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INTRODUCTION 
 

Renal cell carcinoma (RCC) is the most common  

type of urinary system cancer, accounting for appro-

ximately 80% of all cases of renal malignancies [1].  

In 2020, the global incidence of kidney cancer was 

estimated to be 431,288, with 179,368 deaths [2]. 

Clear cell renal cell carcinoma (ccRCC) is the  

most common subtype of RCC, accounting for 

approximately 85% of all RCC cases, and is the 

primary cause of mortality [3]. Advanced ccRCC is 

associated with a 5-year survival rate of only 12%, 

whereas a 5-year survival rate of up to 90% can  

be achieved if the disease is diagnosed at an earlier 
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ABSTRACT 
 

Disulfidptosis is a recently identified type of programmed cell death. It is characterized by aberrant 
accumulation of intracellular disulfides. The clinical implications of disulfidptosis in clear cell renal cell 
carcinoma (ccRCC) remain unclear. A series of bioinformatics approaches were employed to analyze ten 
disulfidptosis-related molecules. Firstly, the expression patterns of the disulfidptosis-related molecules were 
different between normal and ccRCC tissues. A comprehensive cohort of patients with ccRCC was then 
assembled from three public databases and subjected to cluster analysis based on disulfidptosis-related 
molecules. Consensus cluster analysis revealed three distinct disulfidptosis clusters. We then conducted 
weighted gene co-expression network analysis (WGCNA) to identify highly correlated genes. 267 hub genes 
were screened out through WGCNA, and three gene clusters were then determined. Finally, we identified 87 
genes with prognostic value and then used them to develop a disulfidptosis scoring (DSscore) system, which 
was proven to independently predict survival in ccRCC. Patients in the high-DSscore group exhibited a 
significant survival advantage and better immunotherapeutic responses compared with those in the low-
DSscore group. However, the patients in the low-DSscore group exhibited a greater degree of 
chemotherapeutic response. In addition, the expression of disulfidptosis-related molecules was validated by 
qRT-PCR, and the potential of disulfidptosis-related molecules to indicate distinct cell subtypes were 
validated by single-cell RNA-sequencing. In conclusion, DSscore is a promising index for predicting the 
prognosis and efficacy of immunotherapy in patients with ccRCC and may provide a basis for novel strategies 
for future studies. 
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stage [4]. Unfortunately, nearly 20% of patients  

with ccRCC are typically not diagnosed until a late 

stage of disease progression [5]. Treatment for ccRCC  

is multimodal and includes surgery, chemotherapy, 

radiotherapy, targeted therapy, and immunotherapy 

[6]. Given the limited efficacy of radiotherapy and 

chemotherapy in treating ccRCC, surgery remains  

the primary approach; however, as many as 30% of 

patients experience postoperative disease recurrence 

within five years [7]. Hence, exploring novel prognostic 

models, distinguishing high-risk patients, and deve-

loping precision medicine are crucial to aiding the 

prognosis and treatment of ccRCC. 

 
Disulfides represent an essential class of dynamic  

and redox-responsive covalent bonds and have been 

detected in various proteins [8]. Under oxidative stress, 

thiols in the cellular environment are converted to 

disulfides, thereby providing protection to cellular DNA 

against oxidative damage [9]. Dynamic thiol–disulfide 

homeostasis status plays critical roles in antioxidant/ 

detoxification, apoptosis, signal transduction, and the 

regulation of enzymatic activity [10]. Disruption of  

the thiol–disulfide homeostasis status has long been 

considered a deleterious process in the body [11]. 

Recent studies involving SLC7A11high cells under 

glucose starvation have elucidated a unique form of 

disulfide-related cell death distinct from apoptosis and 

ferroptosis, namely disulfidptosis; it is characterized by 

aberrant accumulation of intracellular disulfides [12]. 

The substantial accumulation of disulfide molecules 

results in anomalous disulfide bonding among actin 

cytoskeleton proteins, which interferes with their tissues 

and ultimately culminates in the collapse of the actin 

network and cell death [12]. Disulfide dysregulation has 

been implicated in the pathogenesis of various diseases, 

including cancer [13]. However, the relationship between 

disulfidptosis and the pathogenesis and clinical outcomes 

associated with ccRCC remains unclear. Therefore, 

exploring the prognostic value and molecular mecha-

nisms of disulfidptosis is crucial for the prognosis of 

ccRCC and the development of therapeutic strategies 

against ccRCC. 

 
In the present study, RNA sequencing and clinical 

information of patients with ccRCC were obtained 

from public databases. Subsequently, patients with 

ccRCC were classified into three distinct disulfid-

ptosis clusters based on the expression patterns of 10 

disulfidptosis-related molecules and similarly classified 

into three gene clusters based on highly correlated 

genes identified in weighted gene co-expression network 

analysis (WGCNA). A scoring system was developed 

to predict overall survival (OS), the response to 

immunotherapy, and drug sensitivity in individual 

patients. Most importantly, the mRNA expression of 

disulfidptosis-related molecules in distinct cell subtypes 

was validated through RNA isolation, quantitative 

reverse transcriptase polymerase chain reaction (qRT-

PCR), and single-cell RNA sequencing (scRNA-seq) 

data, respectively. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

RNA sequencing data (FPKM value) were acquired from 

The Cancer Genome Atlas (TCGA) and then converted 

into transcripts per million values. TCGA data pertaining 

to genome expression, variation, and correlation, were 

analyzed and visualized using the GSCALite website 

(http://bioinfo.life.hust.edu.cn/web/GSCALite/) [14]. 

The RNA sequencing data and clinical data of the 

RECA-EU (n = 91) and E-MTAB-1980 studies (n = 

101) were downloaded from the International Cancer 

Genome Consortium (ICGC) and ArrayExpress database, 

respectively. Systematic batch effect correction was 

performed through the “ComBat” algorithm [15]. The 

median follow-up time was 38.75 months (range, 0–

149.16 months) in this study. Additionally, the genomic 

and clinical data of two cohorts of patients who 

received immunotherapy, namely a cohort of patients 

with bladder cancer who received anti-programmed 

death ligand 1 (PD-L1) immunotherapy and a cohort of 

patients with metastatic melanoma who received anti-

programmed death receptor-1 (PD-1) immunotherapy, 

were obtained from the IMvigor210 (http://research-

pub.gene.com/IMvigor210CoreBiologies/) [16] and Gene 

Expression Omnibus (GEO, GSE78220, https://www. 

ncbi.nlm.nih.gov/gds/?term=GSE78220) databases, res-

pectively [17]. Raw scRNA-seq data from seven ccRCC 

samples (GSE156632) sourced from the GEO database 

(https://www.ncbi.nlm.nih.gov/gds/?term=GSE156632) 

[18] was used to assess the expression levels of the 

disulfidptosis-related molecules in various cell subtypes. 

The aforementioned databases were publicly accessible 

and open-source. This study honors the data access 

policies of each database.  

 

Consensus clustering analysis of disulfidptosis-

related molecules  

 

We obtained and summarized data pertaining to  

10 disulfidptosis-related molecules, namely GYS1, 

LRPPRC, NCKAP1, NDUFA11, NDUFS1, NUBPL, 

OXSM, RPN1, SLC3A2, and SLC7A11, from 

previously published literature [19, 20]. According  

to the expression profiles of the ten disulfidptosis-

related molecules, unsupervised clustering analysis 

was conducted to sort patients with ccRCC into 

distinct disulfidptosis clusters for further analysis. The 

most optimal clustering number for ccRCC was then 

http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://www.ncbi.nlm.nih.gov/gds/?term=GSE156632
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determined by evaluating the average consistency 

within the cluster groups. The “ConsensusClusterPlus” 

package in R [21] was utilized to perform every  

step, and this procedure criteria were selected for  

50 iterations and an 80% resampling rate to ensure  

the robustness of the classification. Through single-

sample gene set enrichment analysis (ssGSEA) [22], 

the enrichment score of 26 immune cells in each 

sample was determined and compared among the 

distinct clusters. 

 

Identification of differentially expressed genes 

(DEGs) and WGCNA 

 

DEGs among the various clusters were identified  

using the “limma” package in R [23], with screening 

criteria of adjusted P < 0.001. The expression data  

of these DEGs were then employed to construct a  

gene co-expression network using the “weighted gene 

co-expression network analysis (WGCNA)” package 

in R [24]. Initially, both normal and ccRCC samples 

sourced from the TCGA database were analyzed,  

and the “hclust” function was used to remove  

outliers. Then, the optimal soft-thresholding power  

(β) was determined to allow scale-free topology with 

the “pickSoftThreshold” function. Thereafter, module 

eigengenes (MEs) were clustered to consolidate highly 

similar modules with a “mergeCutHeight” cutoff value 

of 0.25. To identify tumor-related modules, we calcu-

lated the correlation between the modules and clinical 

features (normal and tumor). The module with P < 

0.05 was considered a gene module highly correlated 

with ccRCC, and the genes in the module were 

considered hub genes.  

 

Functional enrichment analysis  

 

To determine the potential functions and enriched 

pathways of the hub genes in the highly correlated gene 

modules, Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analyses 

were performed using the “Clusterprofiler” package in 

R [25]. P < 0.05 was considered to indicate statistically 

significant enrichment.  

 

Construction of the disulfidptosis scoring system  

 

To quantify the disulfidptosis status of individual 

patients, we developed a scoring system, namely the 

DSscore system, through principal component analysis 

(PCA). A univariate Cox analysis of OS was performed 

to identify the target genes with prognostic value (P < 

0.05). We then used the target genes with prognostic 

value to perform PCA, and principal components 1 and 

2 were designated as characteristic scores. A DSscore 

formula similar to that reported in previous studies  

was devised: DSscore = ∑(PC1i + PC2i). On the basis 

of the optimal cutoff value, we classified patients into 

low- and high-DSscore groups for subsequent analyses. 

Multivariate Cox regressions were applied to detect 

whether the DSscore was an independent prognostic 

indicator. Using the “rms” package in R [26], we then 

developed a nomogram to quantify the 1-, 3-, and 

5-year survival outcomes in ccRCC. Additionally,  

to evaluate the reliability of the scoring system for 

various subgroups stratified by clinical parameters, we 

performed a stratified analysis.  

 

Identification of immune status and tumor 

mutational burden (TMB) analysis 

 

A correlation analysis was performed to illustrate the 

relationships between DSscores and tumor-infiltrating 

immune cells (TIICs). We then used the “maftools” 

package in R [27] to calculate TMB in ccRCC samples 

sourced from TCGA. The variance and correlation  

of TMB across the different DSscore groups were 

investigated through the Wilcoxon test and Spearman 

correlation analysis.  

 

Immunotherapeutic efficacy and drug susceptibility 

analysis 

 

The data of IMvigor210 and GSE78220 cohorts were 

used to evaluate the ability of DSscores to predict the 

response to immune checkpoint blockade treatment. 

Survival analyses were conducted using Kaplan-Meier 

survival curves and the log-rank test (P < 0.05). To 

determine the responses to chemotherapeutics, we 

determined the semi-inhibitory concentration (IC50) 

values of various drugs in the low- and high-DSscore 

groups using the “oncoPredict” package in R [28]. The 

differences in IC50 values between DSscore groups 

were examined with Wilcoxon signed-rank tests (P < 

0.01).  

 

Analysis of mRNA expression levels of disulfidptosis-

related molecules using qRT-PCR 

 

A total of 10 paired samples of ccRCC and  

adjacent non-tumorous tissues were obtained from  

the First Affiliated Hospital of the University of  

South China. Total RNA was extracted from the 

tissues using TRIzol (Invitrogen, Carlsbad, CA, USA). 

Reverse transcription was conducted using the HiScript 

RT Super Mix (Vazyme Biotech Co., Ltd., China). 

qRT-PCR was performed using the CFX96 Real- 

Time System (Bio-Rad, Hercules, CA, USA). The 

PrimeScript RT Reagent Kit (TaKaRa, Tokyo, Japan) 
was used to synthesize complementary DNA. qPCR 

was performed using the SYBR Green Assay Kits 

(TaKaRa) on a CFX96 Real-Time PCR Detection 
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System (Bio-Rad, Hercules, CA, USA). The PCR 

program was as follows: an initial melting step at  

95°C for 30 s followed by 40 cycles of denaturation at 

95 °C for 5 s, annealing at 60°C for 30 s, and a final 

extension at 95°C for 10 s. Relative gene expression 

levels were determined using the 2−ΔΔCt method and 

normalized to that of GAPDH. The sequences of 

primers used for qRT-PCR are listed in Supplementary 

Table 1. Written informed consent was obtained from 

all patients. This study was conducted according to the 

guidelines of the Declaration of Helsinki and was 

approved by the Ethical Review Committee of the 

First Affiliated Hospital of the University of South 

China. 

 

Validation of the disulfidptosis-related molecules by 

scRNA-seq analysis  

 

Furthermore, the scRNA-seq count matrix of  

the GSE156632 dataset was obtained to illustrate  

the expression of disulfidptosis-related molecules in 

various cell subtypes [18]. The matrix was converted 

into Seurat object using the “Seurat” package in  

R [29], and quality control was conducted. Briefly,  

cells with “nFeature” less than 200 and “percent.mt” 

less than 20% were filtered out. The data were nor-

malized, and PCA was performed for the top 1,500 

genes that exhibited highly variable characteristics 

using the “NormalizeData” function in Seurat. The 

“FindNeighbors” and “FindClusters” functions in the 

“seurat” package were used to execute unsupervised 

cluster analysis.  The “FindAllMarkers” function was 

used to compare the differences in gene expression 

between a cluster and all other clusters. The “SingleR” 

package in R [30] was used to annotate the cell 

subtypes of the obtained cell clusters with the 

reference dataset “HumanPrimaryCellAtlasData” to 

elucidate the expression levels and the correlations 

among the disulfidptosis-related molecules.  

 
Statistical analysis 

 

All statistical analyses were performed using R, and  

P < 0.05 (two-tailed) was considered to indicate 

statistical significance in the absence of special 

annotation. 

 
Data availability statement  

 

The datasets analyzed in this study can be found  

in TCGA (http://www.cancer.gov/tcga), ICGC (https:// 

dcc.icgc.org/projects/RECA-EU), ArrayExpress (https:// 

www.ebi.ac.uk/biostudies/arrayexpress/), IMvigor210 

(http://research-pub.gene.com/IMvigor210CoreBiologies/), 

and GEO (https://www.ncbi.nlm.nih.gov/gds/, GSE78220, 

and GSE156632) databases.  

RESULTS 
 

Genetic characteristics and transcriptional variations 

of 10 disulfidptosis-related molecules 

 

The flow of this study is shown in Figure 1. To 

investigate the mutations in disulfidptosis-related 

molecules in ccRCC, we obtained data pertaining to 

2,683 samples from TCGA and ICGC pan-cancer 

databases through the cBioPortal server. Then, a 

waterfall chart was generated to illustrate the frequency 

of somatic mutations in the ten disulfidptosis-related 

molecules across pan-cancer tissues (Figure 2A). We 

observed that the mutations in GYS1, NDUFA11,  

and RPN1 exhibited the highest frequency (4%), with 

the predominant mutation type being amplification 

mutation. Subsequently, we compared the mRNA 

expression levels of the ten disulfidptosis-related 

molecules across 14 types of cancer (more than ten 

paired normal and tumor samples). The results revealed 

that SLC7A11, SLC3A2, RPN1, LRPPRC, and GYS1 

were highly expressed in several cancer tissues (Figure 

2B). Notably, with the exception of NDUFA11, all 

disulfidptosis-related molecules showed differential 

expression in both ccRCC and lung adenocarcinoma.  

In addition, we observed that genetic variation plays a 

critical role in the expression of disulfidptosis-related 

molecules. A bubble plot showed that the levels of copy 

number variations (CNV) were positively associated 

with mRNA expression in most types of cancer (Figure 

2C). Analysis of the frequency of CNV changes 

revealed that CNV changes were common in all ten 

disulfidptosis-related molecules. OXSM, NDUFA11, 

and SLC7A11 showed the highest CNV frequency, 

primarily heterozygous CNV amplification and deletions 

(Supplementary Figure 1A). However, homozygous 

CNV was less prevalent (Supplementary Figure 1B, 1C). 

Compared to those in the normal samples, the changes 

in gene methylation in most cancer specimens were 

significantly downregulated (Supplementary Figure 1D). 

Moreover, a significantly negative correlation was 

observed between mRNA expression and gene methy-

lation in multiple tumors (Figure 2D). These results 

provide comprehensive evidence that gene expression 

profiles of disulfidptosis-related molecules in individual 

tumors are highly heterogeneous, indicating a strong 

association between aberrant expression and genomic 

variance. 

 

We then analyzed the correlation between the 

expression of disulfidptosis-related molecules and both 

clinical outcomes and the pathologic stage of pan-

cancer tissues. Analyses of disease-specific survival and 

OS revealed that the prognosis of various patients with 

cancer, particularly those with ccRCC, is influenced by 

the expression levels of disulfidptosis-related molecules 

http://www.cancer.gov/tcga
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://www.ncbi.nlm.nih.gov/gds/


www.aging-us.com 1253 AGING 

(Figure 2E). In addition, several disulfidptosis-related 

molecules showed a notable correlation with the stage 

of ccRCC while exhibiting a weak correlation with 

that of other tumors (Supplementary Figure 1E). 

Therefore, we further investigated disulfidptosis in 

ccRCC in this study. PCA revealed that the gene 

expression profiles of disulfidptosis-related molecules 

were different between the control and ccRCC  

samples obtained from the TCGA database (Figure 

3A). Among the 336 ccRCC samples, eight samples 

exhibited mutations (with a frequency of 2.38%)  

in three disulfidptosis-related molecules, namely 

NDUFS1, LRPPRC, and SLC3A2 (Figure 3B). Further 

analysis of CNV mutations revealed that most of the 

disulfidptosis-related molecules exhibited a decrease 

in CNV frequency (Figure 3C). Figure 3D depicts the 

chromosomal locations of the disulfidptosis-related 

molecules. Furthermore, we analyzed the interactions 

among the ten disulfidptosis-related molecules by 

Spearman’s correlation analysis (Figure 3E). NCKAP1 

exhibited the strongest positive correlation with 

LRPPRC. WGCNA results revealed the close relation-

ships among the ten disulfidptosis-related molecules in 

patients with ccRCC (Figure 3F). We also found that 

most of the disulfidptosis-related molecules (9/10, 90%) 

were differentially expressed between normal and 

tumor tissues (Figure 3G). Among them, GYS1 and 

SLC7A11 were highly upregulated in ccRCC tissues, 

whereas LRPPRC, NCKAP1, NDUFA11, NDUFS1, 

NUBPL, OXSM, RPN1, and SLC3A2 were down-

regulated in ccRCC tissues. Taken together, these results 

showed that the crosstalk among the disulfidptosis-

related molecules might play indispensable roles in the 

progression of ccRCC. 

 

Consensus clustering analysis of disulfidptosis-

related molecules 

 

To comprehensively investigate the potential 

mechanisms of disulfidptosis-related molecules in 

 

 
 

Figure 1. The flow of this study. 
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ccRCC, we obtained 722 ccRCC samples from three 

datasets. Consensus clustering of patients with ccRCC 

was conducted to determine the different patterns of 

the expression of 10 disulfidptosis-related molecules. 

The k-median clustering algorithm revealed three 

disulfidptosis clusters (Figure 4A–4C, Supplementary 

Table 2). Accordingly, the patients with ccRCC were 

classified into disulfidptosis cluster A (DScluster A,  

n = 365), disulfidptosis cluster B (DScluster B, n = 

150), and disulfidptosis cluster C (DScluster C, n = 

207). The accuracy of this classification method was 

validated by PCA (Figure 4D). Survival analysis of  

the three disulfidptosis clusters revealed that DScluster 

B exhibited the worst prognosis (P = 0.008) (Figure 

4E). Notably, we found a marked crossover in the 

survival curves of DSclusters A and C. We also 

compared the clinicopathological features and the 

expression levels of disulfidptosis-related molecules 

among the three clusters by constructing a heat map 

(Figure 4F). The majority of the disulfidptosis-related 

molecules were significantly highly upregulated in 

DScluster C, whereas they were the most down-

regulated in DScluster B, and these differences were 

statistically significant (Figure 4G). To determine the 

impact of the disulfidptosis-related molecules on the 

tumor microenvironment (TME) of ccRCC, we then 

performed the ssGSEA to assess the relative degree  

of infiltration of 28 different immune cell types. The

 

 
 

Figure 2. Variations in the expression of disulfidptosis-related molecules as revealed by the pan-cancer analysis. (A) A 

waterfall diagram illustrates the somatic mutations pertaining to the ten disulfidptosis-related molecules in pan-cancer using the cBioPortal 
database. (B) The expression levels of disulfidptosis-related molecules in 14 cancer types. (C) A bubble chart depicting the correlations 
between CNV and mRNA expression levels. (D) A bubble chart depicting the correlations between methylation and mRNA expression levels. 
(E) Differences in survival between patients exhibiting low and high expression of genes. 
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Figure 3. The genomic and transcriptomic landscape of disulfidptosis-related molecules in ccRCC. (A) Principal component 

analysis shows a marked difference in the transcriptome between normal and ccRCC samples. (B) The mutation landscape of disulfidptosis-
related molecules. (C) The CNV frequency of disulfidptosis molecules. (D) The location of disulfidptosis-related molecules on the 
chromosome. (E) Pearson correlation analysis of disulfidptosis-related molecules. (F) The expression of and the interactions between 
disulfidptosis-related molecules. (G) The differences in mRNA expression levels of disulfidptosis-related molecules between normal and 
ccRCC samples. *P < 0.05, ***P < 0.001. 
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results showed remarkable differences in the 

abundances of most immunocytes among the three 

DSclusters of ccRCC (Figure 4H).  

 

Identification of highly correlated gene modules in 

TCGA–ccRCC 

 

To determine the heterogeneity in different 

disulfidptosis clusters, we identified DEGs among  

the clusters using the “limma” package in R. A  

total of 7,740 disulfidptosis cluster-related genes were 

identified (Figure 5A). Subsequently, to identify the 

tumor-related genes, we performed WGCNA of the 

7,740 genes and identified the highly correlated gene 

modules of hub genes. Initially, 72 normal and 539 

ccRCC tissues from the TCGA database were clustered, 

and anomalous samples were eliminated by establishing 

a threshold (Figure 5B). The soft threshold power was 

 

 
 

Figure 4. Identification of disulfidptosis-related clusters in ccRCC. (A) A color-coded heat map of the consensus matrix for k = 3. 

(B) Cumulative distribution function (CDF) curve of unsupervised clustering when k = 2–9. (C) Relative change in area under the CDF curve 
when k = 2–9. (D) Principal component analysis shows notable differences in the transcriptome among the three disulfidptosis clusters. 
(E) Kaplan–Meier survival curves corresponding to the various disulfidptosis clusters. (F) A heat map of disulfidptosis-related molecules and 
clinicopathological features of patients in the three disulfidptosis clusters. (G) The expression of the ten disulfidptosis-related molecules in 
the three disulfidptosis clusters. (H) The abundance of 28 types of infiltrating immune cells in the three disulfidptosis clusters. *P < 0.05,  
**P < 0.01, ***P < 0.001. Abbreviation: ns: no significant.  
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then determined to be 8 for satisfying a scale-free 

network distribution (scale-free R2 = 0.9) (Figure 5C). 

Similar gene modules were then identified and merged, 

and eventually, four co-expression modules (tan, blue, 

salmon, and gray) were obtained (Figure 5D). 

Subsequently, to identify the modules that exhibited the 

strongest association with ccRCC, we examined the 

correlations between ME values and clinical features 

 

 
 

Figure 5. Identification of highly correlated gene modules in TCGA-ccRCC. (A) A Venn diagram of 7740 disulfidptosis cluster-

related genes. (B) Clustering dendrogram of samples corresponding to clinical traits. (C) Determination of the scale-free fit index for various 
soft-thresholding powers (β). (D) A dendrogram of genes was clustered based on a dissimilarity measure (1-TOM). (E) A heat map 
illustrating the correlations among the module eigengenes and clinical traits (normal and tumor). (F) Gene correlation scatter plot of the 
tan module. (G) Gene correlation scatter plot of the salmon module. (H) GO enrichment analysis and (I) KEGG pathway enrichment analysis 
of genes in tan and salmon modules.  
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(normal vs. tumor). The results showed that the  

salmon (R = 0.42, P = 5e-27) and tan (R = 0.41,  

P = 9e-26) modules exhibited statistically significant 

positive correlations with ccRCC (Figure 5E). In 

addition, Pearson’s correlation analysis of the genes in 

the tan (Figure 5F) and salmon (Figure 5G) modules 

revealed that they were highly correlated. Thus, a total 

of 267 genes from the aforementioned modules were 

designated as hub genes and subsequently analyzed.  

 

To determine the biological functions and  

pathways associated with the 267 hub genes, we 

performed functional enrichment analyses. GO analysis 

revealed that these genes were significantly enriched 

in biological process terms associated with cell cycle, 

chromosome organization, and mitotic cell cycle pro-

cess (Figure 5H). Moreover, KEGG analysis revealed 

that these genes were notably enriched in several 

pathways, such as cell cycle, cellular senescence, and 

the p53 signaling pathway (Figure 5I), which are 

associated with the development of ccRCC. Overall, 

these 267 genes were determined to be highly correlated 

with the development and progression of ccRCC. 

 

Identification of gene clusters based on the hub 

genes 

 

To further validate the regulation mechanism, we  

then identified different disulfidptosis-related gene 

clusters based on the expression of these 267 genes  

by WGCNA. The unsupervised clustering algorithm 

also classified patients with ccRCC into three distinct 

disulfidptosis-related gene clusters, namely geneCluster 

A, B, and C, consistent with the clustering based  

on disulfidptosis-related molecules (Figure 6A–6C) 

(Supplementary Table 2). This classification method 

was also validated by PCA (Figure 6D). Moreover, 

geneCluster C exhibited a particularly significant 

survival advantage, whereas geneCluster B exhibited 

the poorest prognosis (Figure 6E). A heat map revealed 

that most of the genes exhibited a gradual decrease  

in expression from geneCluster A to geneCluster C 

(Figure 6F). Seven disulfidptosis-related molecules 

were also significantly differentially expressed among 

the three geneClusters (Figure 6G), consistent with the 

results pertaining to the DSclusters. 

 

Construction of a disulfidptosis scoring system  

 

A total of 87 genes were identified as the potential 

prognostic genes in the tan and salmon modules in 

univariate Cox regression analysis. To further depict 

an individual’s disulfidptosis status, we established  
a risk score system, namely the DSscore system,  

via PCA of the 87 disulfidptosis cluster-related genes 

(Supplementary Table 2). As shown in the alluvial 

diagram that depicts the changes in the attributes  

of DScluster, geneCluster, DSscore, and survival 

status (Figure 7A), the DSscores were significantly 

different among the three different DSclusters. In 

detail, DScluster C exhibited the highest DSscore, 

followed by DSclusters A and B, in that order (Figure 

7B). Significant differences in DSscores were also 

observed among the geneClusters (Figure 7C). The 

patients were then divided into two (low-DSscore and 

high-DSscore groups) according to a cutoff DSscore. 

The low-DSscore group exhibited considerably lower 

survival rates compared with the high-DSscore group 

(Figure 7D). Univariate and Multivariate analysis 

confirmed that stage, grade, and DSscore were an 

independent prognostic factor of OS in ccRCC (Figure 

7E, 7F). A nomogram that included three independent 

clinical factors were then successfully established  

as a clinically applicable quantitative method for 

predicting individual OS (Figure 7G). The calibration 

curve confirmed the nomogram had optimal good- 

ness of fit between the predicted and actual OS 

probabilities (Figure 7H). The ROC curve showed that 

the nomo-gram had a better discrimination ability 

(Figure 7I). Moreover, stratification analyses were 

performed to validate whether the DSscore retained  

its predictive ability in distinct subgroups. The results 

showed that compared with those with low DSscores, 

patients with high DSscores exhibited longer OS in  

all the sub-groups, including age (age ≤60 and age 

>60), sex (female and male), stage (stage I and II  

and stage III and IV), and grade (grades 1–2 and 

grades 3–4) (Supplementary Figure 2). Collectively, 

these results indicated the feasibility of utilizing the 

DSscore-based classification method for predicting the 

OS of patients with ccRCC. 

 
DSscore is a predictor of the response to 

immunotherapy  

 

We evaluated the correlation between DSscore and 

various immune cells and found a positive correlation 

between the DSscore and 21 of 28 immune-related cell 

infiltrates (Figure 8A), indicating a positive regulation 

of the immune reaction in patients with high DSscores. 

This finding was further emphasized by the difference 

in the immune cell profiles between the two DSscore 

groups (Figure 8B). Statically significant differences 

in the levels of TMB were observed between the  

two DSscore groups, and a positive correlation was 

observed between DSscores and TMB values. TMB 

analysis revealed that the TMB values were higher  

in the high-DSscore groups than those in the low-

DSscore groups (Figure 8C). Further analyses revealed 

that TMB values were positively associated with 

DSscore ratings (Figure 8D). Survival analysis revealed 

that patients in the high-TMB group exhibited longer 
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OS than that exhibited by patients in the low- 

TMB group (Figure 8E), suggesting that the prognosis 

of patients with ccRCC was influenced by TMB. 

Given that the inhibition of immunologic checkpoints 

has emerged as an unprecedented anticancer treatment, 

we then evaluated the prognostic value of DSscore  

in two cohorts who received immune checkpoint 

therapy (IMvigor210 cohort, anti-PD-L1 therapy; 

GSE78220 cohort; anti-PD-1 therapy). The patients  

in the IMvigor210 cohort and GSE78220 cohort were

 

 
 

Figure 6. Identification of disulfidptosis gene clusters in ccRCC. (A) A color-coded heat map of the consensus matrix for k = 3. 

(B) Cumulative distribution function (CDF) curve of unsupervised clustering when k = 2–9. (C) Relative changes in area under the CDF curve 
when k = 2–9. (D) Principal component analysis showed a marked difference in the transcriptome between the three disulfidptosis gene 
clusters. (E) Kaplan–Meier survival curves of different disulfidptosis gene clusters. (F) Heat map of hub genes and clinicopathological 
features of patients in the three disulfidptosis gene clusters. (G) Expression of 10 disulfidptosis molecules in the three disulfidptosis gene 
clusters. *P < 0.05, **P < 0.01, ***P < 0.001. 
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categorized into low- and high-DSscore groups. Patients 

in the high-DSscore group exhibited significantly longer 

OS compared with those in the low-DSscore group  

in both the IMvigor210 (P = 0.027, Figure 8F) and 

GSE78220 cohorts (P = 0.005, Figure 8G), suggesting 

the patients in the high-DSscore group exhibited 

superior immunotherapeutic repones. This finding was 

consistent with the finding that the high-TMB group 

was more likely to benefit from immunotherapy. 

 

DSscore is a predictor of drug sensitivity 

 

To further examine the clinical utility of DSscore for 

precise ccRCC treatment, we evaluated the therapeutic 

efficacy of several commonly used chemotherapeutics 

in various DSscore groups. The results of analyses of 

IC50 values showed that patients with low DSscores 

were more responsive to MIRA-1, navitoclax, linsitinib, 

and PRIMA-1MET, whereas they were less sensitive to 

KU-55933 (Supplementary Figure 3). 

 

Validation of the disulfidptosis-related molecules 

using RT-qPCR and scRNA-seq analysis 

 

On the basis of the DSscore, we validated that all ten 

disulfidptosis-related molecules were closely linked with 

the OS of patients with ccRCC using survival curves 

(Supplementary Figure 4). Of the disulfidptosis-related

 

 
 

Figure 7. Construction of disulfidptosis score system. (A) Sankey plot of DScluster, geneCluster, DSscore, and survival status. (B) The 

differences in the DSscore among the three DSclusters. (C) The differences in the DSscore among the three disulfidptosis geneClusters. 
(D) Kaplan–Meier survival curves of low- and high-DSscore groups. (E) Univariate and (F) Multivariate Cox regression analyses of the 
DSscore and clinical features to determine prognostic value. (G) A comprehensive nomogram for predicting the survival probability of 
patients with ccRCC. (H) The calibration curve of the nomogram. (I) ROC curve of the nomogram. *P < 0.05. 
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molecules, GYS1 and SLC7A11 showed elevated 

expression and were associated with poor prognosis, 

whereas the remaining eight genes correlated with 

favorable prognosis. The expression levels of these 

molecules were quantified in human ccRCC tissues 

and pair-matched adjacent normal tissues (10 pairs) by  

RT-qPCR (Supplementary Figure 5). We found that the 

expression of GYS1 and SLC7A11 were upregulated, 

 

 
 

Figure 8. DSscore predicts the response to immunotherapy. (A) The correlation between DSscore and immune cell infiltration. 

(B) The differences in immune cell infiltration between the two DSscore groups. (C) The comparison of TMB between the two DSscore 
groups. (D) Correlation analysis of DSscore and TMB value. (E) Kaplan–Meier survival curves of the low- and high-TMB groups. (F) Kaplan–
Meier survival curves of the low- and high-DSscore groups (IMvigor210 cohort). (G) Kaplan–Meier survival curves of low- and high-DSscore 
groups (GSE78220 cohort). *P < 0.05, ***P < 0.001. Abbreviation: ns: no significant. 
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while those of NCKAP1, NDUFS1, NUBPL,  

OXSM, RPN1, and SLC3A2 were downregulated  

in ccRCC tissues compared with those in the para-

carcinoma tissues. The expression levels of LRPPRC 

and NDUFA11 were decreased in ccRCC tissues; 

however, the differences were not statistically significant, 

possibly because of the small sample sizes.  

Finally, we analyzed scRNA-seq data from  

the GSE156632 cohort to determine whether the 

disulfidptosis-related molecules could be used to 

discriminate between different cell subtypes. Following 

quality control and normalization, a total of 21,671 cells 

from seven ccRCC samples were subsequently analyzed 

(Figure 9A). Additionally, among the 12,785 genes 

 

 
 

Figure 9. Validation of the expression of the disulfidptosis-related molecules using scRNA-seq data. (A) Following quality 

control and normalization, (B) detection of highly variable genes across the cells using a volcano plot, the top 10 genes are marked. (C) PCA 
based on scRNA-seq data from seven ccRCC samples. (D) tSNE algorithm classified cells into 20 clusters. (D) The cell types of the various 
clusters. (E) In total, 20 cell clusters were annotated into nine cell subtypes using the tSNE algorithm. (F) The expression level of the 
disulfidptosis-related molecules in each cell subtype.  
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across the cells, 1,500 genes that exhibited high 

variability were depicted in a volcano plot (Figure 9B). 

The distribution of ccRCC cells among different 

samples was elucidated by PCA (Figure 9C). ccRCC 

cells were then successfully clustered into 20 clusters 

using the tSNE algorithm based on nonlinear dimension 

reduction (Figure 9D). Expression analysis revealed 

2,474 marker genes for 20 cell clusters, and the top 10 

genes of each cluster were visualized in a heat map 

(Supplementary Figure 6). Subsequently, these 20 cell 

clusters were categorized into nine cell subtypes. In 

detail, clusters 0, 4–8, and 11 were endothelial cells; 

clusters 1 and 18 were macrophages; clusters 2 and 9 

were monocytes; clusters 3 and 15 were tissue stem 

cells; clusters 12, 13, and 19 were fibroblast; cluster  

10 was T cells; cluster 14 was CD34+ pro-B cells; 

cluster 16 was dendritic cells; cluster 17 was epithelial 

cells (Figure 9E). In epithelial cells, GYS1, LRPPRC, 

NCKAP1, RPN1, and SLC7A11 were highly expressed 

(Figure 9F). In fibroblast, NDUFA11, NDUFS1, and 

SLC3A2 were highly expressed. However, NUBPL and 

OXSM did not exhibit discernable expression patterns. 

These results validated the potential of disulfidptosis-

related molecules in distinguishing between cell sub-

types. 

 

DISCUSSION 
 

ccRCC is considered the most devastating tumor  

of the urinary system owing to its high incidence  

of recurrence and metastasis, as well as its insensitivity 

to chemoradiotherapy [31]. Previous studies have 

primarily focused on a single experimental study for 

ccRCC. However, few studies have reported satisfactory 

results. The extraction and identification of genetic  

data have garnered increasing attention in light of 

advancements in high-throughput sequencing and 

bioinformatics analysis. Programmed cell death (PCD) 

has been reported to play an essential role in ccRCC 

progression [32]. Many recent studies have developed 

prognostic signatures associated with PCD, such as 

cuproptosis [33], ferroptosis [34], and pyroptosis [35], 

for clinical guidance in ccRCC. Nevertheless, to  

date, the functions or signatures and the regulatory 

mechanisms of disulfidptosis in ccRCC remain unclear. 

 

Disulfidptosis, a novel form of cell death reported in 

2023 by Liu et al., has attracted the attention of 

researchers worldwide [12, 20]. A few research groups 

have elucidated that disulfidptosis plays an important 

role in various biological processes, such as homeo-

stasis, may be involved in the development of tumors, 

and may potentially be used for the treatment of 

tumors [12, 36]. Disulfidptosis represents a mode of 

cystine accumulation in SLC7A11high cells subjected 

to glucose starvation and is distinct from other known 

types of PCDs. The anomalous disulfide bonds between 

actin cytoskeleton proteins contribute to the collapse 

of the actin network, which results in alterations in the 

localization and organization of glycolytic pathway 

members [12]. Owing to the unique metabolic charac-

teristics of disulfidptosis, ccRCC is more closely 

associated with disulfidptosis compared to any other 

type of PCD [37]. In light of this, we conducted  

an integrative bioinformatics analysis to identify the 

potential prognostic value of disulfidptosis in ccRCC 

and disulfidptosis-related targets for ccRCC therapy.  

 
In the present study, we observed that most 

disulfidptosis-related molecules (9/10) were differentially 

expressed in ccRCC compared with normal tissues, 

suggesting a strong correlation between disulfidptosis 

and ccRCC progression. Based on the expression 

profiles of disulfidptosis-related molecules, the samples 

from the comprehensive cohort of TCGA–ccRCC, 

RECA-EU, and E-MTAB-1980 were classified into 

three clusters via unsupervised clustering. We then 

evaluated the levels of TIICs using the ssGSEA method 

and observed significant differences in the relative 

abundance of immune cells across the three subgroups. 

In particular, in DScluster B, the majority of the cells 

exhibited a notable decrease in immune cell infiltration 

compared with the other two DSclusters. Unexpectedly, 

however, DScluster B exhibited the highest count of 

active CD8 + T cells. In a study of melanoma, enhanced 

CD8 + T cell infiltration in TME exhibited a correlation 

with shorter OS [38]. In addition, the extent of CD8 + T 

cell infiltration in tumor tissues is consistent with  

the mutation and evolution of tumor cells, thereby 

contributing to tumor immune escape. To a certain 

extent, this also elucidates the inferior prognosis of 

patients in DScluster B. To analyze the downstream 

genes of the disulfidptosis, we conducted a differential 

analysis for the three DSclusters and identified 7,740 

DEGs. WGCNA revealed 267 hub genes in the tan  

and salmon modules that were highly correlated with 

KIR. Enrichment analysis showed that hub genes  

were associated with the microtubule cytoskeleton and 

various signaling pathways, such as cell cycle, cellular 

senescence, and the p53 signaling pathway [12]. The 

close association of cell cycle and cellular senescence 

with cell death is well established [39, 40]. In ccRCC, 

the p53 pathway has been found to exhibit recurrent 

mutations [41]. We then determined two new gene 

clusters using the 267 hub genes. The results revealed 

that geneCluster B exhibited the worst prognosis. These 

findings provided more insights into the potential 

molecular mechanisms of disulfidptosis that may have 

therapeutic implications.  

 
To quantify the status of disulfidptosis in individuals, 

we developed a scoring system, namely the DSscore 
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system, using prognostic genes to define distinct 

disulfidptosis groups, thereby elucidating a means  

to predict the prognosis of ccRCC and guide  

clinical decision-making with increased accuracy.  

We calculated DSscores by PCA, and based on the  

optimal DSscore values, we classified patients with 

ccRCC into two groups, namely the low- and high- 

DSscore groups. The patients in the high-DSscore  

group exhibited particularly significant prolonged  

OS. Moreover, a significantly positive correlation was 

observed between the DSscores and most immune 

cells, consistent with the results of previous studies. 

For example, T cells constitute the predominant 

immune cell population within the TME, and their 

activity ratio is more strongly associated with the 

effective anti-tumor response in ccRCC [42]. Many 

studies have elucidated that decreased T cells might 

reflect the increased risk of ccRCC recurrence [43]. 

Research has elucidated a positive correlation exists 

between the proportion of NK cells in ccRCC and  

a favorable prognosis [44]. Moreover, a few patients 

with metastatic ccRCC have been observed to not 

respond to systemic cytokine treatment, which may be 

attributed, to a notable extent, to the lack of NK cell 

activation [45]. Generally, plasmacytoid dendritic cells 

are thought to promote cancer progression and tumor-

induced tolerance [46]. The differences in outcomes 

between different DSscore groups are probably due to 

the distinct patterns of immune cell abundance. Thus, 

the potential mechanism of disulfidptosis affecting the 

progression of ccRCC may be associated with the 

regulation of immune cell infiltration.  

 

Multiple clinical studies of solid tumors have 

elucidated that TMB levels may be a promising  

marker of immunotherapy response, with high TMB 

indicating better clinical response and longer OS  

[47–49]. For example, a higher level of TMB has  

been shown to be associated with a higher probability 

of a positive response to immune checkpoint inhi-

bitors in patients with lung cancer via targeted next-

generation sequencing [49]. In this study, patients  

in the high-DSscore group exhibited increased TMB, 

which is likely to be associated with longer survival 

outcomes. To validate our conjecture, we then explore 

the prognostic value of DSscore in two cohorts that 

received immune checkpoint therapy (IMvigor210 and 

GSE78220 cohorts). Following treatment, patients in 

the high-DSscore group exhibited significantly longer 

OS than those in the low-DSscore group, revealing 

that immunotherapy was one of the appropriate and 

clinically applicable anticancer strategies for patients 

with a high DSscore. 
 

Drug susceptibility analysis showed that patients in  

the low-DSscore group were more sensitive to MIRA-1, 

navitoclax, linsitinib, and PRIMA-1MET compared with 

those in the high-DSscore group. The dysregulation of 

the p53 pathway results in the uncontrolled proliferation 

of tumor cells. Thus, the resumption of p53 functions, 

especially p53-dependent apoptosis, is a highly promising 

approach to anticancer treatment [50]. In the past years, 

several small molecules that target mut-p53-reactivation, 

including MIRA-1 and PRIMA-1MET, have been 

developed [51, 52]. Joerger and Fersht elucidated that 

MIRA-1 induces p53-independent apoptosis in multiple 

myeloma cells [51]. Recently, PRIMA-1MET was shown 

to limit the growth of colorectal cancer cells, irrespective 

of their p53 status [52]. Navitoclax, a member of the B-

cell lymphoma 2 (BCL-2) family of protein inhibitors, 

was shown to induce apoptosis in cancer cells by 

disrupting the interactions between BCL-2-like proteins 

and BH3 domains [53]. The efficacy of navitoclax in 

the treatment of lung cancer and various relapsed or 

refractory lymphoid tumors has been elucidated by 

several phase I clinical studies [53, 54]. As an inhibitor 

of the insulin-like growth factor 1 receptor (IGF-1R), 

linsitinib has been identified as a satisfactory chemo-

therapeutic agent for multiple tumors [55]. Excitedly, in 

a recent study, the inhibition of IGF-1R using linsitinib 

reversed oncogenic function caused by the loss and/or 

downregulation of methylthioadenosine phosphorylase 

in RCC [56]. These drugs exerted an obvious inhibitory 

effect on tumor growth and are undoubtedly a pro-

mising therapeutic option for the patients in the low-

DSscore group. 

 

Finally, by performing qRT-PCR, we validated  

that the expression of GYS1 and SLC7A11 were 

upregulated, whereas those of NCKAP1, NDUFS1, 

NUBPL, OXSM, RPN1, and SLC3A2 were down-

regulated in ccRCC compared with those in the para-

carcinoma tissues. Furthermore, we used scRNA-seq 

data from seven ccRCC samples to analyze cellular 

heterogeneity. The results also validated the possibility 

of disulfidptosis-related molecules in discriminating 

cell subtypes. 

 

This study involved a comprehensive analysis of  

the association between disulfidptosis and ccRCC. 

However, several inevitable limitations existed. First, 

this study was conducted retrospectively using public 

databases, which may introduce a certain offset in  

the data. Second, we investigated the relationship 

between disulfidptosis and TME in ccRCC; however, 

we did not elucidate the underlying mechanisms  

by which disulfidptosis affects immune cells. Third, 

although qRT-PCR was performed to examine the 

expression of disulfidptosis-related molecules, addi-
tional in vitro or in vivo experiments are required to 

elucidate the mechanisms underlying disulfidptosis in 

ccRCC. 
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CONCLUSION 
 

In summary, in this study, we elucidated three distinct 

disulfidptosis clusters in ccRCC and established a 

disulfidptosis scoring system for individuals. DSscore 

grouping has the potential to predict survival outcomes 

of patients and distinguish immune and clinico-

pathological characteristics. We also determined the 

therapeutic liability of DSscore in immunotherapy and 

chemotherapy; however, further studies are required  

to validate our findings. Overall, our findings provide  

a basis and elucidate the potential predictive value  

of the possible mechanisms underlying the correla- 

tion between disulfidptosis and ccRCC. Our findings 

may contribute to the development of novel clinical 

interventions. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Pan-cancer analysis of genetic changes in disulfidptosis-related molecules. (A, B) A CNV bubble chart 

showing the distribution of (A) heterozygous and (B) homozygous CNV of disulfidptosis-related molecules in each type of cancer. (C) A CNV 
pie distribution showing the constitution of heterozygous/homozygous CNV of disulfidptosis-related molecules in each type of cancer. (D) A 
bubble chart showing the differences in methylation of disulfidptosis-relayed molecules between normal and tumor tissues. (E) A bubble 
chart showing the correlation between tumor stage and mRNA expression levels. 
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Supplementary Figure 2. Clinical evaluation of the DSscore. Survival analysis of various DSscore groups of patients with KIRC based 
on age (A), sex (B), grade (C), and (D) stage. 

 

 

 
 

Supplementary Figure 3. Drug sensitivity analysis of the low- and high-DSscore groups. (A) KU-55933. (B) MIRA-1. (C) Navitoclax. 

(D) Linsitinib. (E) PRIMA-1MET. 
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Supplementary Figure 4. Kaplan–Meier survival curves of 10 disulfidptosis-related molecules in the low- and high-DSscore 
groups. 



www.aging-us.com 1273 AGING 

 
 

Supplementary Figure 5. Expression levels of 10 disulfidptosis-related molecules in KIRC tissues and corresponding normal 
tissues as revealed by qRT-PCR. 
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Supplementary Figure 6. Expression analysis of identified marker genes and the top 10% visualized on a heat map. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The primers for qRT-PCR. 

Genes Forward primer Reverse primer 

GYS1 5′-TCTCTGCCATGCATGAGTTC-3′ 5′-GCCGGCGATAAAGAAATACA-3′ 

LRPPRC 5′-TTCAGTGCTCTCGTCACAGG-3′ 5′-GTCGCGGTCCATGAAGTAAT-3′ 

NCKAP1 5′-AGATTGATCCTGCATTGGTCGTAGC-3′ 5′-ACTGCCACAAACACCATGAGAAGG-3′ 

NDUFA11 5′- GCCGAAGGTTTTTCGTCAGTA-3′ 5′-GGAGGATTGAGTGTGACTCTGT-3′ 

NDUFS1 5′-TTTCTAGAGGGGAAGCGTGC-3′ 5′-TGCAGCGGGTACACTGTATG-3′ 

NUBPL 5′-CTGAGATGTTTCGCAGAGTCC-3′ 5′-CAAGGGTCTGTGCTAGTTTCC-3′ 

OXSM 5′-CAATATCCAGATTGCATAGGCGA-3′ 5′-CGATCCCAAACCAGGTGAGTT-3′ 

RPN1 5′-TGGTTAAGGTTGGATAAAAGGTATT-3′ 5′-ATTTCCCCAATAATAAACAAAACCT-3′ 

SLC3A2 5′-CTGGTGCCGTGGTCATAATC-3′ 5′-GCTCAGGTAATCGAGACGCC-3′ 

SLC7A11 5′-TGCTGGGCTGATTTTATCTTCG-3′ 5′-GAAAGGGCAACCATGAAGAGG-3′ 

GAPDH 5′-ATCATCCCTGCATCCACT-3′ 5′-ATCCACGACGGACACATT-3′ 

 

 

Supplementary Table 2. The survival data of ccRCC patients included in this study and the distribution of 
DScluster, gencluster, and DSscore. 

 


