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INTRODUCTION 
 

Bladder cancer (BLCA) is the prevailing malignant 

neoplasm affecting the urinary tract, arising from the 

mucosal lining of the bladder. It ranks ninth among  
the most frequently diagnosed cancers globally [1]. 

According to recent research findings, urothelial cell 

carcinomas account for a significant majority of BLCA, 
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ABSTRACT 
 

Background: The cGAS-STING pathway emerges as a pivotal innate immune pathway with the potential to 
profoundly influence all facets of tumor initiation and progression. The prognostic significance and 
immunological role of cGAS-STING pathway-related genes (CRGs) in individuals diagnosed with bladder cancer 
(BLCA) have not yet been fully elucidated. 
Methods: Performed unsupervised cluster analysis to identify distinct clusters. Utilizing LASSO and 
multivariate Cox regression analysis to construct a prognostic risk model. The IMvigor210, GSE13507 and 
GSE78220 cohorts were utilized to explore the potential value of risk score in immune therapy response and 
survival prediction. 
Results: A risk model was developed utilizing four CRGs in order to forecast the overall survival (OS) of BLCA 
patients. The risk score to be a standalone risk factor, which was further corroborated by the external 
validation set obtained from the GEO database (GSE13507). We established an integrated nomogram that 
combined risk scoring and clinical information, exhibiting commendable clinical practicality in predicting the 
overall survival period of BLCA patients. It is noteworthy that risk score could differentiate tumor 
microenvironments among different risk groups and individuals who were more responsive to immunotherapy 
in IMvigor210 and GSE13507 cohorts. In vitro experiments, we noted an up-regulation of IRF3 and IKBKB upon 
the activation of the cGAS-STING pathway. Conversely, the activation of the cGAS-STING pathway resulted in a 
down-regulation of POLR3G and CTNNB1. 
Conclusions: CRG risk model shows promise as a potential stratification approach for bladder cancer 
patients. 
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specifically approximately 90% [2]. Tobacco smoking, 

along with occupational exposure to environments 

containing aromatic amines, PAHs, and other chemical 

substances, represents the primary contributing factors 

to the incidence of BLCA [3]. The recurrence rates  

and long-term survival rates of BLCA are strongly 

influenced by the malignancy characteristics of the 

disease, specifically the degree of invasiveness. Mul-

tiple staging and grading systems have been proposed 

to evaluate prognoses in BLCA. The tumor node 

metastasis (TNM) classification system stands out  

as the prevailing and extensively employed method 

among various approaches [4]. Nevertheless, substantial 

evidence suggests that patients diagnosed with BLCA 

who share the same pathological grade or clinical  

stage may exhibit diverse prognoses and survival  

rates, which suggests that the existence of additional 

factors beyond those encompassed by the current TNM 

classification systems that exert a notable influence on 

patient outcomes [5]. In recent years, numerous studies 

have delved into the examination of genes associated 

with the prognosis of BLCA and have developed 

prognostic models for BLCA survival [6, 7]. 

 
Cyclic GMP-AMP synthase (cGAS) functions as  

a DNA sensor, responsible for the recognition of 

cytoplasmic DNA and subsequent activation of the 

downstream stimulator of interferon genes (STING)  

[8, 9]. The cGAS-STING DNA sensing pathway has 

been acknowledged as a crucial component in the 

innate immune response. The STING pathway plays  

a pivotal role in regulating the immune interactions 

within tumors and exerts diverse effects on tumor cells 

[10]. In recent investigations, emerging research  

has elucidated the intricate connection between the 

cGAS-STING pathway and tumor immunity. The 

activation of the cGAS-STING pathway in antigen-

presenting cells, for instance, stimulates the synthesis 

of Tap2 and MHC-I molecules, which has the potential 

to enhance immune surveillance of tumors [11]. The 

activation of the cGAS-STING signaling pathway led 

to increased levels of type I interferons (IFNs) and 

tumor-infiltrating lymphocytes (TILs), consequently 

triggering an immunogenic reaction [12, 13]. These 

results indicate that cGAS-STING pathway-related 

genes, known as CRGs, hold promise as therapeutic 

targets in patients with BLCA. Furthermore, these 

CRGs may be linked to immune infiltration in BLCA 

patients.  

 
This study integrates RNA-seq data and clinical 

information from the TCGA and GEO databases, 

culminating in the identification of four CRGs. 

Moreover, a novel risk assessment instrument has  

been formulated with the purpose of forecasting the 

prognostic significance of BLCA and appraising the 

immune response. This prognostic tool possesses the 

potential to forecast and enhance the therapeutic 

outcomes of BLCA immunotherapy and clinical 

management. 

 

MATERIALS AND METHODS 
 

Dataset and preprocessing 

 
We incorporated two distinct BLCA cohorts from the 

TCGA and GEO databases. The retained samples 

adhered to the following criteria: (1) Possessed  

gene expression profiles and comprehensive survi- 

val information; (2) Exhibited a survival duration 

exceeding 30 days. Ultimately, the GSE13507 cohort 

encompassed 165 patients, while the TCGA-BLCA 

cohort comprised 395 patients. The data of the GEO 

database were annotated using the Illumina human- 

6 v2.0 expression beadchip platform. For the TCGA-

BLCA cohort, the transcriptomic data in the TPM 

format was annotated using the GENCODE database 

(version GRCh38). CRGs were downloaded from the 

PathCards database (https://pathcards.genecards.org/), 

encompassing a total of 103 CRGs. In the differential 

analysis, the data from normal bladder samples in  

the GTEx database served as the control, and the 

“limma” package was employed for conducting the 

differential analysis. The threshold selection was 

adj.P<0.05, | log2 (fold change)| >1. We chose CRGs 

with discernible disparities for subsequent investigation. 

The immunohistochemical staining images of gene 

expression in BLCA tissue and normal bladder tissue 

were downloaded from the Human Protein Atlas (HPA) 

database. 

 
Consensus clustering 

 

An unsupervised consensus clustering analysis was 

conducted using the “ConsensusClusterPlus” package. 

This analysis aimed to identify distinct clusters  

within the dataset based on the expression profiles  

of prognostic CRGs with a significance level of P < 

0.05. The optimal number of clusters was determined 

by utilizing the cumulative distribution function (CDF) 

curve in combination with the K-means algorithm.  

The clustering algorithm was performed 100 times  

to ensure robustness, with each repetition randomly 

sampling 80% of the data. All features were included 

in the clustering process, allowing for comprehensive 

analysis. The Euclidean distance metric was employed 

to calculate the dissimilarity between data points, 

measuring the straight-line distance in a multi-

dimensional space. The “km” option chosen for the 
clusterAlg parameter refers to the k-means algorithm, 

which partitions the data into clusters by minimizing 

the within-cluster sum of squares. 

https://pathcards.genecards.org/
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Building and evaluating prognostic model 

 

In the TCGA-BLCA cohort, we employed univariate 

Cox analysis to identify prognostic-related CRGs.  

To eliminate irrelevant genes, we utilized the least 

absolute shrinkage and selection operator (LASSO) 

method with a penalty parameter (λ). The parameter 

was selected using k-fold cross-validation, with k set to 

10. To establish a formula for calculating risk scores, 

we conducted multifactorial Cox analysis and obtained 

correlation coefficients along with corresponding gene 

expression values. We ensured the assumption of 

proportional hazards through an assumption check. 

Model goodness-of-fit was assessed using the likelihood 

ratio test and akaike information criterion (AIC). Based 

on the application of this formula, patients were 

classified into high-risk and low-risk groups using the 

computed median score. To validate the model, we 

analyzed the GSE13507 cohort. 

 

Nomogram construction 

 

A more accurate prognostic nomogram was developed 

by integrating clinical characteristics with a risk score, 

utilizing the “rms” package. The performance evalua-

tion of the nomogram was conducted by employing 

calibration and ROC curves. 

 

Enrichment analysis 

 

Utilized the “limma” package (FDR < 0.05, log2  

(FC) > 1) to discern differentially expressed  

genes (DEGs) between high- and low-risk groups.  

The default gene set “c2.cp.kegg.v7.4.symbols.gmt” 

was employed, and gene set enrichment analysis 

(GSEA) as well as gene ontology (GO) enrichment 

were performed on distinct risk groups utilizing the 

“clusterProfiler” package. Moreover, we utilized the 

gene set “h.all.v7.5.1.symbols.gmt” from MSigDB and 

employed the software package “GSVA” to perform 

gene set variation analysis (GSVA). This approach 

allowed us to examine the heterogeneity of diverse 

biological processes. The enrichment analysis results 

were presented using the R packages “ggplot2” and 

“GseaVis”. 

 

Immune correlation analysis 

 

The CIBERSORT algorithm and single-sample gene set 

enrichment analysis (ssGSEA) algorithm were utilized 

to assess the prevalence of immune cells in different 

samples. The ssGSEA algorithm assessed the activation 

status of immune-related functions. There are currently 
six recognized immune subtypes, namely wound healing, 

inflammatory, lymphocyte deficient, immunologically 

quiet, and TGF-dominant [14]. In order to evaluate 

these subtypes in the TCGA-BLCA samples and 

compare them with the constructed risk model, an 

analysis of the differences was conducted using the  

chi-square test. The correlation between high-risk and 

low-risk cohorts in terms of pathological staging was 

evaluated using the same methodologies. 

 

Immunotherapy dataset 

 

From the preceding literature, two cohorts (IMvigor210 

and GSE78220) that received immune checkpoint 

blockade (ICB) treatment were obtained for the purpose 

of generating a risk score. The effectiveness of their risk 

scores in the immunotherapy cohort was validated using 

the same formula. The dataset of IMvigor210 consisted 

of 298 patients diagnosed with advanced urothelial 

carcinoma who received Atezolizumab, an anti-PD-L1 

medication, as part of their treatment [15]. Patients 

diagnosed with metastatic melanoma were subjected to 

treatment with pembrolizumab, an anti-PD-1 drug, as 

indicated in the GSE78220 dataset [16]. Firstly, these 

cohorts were used to explore the potential value of  

the risk score derived from our prognostic risk model  

in predicting the response to immune therapy. This 

analysis aimed to assess whether the risk score could 

differentiate tumor microenvironments among different 

risk groups and identify individuals who were more 

likely to respond to immunotherapy. Secondly, the 

above datasets were used to assess the generalizability 

and reliability of our risk model in forecasting the OS of 

BC patients. 

 

Immunophenoscores (IPS) were retrieved from  

The Cancer Immunome Atlas (TCIA) database for 

BLCA [17]. To evaluate the potential efficacy of 

immunotherapy, we performed a comparative analysis 

between the high-risk and low-risk groups using 

Immunophenoscores (IPS) retrieved from the TCIA 

database. The IPS scores were compared to predict  

the sensitivity to immunotherapy. Additionally, we 

employed the Tumor Immune Dysfunction and 

Exclusion (TIDE) algorithm to assess the likelihood of 

response to immune checkpoint inhibitor (ICI) treatment. 

Lower TIDE scores indicate a higher probability of 

responding to ICI treatment with more significant effects. 

 

Cell lines culture 

 

The T24 BLCA cell line was obtained from the Cell 

Resource Center of Shanghai Life Sciences Institute. 

The cells were cultured in RPMI-1640 medium (Gibco 

BRL, USA) supplemented with 10% fetal bovine serum 

(FBS) and 1% streptomycin and penicillin (Gibco, 
Invitrogen, USA). The cells were maintained in a 

controlled environment with 5% CO2, 95% humidity, 

and a temperature of 37° C.  
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Reverse transcription-quantitative polymerase chain 

reaction (RT-qPCR) 

 

Cell lines were subjected to total RNA extraction using 

TRIzol (15596018, Thermo Fisher Scientific, USA) 

according to the manufacturer’s protocol. Subsequently, 

cDNA was synthesized using the PrimeScriptT-MRT 

kit (R232-01, Vazyme, China) for further analysis.  

The mRNA expression levels were determined through 

real-time polymerase chain reaction (RT-PCR) using 

SYBR Green Master Mix (Q111-02, Vazyme). The 

obtained data were subsequently normalized to the 

expression level of GAPDH mRNA. The expression 

levels were determined utilizing the 2−ΔΔCt method,  

and all primers were procured from Tsingke Biotech 

(Beijing, China). Different concentrations of ADU-

S100 (STING agonist), namely 0μM, 10μM, 20μM,  

and 40μM, were introduced into the culture medium. 

The cells were then cultured for a duration of 24 hours, 

followed by the execution of RT-qPCR.  

 

Availability of data and material  

 

The original contributions presented in the study are 

included in the article/Supplementary Material. Further 

inquiries can be directed to the corresponding authors. 

 

RESULTS 
 

The procedural framework of this study was  

elucidated in Figure 1. Initially, we discerned the 

distinct expression patterns of CRGs within the TCGA 

cohort. The research findings revealed the existence of 

46 differential CRGs. Amongst these, the heatmap 

illustrated the significant differences top 40 CRGs 

(Figure 2A). Subsequently, among the aforementioned 

46 CRGs, a univariate Cox regression analysis was 

employed to ascertain nine CRGs that exhibited 

independent association with the OS of BLCA patients 

(P < 0.05, Figure 2B). Furthermore, utilizing the 

aforementioned expression profiles composed of nine 

CRGs in the TCGA-BLCA cohort, we classified all 

tumor samples into two distinct subtypes (Figure 2C). 

The analysis of survival indicated a considerable 

disparity in overall survival between subtype A and 

subtype B, with subtype B exhibiting a significantly 

inferior survival rate (P < 0.05, Figure 2E). To further 

ascertain the robustness of this classification scheme, 

we conducted validation on the GSE13507 cohort.  

The results indicated that the expression profiles 

derived from the aforementioned CRGs classified  

the GSE13507 cohort into two subtypes (Figure 2D). 

Moreover, the subtype B exhibited an unfavorable 

prognosis as well (P < 0.05, Figure 2F). 

 
Ultimately, we successfully established a substantial 

association between the two subtypes and CRGs,  

as well as relevant clinical data within the TCGA- 

BLCA cohort. The study’s findings unveiled a plausible 

elucidation for the disparate modifications observed  

in the cGAS-STING pathway. This disparity could  

be attributed to variations in the expression of CRGs. 

Specifically, subtype B exhibited increased expression 

levels of NKIRAS1, UBC, POLR3G, and CTNNB1,

 

 
 

Figure 1. Workflow of our study. 
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Figure 2. Consensus clustering analysis of 9 CRGs. (A) The heatmap of 40 differentially expressed CRGs in BLCA tissues. (B) Univariable 

Cox regression analysis of CRGs for the identification of genes associated with prognostic outcomes. (C, D) Heatmap of the consensus 
matrices for k=2. Kaplan-Meier curves based on two clusters in the TCGA-BLCA cohort (E) and GSE13507 cohort (F). (G) Heatmap and the 
clinical parameters of the two clusters. 
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while subtype A showed elevated expression levels  

of STAT6, IRF3, NLRX1, IKBKB, and DTX4  

(Figure 2G). 

 

Building a predictive signature 

 

We constructed a prognostic model employing nine 

CRGs, identified through univariate Cox regression 

analysis on the TCGA training dataset, which exhibited 

statistically significant correlation with OS. The study 

employed LASSO Cox regression and multivariate  

Cox regression analysis to ascertain a definitive set  

of four genes (Figures 3A, 3B). The risk score was 

determined by taking into account the coefficients and 

expression patterns of four essential genes integrated 

within the model (Figure 3C). Risk score = (-0.3699 × 

IRF3 expression) + (-0.3873 × IKBKB expression) + 

(0.1642 × POLR3G expression) + (0.2673 × CTNNB1 

expression). Principal component analysis (PCA)  

was utilized to effectively segregate the TCGA and 

 

 
 

Figure 3. Construction and validation of CRGs prognostic model. (A, B) Nine genes were selected for multivariate regression analysis 

using Lasso regression. (C) A forest plot was utilized to depict the results of a multivariate Cox regression analysis of CRGs. (D, E) PCA analysis 
in TCGA cohort. (F, G) Analysis of the correlation between genes of the model and risk score. 
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GSE13507 datasets into two distinct groups based on 

the risk score (Figures 3D, 3E). The assessment of gene 

expression levels indicated a prevailing trend of positive 

correlations among the model genes. Notably, IRF3 and 

IKBKB exhibited the highest positive correlations with 

POLR3G and CTNNB1, respectively. Our observations 

revealed a strong association between the genes and  

the model risk score. Specifically, IRF3 and IKBKB 

displayed substantial negative correlations, whereas 

POLR3G and CTNNB1 exhibited significant positive 

correlations (Figures 3F, 3G). 

 

The patient population was stratified into high- 

risk and low-risk groups based on the median risk 

score, serving as criteria for classification. Survival 

analysis using the Kaplan-Meier method revealed that, 

within the TCGA cohort, patients classified as high-

risk exhibited significantly inferior OS outcomes when 

compared to their low-risk counterparts (Figure 4A). 

In contrast, within the GEO cohort, patients classified 

as high-risk exhibited notably prolonged OS compared 

to those categorized as low-risk (Figure 4B). Figure 

4C illustrated the influence of individual genes on 

survival. The findings suggested that the IRF3 and 

IKBKB genes exhibited a protective effect, implying 

that downregulating the expression of these genes 

could potentially improve patients’ OS. On the contrary, 

POLR3G and CTNNB1 were identified as genes 

associated with high risk, and their upregulated 

expression was linked to a decrease in patient survival. 

 
In order to assess the potential of the model risk score 

as a standalone prognostic indicator for survival in 

BLCA, we conducted a comprehensive analysis. This 

study encompassed the assessment of the hazard ratio 

(R) for OS by considering the risk score alongside 

various pertinent clinical variables, including age, 

gender, pathology T stage, pathology N stage, 

pathology M stage, and clinical stage. The univariate 

Cox regression analysis demonstrated statistically 

significant associations between OS and several factors, 

encompassing the risk score, age, T stage, N stage, M 

stage, and clinical stage (Figure 4D). Upon inclusion 

of these factors in the multivariate Cox regression 

analysis, the results revealed that only the risk score 

maintained a robust association with the prognosis. 

This finding provides substantial evidence supporting 

the use of the risk score as an independent factor  

in predicting prognosis among individuals diagnosed 

with BLCA (Figure 4E). The aforementioned evidence 

established a significant association between the 

proposed risk model and survival outcomes in patients 

diagnosed with BLCA. Additionally, we conducted a 

comparative analysis of the prognostic signatures from 

other studies to further evaluate the accuracy of our 

own signature. The findings yielded promising results. 

Specifically, when predicting the TCGA-BLCA cohort, 

our risk signature exhibited superior predictive value 

compared to the signatures proposed by Cao et al., 

Song et al., and Wu et al. [18–20] (P < 0.05), as 

illustrated in Supplementary Figure 1.  

 

Nomogram construction 

 

A nomogram was devised to assess the risk of  

TCGA patients by integrating clinical data and risk 

score. Since the P-value of most clinical parameters 

was greater than 0.05 in the multivariate regression 

analysis, we only selected the tumor stage that had  

the greatest impact on patient survival under clinical 

experience in the construction of the nomogram. 

Figure 5A visually represents the comprehensive stage 

and risk categorization of the patients. This nomogram 

could greatly enhance the accuracy in assessing patient 

risk and provide valuable guidance for subsequent 

therapeutic approaches. To augment the assessment  

of the accuracy of this nomogram, a prognostic ROC 

analysis was performed. The findings revealed a 

remarkable superiority of the outcomes compared to 

alternative clinical models and risk score. Based on  

the findings, the AUC values at 1, 3, and 5 years were 

determined as 0.632, 0.649, and 0.669, respectively, as 

illustrated in Figure 5D–5F. Moreover, in order to 

assess the validity of the newly devised nomogram  

in prognosticating the outcomes of individuals with 

BLCA over one, three, and five years, calibration 

curves were produced (Figure 5B, 5C).  

 

The subsequent investigation aimed to examine the 

association between model categorization and immune 

subtypes, as depicted in Figure 5G. The immune sub-

type C2 exhibited a predominance within the high- 

risk group. Previous studies have demonstrated that 

the immune subtype C2 cluster displayed the most 

promising prognosis, while the C4 cluster was pre-

dominantly observed in the low-risk classification, 

consistent with earlier investigations. Moreover, we 

conducted an exploratory analysis to assess the 

association between the well-established risk model 

and the clinical stage of individuals diagnosed with 

BLCA (Figure 5H). Our analysis revealed a notable 

trend wherein the proportion of high-risk patients 

increased as the pathological stage progressed. This 

finding underscored the robustness and credibility of 

our developed risk model. 

 

Analysis of enrichment 

 

DEGs were identified in cohorts characterized by both 
high and low risks. To enable visual examination,  

the expression profiles of the DEGs were graphically 

depicted using a volcano plot, following rigorous 
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Figure 4. Correlations between model genes and their impact on survival. (A, B) Prognostic analysis of signatures in the TCGA and 

GSE13507 datasets utilizing Kaplan-Meier method. (C) The association between model genes and survival outcomes. (D, E) The forest plot 
presents the outcomes of both univariate and multivariate Cox regression analyses, examining the correlation between OS and 
clinicopathological factors, including the risk score, in patients diagnosed with BLCA. 



www.aging-us.com 1524 AGING 

 
 

Figure 5. Building a more accurate nomogram. (A) Nomogram was developed by integrating clinical characteristics with risk 
stratification. The calibration curves of the nomogram for predicting the probabilities of 1-year, 3-year, and 5-year outcomes were assessed 
in two independent cohorts: TCGA-BLCA cohort (B) and GSE13507 cohort (C). (D–F) ROC curves for 1, 3, and 5 years showed AUC values for 
various clinical factors, risk scores, and nomogram scores. (G) Correlation between high-risk and low-risk groups and four immune subtypes. 
(H) Relationship between tumor stages and diverse risk categories. 



www.aging-us.com 1525 AGING 

criteria (FDR < 0.05 and log2(FC) > 1) as illustrated  

in Figure 6A. The examination of gene signatures 

associated with hallmark pathways revealed notable 

differences between the high-risk and low-risk groups. 

The high-risk group exhibited significant enrichment in 

the following top five molecular signatures: angiogenesis, 

epithelial mesenchymal transition, hedgehog signaling, 

apical junction, and mTORC1 signaling (Figure 6B). 

 

The DEGs were subjected to GO enrichment analysis 

(Figure 6C), which unveiled several key biological 

processes (BP) at play. The aforementioned processes 

predominantly involve the development of the epidermis 

and skin, the differentiation of epidermal cells and 

keratinocytes, as well as the process of keratinization. 

The cellular component (CC) analysis revealed a pre-

dominant representation of several key components, 

namely the intermediate filament cytoskeleton, inter-

mediate filament structures, keratin filaments, and the 

cornified envelope. The primary classifications within 

molecular function (MF) comprised endopeptidase 

function, receptor ligand interaction, serine hydrolase 

role, serine-type peptidase function, and serine-type 

endopeptidase activity. GSEA was conducted on high- 

and low-risk BLCA groups (Figure 6D). The GSEA 

enrichment analysis revealed that the top-scoring NES 

corresponded to the cellular receptor interplay pathway 

involving cytokines. Specifically, the pathway involving 

cellular receptor interplay in high-risk BLCA patients 

was significantly activated (NES = 1.77, P < 0.001). 

 

Assessment of immune microenvironment 

 

We utilized the CIBERSORT technique to analyze 

samples of BLCA, aiming to determine the compo-

sition of immune cells in both high-risk and low- 

risk groups, while investigating relationships between 

model genes, and risk score. As depicted in Figure 7A, 

the composition of regulatory T (Treg) cells, activated 

NK cells, and monocytes was comparatively diminished 

within the high-risk cohort (P < 0.05), whereas 

memory-activated CD4+T cells, M2 macrophages, M0 

macrophages, activated mast cells, and neutrophils 

exhibited greater prominence in the high-risk population 

(P < 0.05). We also assessed the relationship between 

the five genes in the proposed model and the abundance 

of immune cells. We observed that most immune cells 

were significantly correlated with the five genes (Figure 

7B). Figure 7C illustrated the inverse correlation 

between the risk score and the relative abundance of 

Treg cells, while displaying a positive correlation with 

M0 macrophages. 

 
Figure 7D, 7E present the results of the ssGSEA 

regarding the enrichment of immune cells and 

immune-related functions. The distribution of immune 

cells emphasized the distinctive tumor immune 

microenvironments (TIME) within the two BLCA  

risk categories. The majority of immune cell types 

displayed elevated abundance within the low-risk 

cohort. The low-risk cohort presumably harbored a 

superior aptitude for eliciting the adaptive immune 

response owing to their heightened human leukocyte 

antigen (HLA) functioning, conceivably elucidating 

the augmented OS observed within this particular 

group. 

 

Immunotherapy cohort analysis 

 

The advent of immunotherapy, exemplified by the 

utilization of PD-1/PD-L1 checkpoint inhibitors,  

marks a significant breakthrough in the management  

of neoplastic conditions. In light of the considerable 

therapeutic prospects offered by immunotherapy, 

particularly with regard to PD-1 and PD-L1 immune 

checkpoint inhibitors, in various types of malignancies, 

including BLCA, we undertook a thorough assessment 

to determine the prognostic implications of the risk 

score within the IMvigor210 and GSE78220 cohorts.  

 

We conducted an evaluation of the association between 

the risk score and the response to immune therapy in 

the IMvigor210 cohort. This cohort comprised patients 

diagnosed with advanced urothelial carcinoma who 

underwent treatment with PD-L1 blockade. Patients 

classified as low-risk exhibited substantial survival 

advantages in contrast to individuals categorized  

as high-risk (Figure 8A). The risk score of patients 

belonging to the progressive disease (PD)/stable 

disease (SD) group demonstrated a noteworthy increase 

when compared to the partial response (PR)/complete 

response (CR) group (Figure 8B). It is noteworthy  

to highlight that the incidence of PR/CR within the 

high-risk group was considerably lower compared to 

the low-risk group. On the contrary, there was a 

contrasting pattern observed in the proportion of 

patients with PD/SD, indicating that the implement-

tation of a risk score holds promise in elucidating  

the therapeutic efficacy of patients undergoing ICB 

therapy (Figure 8C).  

 

Conversely, a comparable analysis was performed 

within the GSE78220 cohort, which consisted of 

patients diagnosed with melanoma and undergoing 

PD-1 blockade therapy. In contrast to patients catego-

rized in the high-risk group, those belonging to the low-

risk group demonstrated notable benefits in terms of 

survival outcomes (Figure 8D). The risk score in the 

PD group demonstrated a considerable elevation when 
compared to the PR/CR group (P < 0.05) (Figure 8E). 

The prevalence of the low-risk score was notably higher 

(67%) among patients in the PR/CR group, while the 
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Figure 6. Enrichment analysis and functional annotation. (A) Differentially expressed genes between high- and low-risk groups (FDR 
<0.05, log2 (FC) > 1). (B) The GSVA analysis demonstrates the enrichment of hallmark gene sets within various risk groups. (C) Bar graphs are 
commonly utilized to show GO enrichment analysis. (D) The GSEA enrichment analysis method revealed notable variations in pathways 
between groups classified as high risk and low risk. 
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Figure 7. Analysis of immune microenvironment. (A) Assessing disparities in immune cell content among high and low-risk cohorts.  
(B, C) Association between immune cell content and model genes and risk scores. (D, E) The ssGSEA methodology was employed to assess 
the disparities in immune cells and immune-associated functions among groups categorized as high risk and low risk. 
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Figure 8. Correlation of the risk score with immunotherapy response in two cohorts. Survival analyses (A), Distribution of risk 
score in different immunotherapy response groups (B), and Response to anti-PD-L1 therapy (C) between low- and high-risk groups in 
advanced urothelial cancer cohort (IMvigor210 cohort). Survival analyses (D), Distribution of risk score in different immunotherapy response 
groups (E), and Response to anti-PD-1 therapy (F) between low- and high-risk groups in melanoma cohort (GSE78220). (G–I) Differences in IPS 
and TIDE among individuals categorized as high- and low-risk. 
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high-risk score was a prominent subtype (60%) within 

the PD group. These findings suggest that the risk score 

has potential as a promising predictive marker for 

assessing the immunotherapeutic response in patients 

with BLCA (Figure 8F). 

 

Moreover, the Immune Prognostic Score (IPS) held 

potential in discerning patients who might have 

benefited from immunotherapy. The tumor specimens 

obtained from these individuals were expected to 

demonstrate positive immunological reactions in 

relation to PD-1/PD-L1 inhibitors, CTLA4 inhibitors, or 

a combination of both therapeutic interventions. The 

administration of CTLA-4 immunotherapy resulted in  

a substantial increase in IPS scores among patients 

classified as low-risk, indicating that they would have 

benefited the most from this type of immunotherapy  

(P < 0.05) (Figure 8G, 8H). However, there was no 

difference between different risk groups in PD-1 and 

PD-L1 treatment (data not displayed). We also  

utilized the TIDE algorithm to predict the response  

to immunotherapy among distinct risk groups. Our 

results demonstrated a notable decrease in the TIDE 

score within the low-risk group (P < 0.05) (Figure 8I), 

implying a higher likelihood of favorable outcomes 

with immunotherapy for patients classified as low-risk. 

 

Validation of the expression and alteration of the 

four genes in BLCA tissues 

 

The protein expressions of the four genes in the BLCA 

tissues and normal tissues were validated through the 

utilization of the HPA online database (Figure 9A).  

The findings demonstrated elevated expression levels of 

IKBKB and POLR3G in BLCA tissues. IRF3 exhibited 

a moderate level of expression in both tumor and 

normal samples. CTNNB1 exhibited high expression 

levels in both tumor and normal samples. 

 

 
 

Figure 9. Validation of the expression of the signature genes in BLCA. (A) Immunohistochemistry of the IRF3, IKBKB, POLR3G, and 

CTNNB1 in the normal and tumor groups from the HPA database. (B–E) The expression of Hub gene at different concentrations of AUD-S100. 
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In order to elucidate whether the expression levels of 

four genes were influenced by the state of the cGAS-

STING pathway, we employed varying concentrations 

of ADU-S100 (a cGAS-STING pathway agonist) to 

treat the T24 cell line of BLCA. The RT-qPCR results 

revealed that alterations in the cGAS-STING pathway 

status were accompanied by concentration-dependent 

modifications in the aforementioned quartet of genes. 

Upon activation of the cGAS-STING pathway, it  

was observed that the expression of IRF3 and IKBKB 

was increased (P < 0.05), whereas the expression of 

POLR3G and CTNNB1 was decreased (P < 0.05) 

(Figure 9B–9E). 

 

DISCUSSION 
 

The cGAS-STING pathway assumes a pivotal function 

in the advancement and advancement of inflammatory-

driven tumors [21]. Prolonged activation of down-

stream effector programs associated with cGAS-

STING leads to persistent inflammation and facilitates 

tumor progression [22]. Furthermore, the cGAS-

STING pathway occupies a central position in DNA 

sensing, immune cell infiltration, and the regulation of 

the immune response against tumors [23]. STING-

targeted therapies have emerged as a novel category  

of immunotherapeutic agents for combating tumors. 

Extensive clinical trials (NCT02675439, NCT03010176, 

and NCT04144140) have investigated their safety and 

efficacy. A recent investigation has revealed that the 

expression of five genes linked to the cGAS-STING 

pathway, namely IFNB1, IFNA4, IL6, NFKB2, and 

TRIM25, exhibits potential as a valuable prognostic 

marker for OS in patients suffering from gastric cancer 

[24]. Nevertheless, the precise implications of CRGs 

in BLCA remain uncertain, as there is a paucity of 

comprehensive understanding in the existing literature. 

Hence, this investigation represents the inaugural 

attempt to elucidate the putative role of CRGs in the 

context of BLCA. 

 
This research investigation discerned two distinct 

clusters by analyzing the expression matrix of nine 

genes associated with prognosis. Notably, patients in 

subtype A exhibited more favorable survival outcomes 

compared to those in subtype B, as evidenced by  

the TCGA-BLCA and GSE13507 cohorts. Differential 

expression patterns were observed in nine prognostic 

genes between subtypes A and B, indicating distinct 

regulatory mechanisms of the cGAS-STING pathway 

within these two clusters. Furthermore, the developed 

model aimed to discriminate between patients who 

exhibit a high risk and those who demonstrate a  

low risk. Specifically, individuals classified as high-

risk exhibited a notably poorer survival outcome 

compared to their counterparts in the low-risk category, 

as observed within the TCGA-BLCA cohort. In the 

GSE13507 cohort, it was noted that patients exhibiting 

a high-risk score exhibited a corresponding elevation 

in OS rates. The nomogram demonstrated high 

accuracy in predicting the survival probability of 

individual patients with BLCA at 1, 3, and 5 years. 

Additionally, the reliability of the nomogram was 

confirmed by the calibration curves. Significantly, the 

risk score exhibits the ability to discern distinct 

immune subtypes. Moreover, an escalation in the 

pathological stage corresponds to a notable 

augmentation in the proportion of patients categorized 

as high-risk. The results of this investigation strongly 

endorsed the concept that the model risk score exhibits 

great potential as a prospective prognostic marker, 

presenting a valuable approach for optimizing clinical 

outcomes in individuals afflicted with BLCA. 

 
The proposed model consists of four genes associated 

with prognosis, namely IRF3, IKBKB, POLR3G,  

and CTNNB1. The interferon regulatory factors (IRF) 

comprise a transcription factor family, encompassing 

nine gene members from IRF1 to IRF9. IRF has  

been demonstrated to play a pivotal role in immune 

response and tumorigenesis [25]. In the context  

of cGAS-STING activation, IRF3 is phosphorylated  

and translocates to the nucleus, where it activates  

the transcription of type I interferons and pro-

inflammatory cytokines. The cGAS-STING path- 

way, triggered by DNA present in the cytoplasm, 

facilitates the activation of two key transcription 

factors, namely interferon regulatory factor 3 (IRF3) 

and nuclear factor-κB (NF-κB). This activation 

subsequently results in the elevation of inflammatory 

factors and interferons (IFNs) [26]. IKKβ/IKBKB, 

referred to as IκB kinase beta or IKK2, acquired  

its nomenclature due to its role in the phosphorylation 

of IκB molecules, which function as inhibitors of  

NF-κB transcription factors [27]. Emerging research 

has elucidated the potential impact of IKBKB activity 

on tumor development, highlighting its ability to exert 

negative regulatory effects on key proteins involved 

in cell cycle regulation and tumor suppression, 

including members of the p53 family, p16, and TSC1 

[28]. According to existing reports, the inhibition  

of POLR3G has demonstrated a specific halt in 

proliferation and induction of cell death in prostate 

cancer cells [29]. Additionally, a correlation has been 

observed between the over-expression of POLR3G 

and unfavorable prognostic outcomes in transitional 

cell carcinoma [30]. The specific role of POLR3G  

in the context of cGAS-STING activation and bladder 

cancer is not well-established, and further research  

is needed to elucidate its significance. β-catenin 

(CTNNB1) serves as a pivotal regulatory factor within 

the Wnt signaling pathway, playing a critical role in 
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maintaining tissue homeostasis and governing 

essential cellular processes such as proliferation, 

differentiation, and functional regulation. The role  

of the mutated CTNNB1 in activating the oncogenic 

Wnt/β-catenin pathway has been documented as 

crucial in the development of multiple malignancies 

[31–33]. CTNNB1 has been reported to negatively 

regulate the immune response by inhibiting the 

production of type I interferons. The activation of 

cGAS-STING can lead to the degradation of β-catenin, 

allowing for enhanced immune responses against 

bladder cancer. The present study demonstrated that 

four prognostic-associated genes identified through 

screening possess functional implications in tumori-

genesis and disease progression. The aforementioned 

findings have provided valuable insights into the 

importance of these genes in the prognostication  

of patient survival and the assessment of immuno-

therapeutic efficacy. 

 
The unique characteristics of cGAS-STING genes in 

BLCA are hypothesized to be associated with the 

particular tumor microenvironment. BLCA has a  

high level of immune invasion [34, 35]. We conducted 

an in-depth analysis of the variations in infiltration 

ratios among 22 distinct immune cell populations 

within both the high-risk and low-risk groups.  

The high-risk group exhibited a comparatively low 

infiltration proportion of Treg cells, activated NK 

cells, and monocytes. In contrast, the high-risk group 

exhibited a higher prevalence of memory-activated 

CD4+T cells, M2 macrophages, M0 macrophages, 

activated mast cells, and neutrophils. Furthermore, 

our findings un-veiled a positive correlation between 

the risk score and M0 macrophages, neutrophils,  

NK cells, and memory-activated CD4+T cells, while 

Treg cells exhibited a negative association with the 

risk score. Moreover, we corroborated our findings  

by incorporating two independent external immuno-

therapy cohorts and employing the IPS to verify that 

low-risk patients were more likely to benefit from 

immunotherapy. 

 
In order to ascertain whether the expression of  

four genes was influenced by the state of the cGAS-

STING pathway, we employed varying concentrations 

of ADU-S100 (a cGAS-STING pathway agonist)  

to treat the T24 bladder cancer cell line, thereby 

inducing alterations in their expression levels. The 

RT-qPCR results demonstrated that alterations in  

the cGAS-STING pathway status were accompanied 

by concentration-dependent changes in the afore-

mentioned four genes. To summarize, the activation 
of the cGAS-STING pathway resulted in the up-

regulation of IRF3 and IKBKB, while leading to the 

downregulation of POLR3G and CTNNB1. 

While previous articles have investigated the role of 

the cGAS-STING pathway in BLCA, there are several 

aspects that make our work novel and distinct:  

1-Prognostic Risk Model: We have developed a 

prognostic risk model using four key genes (IRF3, 

IKBKB, POLR3G, and CTNNB1) associated with the 

cGAS-STING pathway. This risk model enables the 

prediction of OS in BLCA patients. To the best of our 

knowledge, no previous study has specifically utilized 

these genes in a prognostic risk model for BLCA.  

2-Integration of Clinical Information: In addition to 

the gene-based risk model, we have established an 

integrated nomogram that combines risk scoring with 

clinical information. This approach enhances the 

clinical practicality of our findings by allowing for a 

more comprehensive assessment of patient prognosis. 

3-Tumor Microenvironment Differentiation: Our study 

demonstrates that the risk score derived from the  

CRG model can differentiate tumor microenvironments 

among different risk groups. This finding provides 

valuable insights into the underlying mechanisms of 

BLCA progression and potential targets for persona-

lized immunotherapy. 4-Validation and External Data: 

We have validated our risk model using an external 

validation set obtained from the GEO database. This 

step further strengthens the reliability and generaliza-

bility of our findings. 

 

CONCLUSIONS 
 

In summary, our study has successfully devised a robust 

prognostic model that demonstrates effectiveness in 

predicting both the prognosis and responsiveness to 

immunotherapy among patients with BLCA. Our study 

findings suggest that IRF3, IKBKB, POLR3G, and 

CTNNB1 hold promise as viable therapeutic targets 

for individuals diagnosed with BLCA. 
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Supplementary Figure 1. Comparison of C-index of different prognostic signatures.  

 


