

Preparation of LP-cs 

 
Lactobacillus plantarum ST-III AB161(CGMCC 

22782) was provided by the Biological Experimental 

Center of Wenzhou Medical University. According to 

the instructions, LP was activated and passaged three 

times in MRS medium, inoculated in 100 mL liquid 

medium according to 3% inoculation amount of culture 

medium, cultured at 37° C, 5% CO2 for 24 hours, 

centrifuged 10 min at 4° C and 5000 r/min, and the 

supernatant was filtered through 0.22-μm filter to obtain 

extracellular fluid. This procedure was performed as 

described previously [17, 24]. 

 

Animal studies 

 

Male ICR mice (about 20 g) were obtained from Vital 

River Laboratory Animal Technology Co., Ltd, Shanghai. 

All mice were maintained and fed as described previously 

[17, 24]. LP-cs was added to the drinking water at 1:20, 

and 8–9 ml/mouse was consumed daily. During the two 

weeks of the experiment, the mice were maintained on the 

LP-cs treatment. Animals were given a 6 g/kg dose of 

ethanol via gavage and maintained fasting overnight with 

free access to drinking water containing LP-cs. All 

animals were anesthetized after 6 h of the experiment, and 

blood and tissue samples were collected for assays as 

described previously [17].  

 

Biochemical analysis 

 

Plasma was collected by centrifuging the blood samples 

at 2,000 g for 30 min at 4° C. Plasma alanine amino-

transferase (ALT) was tested using analytical reagent 

kits (C009-2-1, Nanjing Jiancheng Bioengineering 

Institute, China). Plasma LPS level was determined 

using enzyme-linked immunosorbent assay kits (50-

658U, Lonza, Walkersville, MD). Liver tissues were 

homogenized and centrifuged according to the 

manufacturer's protocols. Then the levels of malon-
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dialdehyde (MDA), superoxide dismutase (SOD), and 

GSH-Px in the liver were determined using commercial 

kits, according to the manufacturer’s instructions 

(A003-1-2, A001-3-2, A005-1-2, Nanjing Jiancheng 

Bioengineering Institute, China). 

 

Hepatic triglyceride assay 

 

Liver triglyceride levels were measured as described 

previously [25] (A110-1-1, Nanjing Jiancheng 

Bioengineering Institute, China). 

 

Liver TNF-α and IL-6 assays 

 

Liver TNF-α and IL-6 were measured using TNF-α and 

IL-6 assay kits (900-K54, 88-7064-88, Thermo Fisher 

Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions. 

 

Western blot analysis 

 

Liver tissues were homogenized, and western blotting 

was performed as previously described [26]. 

Membranes were probed using antibodies against 

cleaved caspase-3 (ab214430, Abcam) and GAPDH (# 

2118S, Cell Signaling Technology). The protein signals 

were visualized by ChemiDocXRS+Imaging System 

(Bio-Rad, Hercules, CA, USA) and analyzed. 

 

Histological analysis, immunohistochemistry, and 

immunofluorescence 

 

For hematoxylin and eosin (H&E) staining, paraformalin-

fixed paraffin tissue sections were used to evaluate the 

characteristics of liver and intestinal tissues regarding 

histological changes and fibrosis. The immuno-

histochemistry procedure was performed as described 

previously [27], including the following primary 

antibodies CHOP, GRP78, PDI, and XBP-1 (sc-7351, sc-

166490, sc-74551, and sc-8015, Santa Cruz Biotech, 

USA). The positive areas of CHOP, GRP78, PDI, and 

XBP-1 were recorded. For immunofluorescence, the 

tissue sections were blocked with 10% normal donkey 

serum for 1 h at 25° C in PBS and then incubated 

overnight with primary antibodies against claudin-1, 

occludin, and ZO-1 (sc-166338, sc-133256, sc-33725, 

Santa Cruz Biotech, USA) and P-gp (ab261736, Abcam) 

at 4° C. The nuclei were stained with Hoechst 33258 

(0.25 l g/mL) dye. All fluorescence images were captured 

on a Nikon ECLIPSE Ti microscope. 

 

Terminal deoxynucleotidyl transferase deoxyuridine 

triphosphate nick-end labeling (TUNEL) assay 

 

Four-millimeter liver sections were TUNEL stained 

according to the manufacturer's instructions using an 

ApopTag Peroxidase In Situ Apoptosis Detection Kit. 

The experiment methods above were performed as 

described previously [28]. 

 

Quantitative real-time RT-PCR 

 

The mRNA levels were determined using real-time 

PCR. Total RNA was isolated with TRIzol and reverse-

transcribed according to the manufacturer’s protocol. 

The sequences of forward and reverse primers are listed 

in Table 1. The procedure was performed as described 

previously [17].  

 

Statistical analysis 

 

All experiment data were expressed as the mean ± SEM 

and analyzed by one-way analysis of variance. 

Statistical differences were calculated using GraphPad 

Prism 8 (GraphPad Software, Inc., San Diego, CA, 

USA). Statistics are significant at p-values < 0.05. 

 

RESULTS 
 

LP-cs ameliorates acute alcohol-induced liver steatosis 

 

Biochemical and histological measurements were 

performed to investigate the effects of LP-cs on acute 

alcohol-induced liver steatosis. As expected, mice 

exposed to alcohol exhibited apparent hepatic lipid 

accumulation compared with control mice, while LP-cs 

pretreatment significantly prevented fatty liver induced by 

acute alcohol treatment (Figure 1A). As previously 

reported, liver triglyceride levels in the alcohol-exposed 

group were significantly higher than in the control group 

[17]. LP-cs pretreatment significantly decreased the acute 

alcohol-induced accumulated liver triglycerides (Figure 

1B). Consistent with enhanced liver steatosis, the alcohol-

exposed group showed increased expression of hepatic 

lipogenesis and decreased expression of hepatic fatty acid 

β-oxidation. Expression of the transcription factor 

SREBP1c in the alcohol group increased in the liver; it 

plays a pivotal role in lipogenic gene expression control. 

Accordingly, alcohol exposure enhanced expression of 

SREBP1c targets and fatty acid synthase, acetyl-CoA 

carboxylase (Figure 1C). Binge alcohol decreased gene 

transcript levels during fatty acid β-oxidation, including 

PGC-1α and PPAR-α. Pretreatment with LP-cs markedly 

reversed the changes of these genes induced by alcohol 

exposure (Figure 1C, 1D). These findings suggest that LP-

cs pretreatment is essential in hepatic protection against 

alcohol-induced liver steatosis. 

 

LP-cs ameliorates acute alcohol-induced liver injury 

 

Liver plasma was collected 6 h after binge alcohol 

administration. Plasma ALT levels were significantly 
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Table 1. Primer sequences for real-time RT-PCR. 

Gene Source Sequences (Forward/Reverse 5’-3’) 

ACC Mouse GGGACTTCATGAATTTGCTGATTCTCAGTT GTCATTACCATCTTCATTACCTCAATCTC 

β-actin Mouse GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 

FAS Mouse TGGGTTCTAGCCAGCAGAGT ACCACCAGAGACCGTTATGC 

NF-KB(P65) Mouse CTTGGCAACAGCACAGACC GAGAAGTCCATGTCCGCAAT 

PGC-1α Mouse AGACAAATGTGCTTCCAAAAAGAA GAAGAGATAAAGTTGGTTTGGC 

PPAR-α Mouse AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA 

SREBP-1c Mouse GCGGAGCCATGGATTGCA CTCTTCCTTGATACCAGGCCC 

 

elevated, and LP-cs pretreatment blocked this elevation 

at 6 h after alcohol treatment (Figure 2A). 

 

Inflammation is a hallmark of ALD. The hepatic pro-

inflammatory cytokines, TNF-α, and IL-6 were 

markedly increased in binge alcohol exposure, an effect 

that was decreased by LP-cs pretreatment (Figure 2B, 

2C). Similarly, the expression level of the hepatic p65 

gene was enhanced by alcohol exposure, an effect that 

was inhibited by LP-cs pretreatment (Figure 2D). These 

findings suggest that alcohol-induced hepatic 

inflammation is reduced by LP-cs pretreatment. 

LP-cs ameliorates acute alcohol-induced liver 

apoptosis 

 

Hepatic apoptosis was determined by TUNEL assay. 

The relative number of TUNEL+ cells was more 

significant in alcohol-treated mice than in controls, and 

this phenomenon was reversed by LP-cs pretreatment 

(Figure 3A, 3C). In addition, alcohol-treated cells 

exhibited a more significant number of apoptotic cells 

than control cells. The amount of cleaved caspase-3 was 

increased more than four-fold by alcohol treatment. 

Pretreatment with LP-cs markedly reversed these 

 

 
 

Figure 1. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced liver steatosis.  
(A) Hematoxylin and eosin (H&E) staining of livers from Control, EtOH, and LP-cs +EtOH mice (40 x: scale bars = 25 µm). (B) Liver triglyceride 
(TG) levels. (C) Relative liver mRNA expression of SREBP-1c, acetyl-CoA carboxylase, and fatty acid synthase. (D) Relative liver mRNA 
expression of PGC-1α and PPAR-α. Data are expressed as mean ± SEM. *p < 0.05. 



www.aging-us.com 2081 AGING 

changes induced by alcohol exposure (Figure 3B, 3D). 

These findings suggest that LP-cs pretreatment prevents 

= alcohol-induced hepatocyte apoptosis. 

 

LP-cs ameliorates acute alcohol-induced ROS 

 

Alcohol exposure-induced oxidative stress is a 

significant contributor to ALD. We determined whether 

LP-cs would rescue the defective antioxidant system in 

alcohol-treated mice to ascertain the protective role in 

acute alcohol-induced hepatotoxicity. Compared with 

the control group, SOD and GSH-Px levels were 

significantly lower; however, MDA levels were 

markedly higher in the alcohol group. These effects 

were all reversed by LP-cs pre-treatment (Figure 4), 

suggesting that LP-cs inhibits acute alcohol-induced 

hepatic oxidative stress in vivo. 

 

LP-cs ameliorates acute alcohol-induced liver ER 

stress 

 

ER stress causes cellular toxicity through several 

signaling pathways, including apoptosis and autophagy. 

To assess the role of ER stress in alcohol-induced 

hepatotoxicity, immunohistochemistry staining was 

used to demonstrate the expression of the ER stress- 

associated proteins, including CHOP, GRP78, PDI, and 

XBP-1. These proteins were upregulated markedly by 

alcohol treatment at 6 h and were significantly 

downregulated by LP-cs pretreatment (Figure 5A), 

suggesting that pretreatment with LP-cs prevents acute 

alcohol-induced hepatotoxicity by inhibiting ER stress. 

 

LP-cs ameliorates acute alcohol-induced intestine 

injury 

 

Histological staining of intestine sections revealed that 

alcohol triggered structural disruption of the central 

lacteal and reduced the number of small intestinal folds. 

These injuries were significantly reversed with LP-cs 

pretreatment (Figure 6A). These findings suggest that 

LP-cs pretreatment protects against alcohol-induced 

intestine injury. 

 

LP-cs protects intestinal barrier integrity 

 

Tight junction proteins are critical to regulating 

intestinal barrier function. Alcohol exposure triggered a 

reduction in the distribution of claudin-1, occludin, and 

ZO-1 between adjacent epithelial cells in several parts 

 

 
 

Figure 2. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced liver injury. (A) Plasma 
alanine aminotransaminase (ALT) levels. (B) Liver TNF-α levels. (C) Liver IL-6 levels. (D) Relative liver mRNA expression of P65. Data are 
expressed as mean ± SEM. *p < 0.05. 
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Figure 3. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced liver apoptosis. (A) 
TUNEL-positive nuclear staining of liver from control, EtOH, LP-cs +EtOH mice (20 x: scale bars = 50 µm). (B) Protein expression of cleaved 
caspase-3 and GAPDH of liver from Control, EtOH, LP-cs +EtOH mice. (C) Quantification of relative number of TUNEL-positive cells. (D) 
Intensities of cleaved caspase-3 normalized to GAPDH. Data are expressed as mean ± SEM. *p < 0.05 and **p < 0.01. 

 

 
 

Figure 4. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced ROS. (A) Liver 

malondialdehyde (MDA) levels. (B) Liver superoxide dismutase (SOD) levels. (C) Liver glutathione peroxidase (GSH-PX) levels. Data are 
expressed as mean ± SEM. *p < 0.05. 
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of the ileal epithelium, and LP-cs pretreatment 

restored homogeneous distribution of tight junction 

proteins (Figure 6B). We also examined the 

expression of the intestinal P-gp protein, encoded by 

the multidrug resistance-1 gene. P-gp is widely 

expressed in intestinal epithelial cells and prevents 

harmful substances from damaging the intestine. The 

immunofluorescence results showed that P-gp 

expression was reduced by binge alcohol exposure, 

and LP-cs pretreatment reversed this reduction 

(Figure 6B). These findings suggest that LP-cs 

pretreatment protects against alcohol-induced 

intestinal barrier damage. 

 

Effects of LP-cs pretreatment on plasma 

endotoxemia 

 

LPS is an endotoxin deriving from gram-negative 

bacteria and is a major pathogenic factor in ALD. 

Elevated plasma LPS levels resulted from intestine 

injury and defected in intestinal barrier integrity [29]. 

Alcohol exposure increases LPS production. LPS binds 

to Toll-like receptor 4 on the surface of hepatic Kupffer 

cells and activates the NF-κB-mediated TNF-α 

signaling pathway, causing hepatic steatosis and 

inflammation [30]. Plasma LPS levels were measured 

and analyzed 6 h after binge alcohol exposure to assess 

the effects of acute alcohol gavage and LP-cs 

pretreatment on plasma endotoxemia. Binge alcohol 

exposure markedly increased plasma LPS levels, and 

LP-cs pretreatment significantly reduced these 

elevations (Figure 6C). 

 

DISCUSSION 
 

Acute alcohol-treated mice displayed significantly 

increased hepatic fat accumulation, inflammatory 

reactions, and apoptosis and also demonstrated severe 

damage to the intestinal mucosa with destruction of 

intestinal adhesion proteins. LP-cs pretreatment 

 

 
 

Figure 5. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced liver ER stress.  
(A) Immunohistochemistry staining of C/Ebp-homologous protein (CHOP), glucose-regulated protein 78 (GRP78), protein disulfide isomerase 
(PDI), and X box-binding protein-1 (XBP-1) positive area of liver from control, EtOH, and LP-cs +EtOH mice (20 x: scale bars = 50 µm). 
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significantly alleviated alcohol-induced liver and 

intestine damage. LP-cs significantly reduced alcohol-

induced oxidative and ER stress and protected 

hepatocytes from apoptosis. These findings suggest that 

the extracellular products of L. plantarum protect 

against alcohol-induced liver and intestinal injury. 

 

Probiotics modulate intestine microbial homeostasis and 

manage diverse liver diseases, including nonalcoholic 

fatty liver disease, cirrhosis with hepatic encephalopathy, 

and ALD [31]. Pre-clinical studies reported that pre-

treatment with probiotics can prevent ALI by repopulating 

gut flora and reducing alcohol-induced LPS and fat 

infusion [32]. However, many uncontrolled factors are 

involved in the substantial intake of probiotics, reflected 

in the biological characteristics instability, responsible for 

unpredictable side effects [33, 34]. Furthermore, studies 

have shown that microorganisms produce biologically 

active metabolites such as short-chain and conjugated 

fatty acids, extracellular polysaccharides, and neuroactive 

metabolites such as gamma-aminobutyric acid and 

serotonin, which can provide health benefits [35]. 

Therefore, this study used LP-cs to explore its effect on 

ALD to identify safer and more effective therapeutic 

drugs. 

 

In the present study, alcohol exposure significantly 

increased hepatic lipid accumulation, liver injury,  

and hepatic apoptosis, while LP-cs pretreatment 

significantly prevented these changes. The protective 

role of LP-cs in fat accumulation might be associated 

with metabolism, including de novo lipogenesis and 

catabolism. During hepatic steatosis development, 

expression levels of hepatic SREBP-1c were 

 

 
 

Figure 6. Lactobacillus plantarum ST-III culture supernatant (LP-cs) ameliorates acute alcohol-induced intestine injury.  
(A) Hematoxylin and eosin (H&E) staining of intestine from control, EtOH, and LP-cs +EtOH mice (20 x: scale bars = 50 µm).  
(B) Immunofluorescence staining of claudin-1, occludin, P-gp, and zonula occludens-1 (ZO-1) positive area of intestine from Control, EtOH and 
LP-cs +EtOH mice (40 x: scale bars = 25 µm). (C) Plasma LPS levels. Data are expressed as mean ± SEM. *p < 0.05. 
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upregulated in alcohol-treated mice, leading to 

increased gene expression involved in de novo 

lipogenesis (Figure 1C). Hepatic PGC-1α and PPAR-α 

gene expression were significantly decreased in 

alcohol-treated mice, causing fatty acid β-oxidation 

reduction. Pretreatment with LP-cs markedly reversed 

the changes in these genes induced by alcohol 

exposure (Figure 1D). 

 

We also found that LP-cs significantly reduced alcohol-

induced inflammation. Expression of TNF-α and IL-6, 

markers of acute inflammatory phase reaction, was 

significantly upregulated in response to binge alcohol 

exposure. LP-cs pretreatment prevented these increases 

(Figure 2B, 2C). Similarly, acute alcohol exposure 

increased the expression level of the hepatic p65 gene. 

The change was prevented by LP-cs pretreatment 

(Figure 2D). In addition, we found that LP-cs 

pretreatment played a role in hepatic defense to alcohol-

induced hepatocyte apoptosis as measured by TUNEL 

assay and levels of cleaved caspase-3, an apoptosis-

related protein (Figure 3). These findings suggest a role 

of LP-cs in anti-fat accumulation, inflammatory, and 

apoptosis activity in response to binge alcohol exposure. 

 

Most experimental data indicated that oxidative stress 

plays a vital role in the onset and progression of alcohol-

induced liver disease [14]. Some clinical studies found 

that probiotics ameliorate liver function by decreasing 

oxidative damage/stress [36]. In the present study, the 

levels of SOD and GSH-Px were significantly decreased, 

and MDA levels were markedly increased in the alcohol 

group, which were all reversed by LP-cs pre-treatment 

(Figure 4), suggesting that LP-cs significantly inhibited 

acute alcohol-induced hepatic oxidative stress. 

 

There are conflicting reports regarding the role of ER 

stress in the etiology of ALD [37]. ALI has been studied 

using intragastric alcohol-fed mice, reproducing the 

pathology characteristics and progression of early ALI 

and demonstrating ER stress's involvement [38, 39]. 

The expression levels of ER stress-related genes, 

including GRP78, GRP94, CHOP/GADD153, and 

caspase 12, were upregulated, suggesting that ER stress 

response may lead to the pathologic features of ALD 

[40]. In the current study, immunohistochemistry 

revealed that ER stress-associated proteins GRP78, 

CHOP, XBP-1, and PDI were remarkably upregulated 

by alcohol treatment and were significantly down-

regulated by LP-cs pretreatment (Figure 5), suggesting 

that LP-cs pretreatment prevented acute alcohol-

induced ER stress. 

 
Alcohol leads to quantitative and qualitative gut flora 

alterations, mucosal damage, and gut permeability 

enhancement, resulting in the translocation of bacterial 

products and endotoxins into portal blood flow [7]. 

Bacterial products stimulate the production of pro-

inflammatory mediators, including ROS, chemokines, 

cytokines, and leukotrienes, which cause inflammatory 

cell infiltration and liver injury, such as fibrosis [41]. In 

the present study, histological staining of intestine 

sections revealed that acute alcohol triggered structural 

disruption of the central lacteal and reduced the number of 

small intestinal folds. These injuries were significantly 

reversed with LP-cs pretreatment (Figure 6). Decreased 

expression levels of several TJ proteins (claudin-1, 

occludin, and ZO-1) in the intestine were reported in the 

experimental mouse model of ALD [42]. Oxidative stress 

induced by alcohol exposure significantly triggers the 

intestinal barrier's damage by reducing tight junctions 

[43]. The present study demonstrated that binge alcohol 

exposure downregulated intestinal tight junction protein 

levels, and LP-cs pretreatment reversed these changes 

(Figure 6). Additionally, P-gp (a 170-kDa transmembrane 

protein) is abundantly expressed on the apical surface of 

intestinal epithelial cells. Several lines suggest that P-gp 

protects the intestinal epithelia by mediating bacterial 

toxin efflux from the intestinal mucosa into the gut 

lumen. Dysregulated P-gp expression is associated with 

the pathogenesis of several gut disorders, such as 

inflammatory bowel disease, experimental animal models 

of colitis, ulcerative colitis, and Crohn’s disease. 

Upregulation of P-gp by two probiotic strains 

(Lactobacillus acidophilus and rhamnosus) has been 

demonstrated in a mouse model of DSS-induced colitis 

[42]. Our present findings suggest that binge alcohol 

exposure remarkably reduced P-gp expression levels. 

These changes were reversed by LP-cs pretreatment 

(Figure 6). Therefore, the protective effect against 

intestinal barrier dysfunction binge alcohol-induced might 

be achieved via a combinatorial regulation of intestinal 

mucin function. Furthermore, previous studies have 

identified that defects in intestinal barrier integrity can 

result in elevated plasma LPS levels in ALD models [44]. 

In the current study, acute alcohol exposure significantly 

increased plasma LPS levels, and LP-cs pretreatment 

significantly attenuated the rise in LPS levels (Figure 6). 

 

LP-cs contains many short-chain fatty acids (SCFAs), 

proteins, polypeptides, and other potential cellular 

components or organic metabolites [45]. Acetic acid 

regulates intestinal pH, maintaining the stability of the 

intestinal microenvironment, nourishing beneficial 

microorganisms, and preventing the invasion of 

opportunistic pathogens. SCFAs play an essential role 

in maintaining normal intestinal function and the 

morphology and function of colonic cells, the intestinal 

morphology [45]. SCFAs are beneficial carbohydrates 
the intestinal microbiota produces [46]. Acetic acid 

benefits butyric acid-producing bacteria in the intestine 

and the diversity of beneficial flora [45]. Firmicutes use 
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acetic acid to produce butyric acid. Butyric acid is the 

primary energy source of colon cells (>90%). Butyric 

acid maintains the integrity of the intestinal wall and 

prevents pathogenic bacteria, toxins, and other harmful 

substances from entering the circulation [47]. 

 

In summary, we found that binge alcohol exposure 

damaged mucus protective protein regulation involved in 

the expression of TJ proteins, LPS, and eventually ALI. 

LP-cs helped maintain liver and intestinal histo-

morphology, antioxidation, anti-ER stress, and intestinal 

microbial homeostasis on alcoholic stress. We will test 

other components to demonstrate LP-cs' effect on 

alcohol-induced liver injury in future. Further 

characterization of the LP-cs active components and 

different ALD models will improve our understanding of 

the protective effect of probiotics on ALD and advance 

the development of novel therapeutic strategies for ALD. 
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