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INTRODUCTION 
 

Lung cancer is a malignant tumor that originates 

within lung tissue and ranks among the foremost 

causes of mortality worldwide [1, 2]. Therapeutic 

modalities for lung cancer encompass surgical inter-

vention, radiotherapy, chemotherapy, targeted therapy, 

and immunotherapy, among others [3]. The realm of 

lung cancer treatment has experienced substantial 

advancements, particularly in the domains of molecular 

targeted therapy and immunotherapeutic interventions 

[4]. Molecular targeted therapy hinges on aberrant 

signaling pathways or specific mutations inherent to 

tumor cells, while immunotherapy involves activating 

the patient’s own immune system to combat malignant 

cells [5, 6]. Given the pronounced heterogeneity of 
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ABSTRACT 
 

Background: Recent years revealed key molecules in lung cancer research, yet their exact roles in disease onset 
and progression remain uncertain. Lung cancer’s heterogeneity complicates prognosis prediction. This study 
integrates pivotal molecules to evaluate patient prognosis and immunotherapy efficacy. 
Methods: The WGCNA algorithm identified module genes linked to immunity. The Lasso-Cox method built a 
prognostic model for outcome prediction. GO and KEGG analyses explored gene pathways. ssGSEA quantified 
immune cell types and functions. The riskScore predicts the effectiveness of immunotherapy based on its 
correlation with DNA repair and immune checkpoint genes. Single-cell sequencing examined key gene 
expression across cell types. 
Results: Using WGCNA, we identified the MEbrown module related to immunity. Lasso-Cox selected “BLK,” 
“ITGB4,” “PRKCH,” and “SNAI1” for the prognostic model. MF analysis revealed enriched functions including 
antigen binding, GTPase regulator activity. In terms of BP, processes like immune signaling and mitotic division 
were enriched. CC enrichment included immunoglobulin complexes and chromosomal regions. Enriched 
pathways encompassed Cell cycle, Focal adhesion, Cellular senescence, and p53 signaling. ssGSEA evaluated 
immune cell abundance. RiskScore correlated with CTLA4 and PD1 through MMR and immune checkpoint 
analysis. Single-cell analysis indicated gene expression across cell types for BLK, ITGB4, PRKCH, and SNAI1. 
Conclusion: In summary, our developed prognostic model utilizing age-related genes effectively predicts lung 
cancer prognosis and the efficacy of immune therapy. 
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lung cancer tissue, treatment outcomes exhibit  

marked variations [7, 8]. Therefore, there is an urgent 

need to introduce novel biomarkers and predictive 

models to achieve personalized therapeutic strategies 

for individuals. 

 

Immunotherapy, as a revolutionary treatment approach, 

has garnered widespread interest and research in the 

fields of cancer and other diseases [9, 10]. In cancer 

immunotherapy, the primary strategies encompass 

checkpoint inhibitors, CAR-T cell therapy, cancer 

vaccines, and cytokine therapy [11]. Checkpoint 

inhibitors, a representative therapeutic method within 

immunotherapy, demonstrate remarkable efficacy in 

some patients [12]. Despite the notable successes 

achieved by immunotherapy, it remains challenged 

[13]. Some patients exhibit insensitivity to immuno-

therapy, while others experience immune system 

hyperactivity leading to adverse reactions such as 

autoimmune diseases [14, 15]. Hence, identifying 

patients sensitive to immunotherapy for targeted treat-

ment is of paramount importance. 

 
Senescence is a complex biological process that 

typically involves gradual degeneration and functional 

decline across various levels of an organism [16]. 

Many molecular mechanisms are believed to play 

pivotal roles in the senescence process [17]. Cellular 

dysfunction, oxidative stress, alterations in gene 

expression regulation, and shortened telomere length 

are factors profoundly influencing cellular functionality 

[18, 19]. Moreover, senescence has been found to  

play a crucial role in the initiation and progression  

of cancer [20]. Research indicates a close correlation 

between cellular senescence-related models and the 

prognosis of liver cancer patients [21]. Furthermore, 

neutrophil extracellular traps (NETs) formed by 

senescent neutrophils have been identified to facilitate 

breast cancer metastasis [22]. In the context of a Kras-

driven lung cancer model, senescent macrophages 

assume a significant role in lung cancer genesis and 

progression [23]. However, current studies concerning 

the relationship between lung cancer and senescence 

often remain confined to singular molecular levels, 

with research exploring the mutual interplay between 

various key senescence-related genes and lung cancer 

being relatively scarce. 

 
This study is founded on several crucial genes 

associated with senescence. It establishes a predictive 

model for lung cancer, employing a combination  

of bulk and single-cell sequencing analyses. The  

research delves into the potential correlations between 

this predictive model and immune cell infiltration. 

Furthermore, an evaluation of its implications in the 

realm of immunotherapy efficacy is conducted. 

MATERIALS AND METHODS 
 

Gene sets and data acquisition 

 

Transcriptomic and clinical data for lung cancer were 

acquired from the TCGA database (https://portal.gdc. 

cancer.gov/), encompassing 526 cancer samples and 59 

normal samples. The clinical dataset incorporates vital 

parameters such as survival status, survival time, age, 

gender, Stage, T, N, and M. Concomitantly, lung cancer 

dataset (GSE14814) was retrieved from the GEO data-

base (https://www.ncbi.nlm.nih.gov/). After meticulous 

data curation, a total of 133 lung cancer samples were 

retained for subsequent model validation and analysis. 

 

WGCNA analysis 

 

The Weighted Gene Co-expression Network Analysis 

(WGCNA) algorithm constructs co-expression networks 

by grouping genes with similar expression patterns  

into modules. This methodology adeptly unveils latent 

biological structures within high-dimensional gene 

expression data, transforming intricate data into inter-

pretable modular information. This process thereby 

facilitates the identification of gene modules associated 

with specific biological processes or disease progression. 

In our study, we harnessed the power of WGCNA to 

construct a co-expression network using senescence-

related genes. Subsequently, modules related to immunity 

were specifically selected for further in-depth analysis. 

 

Modeling analysis and validation 

 

By employing Lasso-Cox regression analysis on the 

identified pivotal genes, we formulated a riskScore 

model, followed by the computation of individualized 

riskScore for the patients. This comprehensive evaluation 

gauges the role of these pivotal molecules in lung cancer 

patient prognosis. The specific formula for riskScore 

computation is as follows: riskScore = (Expression  

of BLK × coefficient) + (Expression of ITGB4 × 

coefficient) + (Expression of PRKCH × coefficient) + 

(Expression of SNAI1 × coefficient). The TCGA 

dataset was partitioned into training and validation  

sets. Furthermore, the GSE14814 dataset was employed 

for additional model validation. Kaplan–Meier (KM) 

survival curves were employed for survival analysis. 

These curves assess the existence of survival rate 

disparities between high- and low-risk groups of lung 

cancer patients within both training and testing sets. 

Risk survival curves were used to evaluate patient 

survival and mortality between high- and low-risk 

groups, as well as to assess differences in key genes  

of the constructed model between these two groups. 

ROC curves were employed to determine the predictive 

performance of the model univariable and multivariable 

https://www.ncbi.nlm.nih.gov/
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Cox regression analyses were conducted to assess 

whether various clinical indicators serve as valuable 

independent prognostic factors. 

 

Functional enrichment analysis 

 

Functional enrichment analysis using differentially 

expressed gene sets reveals key biological processes 

possibly implicated in distinct physiological or disease 

states. Gene Ontology (GO) and KEGG pathway 

analyses were conducted using the “clusterProfiler” R 

package. The GO analysis is categorized into three main 

aspects: Biological Process (BP), Cellular Component 

(CC), and Molecular Function (MF). The gene set files 

used for GO analysis annotation are derived from  

the c5.go.v7.4.symbols.gmt dataset. On the other hand, 

KEGG pathway analysis employs gene set files from the 

c2.cp.kegg.v7.4.symbols.gmt dataset (https://www.gsea-

msigdb.org/). 

 

Analysis of the immune system and drug sensitivity 

 

The ssGSEA algorithm quantifies the abundance of 

distinct immune cell infiltrations and immune functions 

within each sample. We evaluated a total of 16 immune 

cell types and 13 immune functions. The Estimate 

algorithm assesses the immune, stromal, and tumor 

components within the tumor microenvironment of each 

patient. Spearman correlation analysis was employed to 

calculate the correlation between the riskScore and 

MMR status, as well as immune checkpoint expression. 

This assessment helps determine the suitability of the 

riskScore for predicting the efficacy of immunotherapy. 

We evaluated the immunotherapy response concerning 

PD1 and CTLA4 in different riskScore groups. The 

“oncoPredict” package was utilized to evaluate the 

sensitivity of different riskScore groups to chemotherapy 

drugs. This evaluation encompassed commonly used 

chemotherapy drugs for lung cancer treatment. 

 
Mutation analysis 

 

Single Nucleotide Variation (SNV) refers to the 

alteration of a single nucleotide within the genome, 

potentially leading to modifications in genetic infor-

mation. Genetic mutation analysis contributes to the 

elucidation of gene functionality, regulatory mechanisms, 

and their associations with disease progression. The 

identification of key mutated genes within high-risk  

and low-risk groups aids in elucidating the prognosis of 

the disease. 

 
Analysis of single-cell data 

 

The single-cell sequencing data originated from the 

GEO database (GSE149655). The “Seurat” package 

was employed to perform quality control, principal 

component analysis (PCA) dimensionality reduction, 

and t-SNE dimensionality reduction on the dataset, 

followed by clustering of the single-cell samples. The 

“SingleR” package was utilized to annotate cell types 

within the single-cell data, enabling the analysis of  

gene expression profiles across distinct cell populations. 

The “cellchat” package was employed to conduct cell 

communication analysis, investigating the molecular 

interactions between different cell types within the lung 

cancer tissue. 

 

Data statistics 

 

The Wilcoxon test was employed for analyzing 

differences between two groups, while the Spearman 

correlation test was used for correlation analysis. Kaplan-

Meier analysis along with log-rank test was utilized for 

survival analysis. Additionally, Cox regression analysis 

was performed using the R package “survival”, providing 

hazard ratios (HRs) and 95% confidence intervals  

(CIs). Statistical analyses and data visualization were 

conducted using R software (version 4.3.1). 

 

Data availability statement 

 

The manuscript and accompanying supplementary 

material encapsulate the primary findings outlined 

within this investigation. For more information, kindly 

communicate with the designated corresponding author. 

 

RESULTS 
 

Integration of WGCNA and Lasso-Cox model 

construction 

 

Firstly, a flowchart was created to elucidate the 

comprehensive logical structure of the manuscript 

(Figure 1). In view of the potential correlation between 

senescence-associated genes and the pathogenesis and 

progression of lung cancer, we employed senescence-

associated genes for the establishment of a risk 

prognosis model. To commence, we conducted clustering 

analysis on the senescence-associated genes using  

the Weighted Gene Co-expression Network Analysis 

(WGCNA) algorithm (Figure 2A, 2B). Notably, the 

genes were categorized into four distinct modules,  

with MEbrown displaying a close correlation with 

tumor microenvironment immune components. This 

specific module was subsequently chosen for further 

analysis (Figure 2C, 2D). Following this, we pursued 

the identification of genes manifesting significant 

distinctions between normal and tumor tissues (Figure 

2E). By intersecting the genes from the MEbrown 

module, identified through the WGCNA algorithm,  

with the differentially expressed genes, a total of 35 

https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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genes were selected for subsequent modeling analysis 

(Figure 3A). Utilizing the STRING database, we further 

investigated the interplay among the genes within  

this intersection (Figure 3B). Subsequently, employing 

Lasso-Cox regression analysis, we discerned four 

pivotal genes, namely “BLK”, “ITGB4”, “PRKCH” 

and “SNAI1” for constructing the prognostic model 

(Figure 3C, 3D). Kaplan-Meier survival analysis 

distinctly demonstrated the intimate association of 

these key genes with the prognosis of lung cancer 

(Figure 3E–3H). 

 

Model validation 

 

Given the interrelation between riskScore and patient 

prognosis, we undertook validation of the model’s 

 

 
 

Figure 1. A flowchart of manuscript. 



www.aging-us.com 1864 AGING 

prognostic predictive capability across three distinct 

datasets. The “caret” R package bifurcated the TCGA 

dataset into training and validation subsets, while the 

lung cancer dataset GSE14814 served as an additional 

validation subset. Notably, patients bearing high 

riskScore exhibited inferior prognoses within all three 

 

 
 

Figure 2. He combined application of WGCNA and differential analysis was used to screen key genes associated with aging. 
(A, B) The WGCNA algorithm demonstrated the optimal soft threshold. (C, D) The WGCNA algorithm identifies modules associated with 
immunity. (E) Heatmap showing differentially expressed aging-related genes. 
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datasets (Figure 4A–4C). Further examination of 

survival status among varying risk groups exposed  

that individual in the high-risk category manifested 

higher mortality rates. Heatmap analysis unveiled a 

pronounced elevation in the expression levels of the 

genes “ITGB4” and “SNAI1” in the high-risk group, 

 

 
 

Figure 3. The Lasso-Cox algorithm constructs a prognostic risk model. (A) The Venn diagram illustrates the intersection of genes 

between WGCNA and differential analysis. (B) The PPI (Protein-Protein Interaction) network investigates the interactions between key 
proteins. (C, D) The Lasso-Cox algorithm constructs a model. (E–H) Kaplan-Meier survival curve analysis of hub gene. 
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juxtaposed against lower expression levels of “BLK” 

and “PRKCH” in this group, when compared with the 

low-risk counterpart (Figure 4D–4F). The ROC curve, 

utilized to predict model classification performance, 

spotlighted the area under the ROC curve (AUC) as a 

metric for classifier efficacy. Notably, AUC values for 

TCGA training and validation subsets reached 0.660 and 

0.653, respectively, while GSE14814 validation subset 

 

 
 

Figure 4. Validation of model performance. (A–C) Prognostic analysis using Kaplan-Meier curves for the riskScore model. (D–F) 
Heatmap and risk curve analysis of the riskScore model. (G–I) ROC analysis of the riskScore Model. 
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recorded an AUC of 0.658 (Figure 4G–4I). Subsequently, 

we proceeded with univariate and multivariate Cox 

regression analyses involving riskScore and clinical 

attributes. The univariate Cox analysis underscored the 

prognostic significance of Stage, T, N, M, and 

riskScore. Notably, the multivariate Cox regression 

analysis revealed that riskScore retained its pivotal role 

as an independent prognostic factor (Figure 5A, 5B). 

 

 
 

Figure 5. Functional enrichment analysis. (A, B) Univariate and multivariate Cox proportional hazards analyses of clinical indicators 
and riskScore. (C–E) Gene Ontology enrichment analysis of the riskScore model. (F) KEGG enrichment analysis of the riskScore model. 
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Functional enrichment analysis 

 

GO enrichment analysis was employed to investigate 

the underlying reasons for significant differences 

between the high-risk and low-risk groups. In this 

analysis, the focus primarily rested on Molecular 

Function (MF), Biological Process (BP), and Cellular 

Component (CC). For Molecular Function, we observed 

significant enrichment in domains such as antigen 

binding, GTPase regulator activity, and nucleoside-

triphosphatase regulator activity (Figure 5C). BP 

analysis unveiled enrichment in processes including 

the production of molecular mediators of immune 

response, antigen receptor-mediated signaling path-

ways, and mitotic nuclear division (Figure 5D). In 

terms of Cellular Component analysis, CC primarily 

enriched in areas such as immunoglobulin complex, 

cell-substrate junction and chromosomal region (Figure 

5E). Furthermore, through KEGG enrichment analysis, 

we delved deeper into the potential mechanistic 

pathways contributing to the prognostic disparities 

between the high-risk and low-risk groups. Notably, 

pathways including Cell cycle, Focal adhesion, Cellular 

senescence, p53 signaling pathway and small cell lung 

cancer were prominently enriched (Figure 5F). 

 

Mutation analysis 

 

Genetic mutations refer to alterations in the 

composition or arrangement of base pairs in a gene's 

structure. We retrieved mutation-related data from the 

TCGA database for analysis. The analysis of variant 

classification revealed that the predominant category 

was Missense Mutation (Figure 6A). Furthermore, the 

analysis of variant types unveiled that the major 

category was Single Nucleotide Polymorphism (SNP) 

(Figure 6B). Regarding Single Nucleotide Variants 

(SNVs), the primary type identified was C>A (Figure 

6C). Subsequently, aiming to delve into the mutation 

gene disparities between the high-risk and low-risk 

groups, we depicted a waterfall plot. The results 

indicated a substantial concordance in mutation genes 

between these risk groups (Figure 6D, 6E). For a  

more detailed examination of the mutation status of 

key genes within the constructed model, we performed 

somatic mutation rate analysis for each individual 

gene. The mutation rate for BLK was 1.93%, for 

ITGB4 it was 1.35%, for PRKCH it was 1.35%, and 

for SNAI1 it was 0.58% (Figure 6F–6I). 

 

Model immune landscape and drug sensitivity 

analysis 

 
In pursuit of unraveling the relationship between 

riskScore and immune-related functionalities, we 

harnessed the ssGSEA algorithm to analyze 13 distinct 

immune-related functions. Evidently, Cytolytic activity, 

HLA, Inflammation-promoting, and T cell co-stimu-

lation demonstrated significantly lower scores in the 

high-risk group compared to the low-risk group (P < 

0.001) (Figure 7A). Subsequently, discerning the inter-

play between riskScore and immune cells, we delved 

into the abundance of 16 immune cell types within  

the tumor microenvironment. Notably, B cells, Mast 

cells, pDCs, T helper cells, Tfh, and TIL exhibited 

conspicuously reduced scores in the high-risk group  

as opposed to the low-risk group (P < 0.001) (Figure 

7B). The tumor microenvironment (TME) encapsulates 

the milieu surrounding tumor cells, comprising 

vascular structures, immune cells, fibroblasts, bone 

marrow-derived inflammatory cells, diverse signaling 

molecules, and the extracellular matrix. The Estimate 

algorithm analysis unveiled a significantly elevated 

immune score in the high-risk group (Figure 7C). To 

comprehend the immunotherapeutic variance between 

high-risk and low-risk groups, we explored the potential 

correlation of this riskScore with MMR and immune 

checkpoint markers. The MMR analysis identified  

a positive correlation between EPCAM and PSH6  

with the riskscore, while MLH1 exhibited a negative 

correlation (Figure 7D). Likewise, immune checkpoint 

analysis underscored the riskscore’s correlation with 

multiple indicators. Post-adjustment of p-values to 

0.001, CTLA4 and PD1 continued to exhibit a close 

relationship with the riskscore, while PDL1 did not 

manifest any notable correlation (Figure 7E). For a 

more lucid observation of immune therapeutic 

conditions among high-risk and low-risk group 

patients, we conducted immune treatment score 

analysis. The results notably indicated higher immune 

treatment scores in the low-risk group (Figure 7F–7H). 

 

Subsequently, we delved into the sensitivity of  

high-risk and low-risk groups to diverse lung  

cancer chemotherapeutic agents. Interestingly, our 

findings revealed that Carmustine, KRAS (G12C) 

Inhibitor-12, Paclitaxel, Mitoxantrone, Navitoclax, 

Niraparib, Olaparib, Oxaliplatin, Palbociclib, Sorafenib, 

Talazoparib, Tamoxifen, Topotecan, Vorinostat, and 

Zoledronate exhibited higher IC50 values in the high-

risk group (Figure 8A–8O). However, Trametinib 

displayed a higher IC50 value in the low-risk group 

(Figure 8P). 

 

Single cell data analysis 

 

With the continuous maturation of single-cell analysis 

techniques, their application in clinical diagnosis and 

treatment is expected to become more widespread.  
For example, the precise subtyping of tumors through 

single-cell sequencing technology is expected to provide 

a scientific basis for personalized treatment [24, 25]. 
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We retrieved single-cell sequencing data of lung  

cancer patients from the GEO database (GSE149655). 

After data curation, a total of 2 lung cancer samples 

were included for subsequent analysis. Conducting  

PCA and tSNE dimensionality reduction analysis on the 

samples, we successfully stratified them into 8 clusters. 

 

 
 

Figure 6. Genetic mutation analysis for model construction. (A–C) Mutation type analysis. (D, E) Analysis of mutated genes in high-

risk and low-risk groups. (F–I) Analysis of single-gene mutation sites. 
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Subsequent heatmap visualization highlighted the 

differential genes among these clusters (Figure  

9A, 9B). Subsequently, cell annotation unveiled a 

clear categorization of cells into 5 main types:  

T cells, Epithelial cells, Macrophage, Fibroblasts,  

and Endothelial cells (Figure 9C). Additionally, we 

 

 
 

Figure 7. Immune analysis of riskScore model. (A) The ssGSEA algorithm was used to calculate the relationship between riskScore and 
various immune cells. (B) The ssGSEA algorithm was employed to assess the relationship between riskScore and different immune-related 
functions. (C) TME analysis was performed to evaluate the differences between high and low-risk groups. (D) Mismatch repair (MMR) analysis 
revealed a strong association between riskScore and MMR status. (E) Immune checkpoints analysis revealed a strong association between 
riskScore and immune checkpoints. (F–H) Immune therapy analysis reveals treatment efficacy in high and low-risk patient groups. 
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presented the differential genes among these diverse 

cell types, the heatmap allows us to distinctly observe 

the characteristic genes of different cell types (Figure 

9D). Continuing our investigation, we analyzed the 

expression levels of key modeling genes across 

different cell types in lung cancer tissues. Through 

scatter plots, the expression of BLK was consistently 

low in all cell types. ITGB4 demonstrated predominant 

 

 
 

Figure 8. Differential analysis of various chemotherapeutic drugs between high and low-risk groups using the “oncopredict” 
package. (A–O) Higher IC50 values of different chemotherapeutic drugs in the low-risk group. (P) Higher IC50 values of chemotherapeutic 
drug in the high-risk group. 
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expression in Endothelia cells and Epithelia  

cells, while PRKCH exhibited primary expression  

in Endothelial cells. SNAI1, on the other hand, was 

notably expressed in Endothelial cells (Figure 9E–9I). 

Cellular communication is a crucial process of 

interaction among cells within an organism, invol- 

ving the transmission of information between cells  

and the coordination of cellular behaviors. Cellular 

 

 
 

Figure 9. Single-cell sequencing analysis. (A) t-SNE clustering algorithm is used to classify cells into 8 clusters. (B) Heatmap visualizes 

the differentially expressed genes among the identified clusters. (C) “SingleR” package is employed to annotate different cell types, 
including T cells, Macrophage, Epithelial cells, Endothelial cells and Fibroblasts. (D) Heatmap visualizes the differentially expressed genes 
among the identified cells. (E–I) ScRNA-seq analysis reveals the expression patterns of key genes across different cell types. 
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communication analysis, as a significant method for 

studying intercellular interactions, is of paramount 

importance in revealing the physiological and patho-

logical processes of organisms [26, 27]. Further inquiry 

into cellular communication patterns revealed  

that Secreted Signaling accounted for 61.8%, ECM-

Receptor for 21.7%, and Cell-Cell Contact for 16.5% of 

interactions (Figure 10A–10C). Among the interactions, 

 

 
 

Figure 10. Single-cell cell-cell communication analysis. (A–C) Cell communication analysis reveals distinct communication patterns 
among different cell types in liver cancer. (D) The “cellchat” package is utilized to investigate the number of interactions between different 
cell types. (E) The “cellchat” package is employed to study the strength of interactions between different cell types. (F) The analysis focuses 
on exploring the molecular mechanisms underlying the interactions between different cell types. 
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those involving Smooth muscle cells and Monocytes, 

and the interactions between Fibroblasts and T cells, 

emerged as most prominent in terms of quantity and 

intensity (Figure 10D, 10E). Subsequently, we delved 

into the molecular interactions between distinct cell 

types. Notably, the interaction between Smooth muscle 

cells and B cells was mediated through the MIF 

signaling pathway, specifically involving CD74 and 

CXCR4 interactions. Similarly, the interaction between 

Smooth muscle cells and Monocytes also hinged on  

the MIF signaling pathway, facilitated by CD74 and 

CD44 interactions (Figure 10F). 

 

DISCUSSION 
 

Lung cancer is a multifaceted disease, characterized  

by a multistep progression and involving the 

participation of numerous genes. It is influenced by a 

complex interplay of environmental and genetic factor 

[1, 28]. The presence of diverse subtypes and molecular 

subgroups within lung cancer adds to the complexity 

of its diagnosis and treatment, thereby presenting 

heightened challenges [2]. Immunotherapy has emerged 

as a revolutionary approach for cancer treatment, 

demonstrating notable efficacy in certain lung cancer 

patients. However, current research indicates that its 

effectiveness is confined to specific patient cohorts 

[14]. In the pursuit of refined and personalized 

interventions, the identification of biomarkers capable 

of predicting both the prognosis of lung cancer 

patients and the response to immunotherapy assumes 

paramount significance. 

 

Due to the potential relevance of aging-associated  

genes in the pathogenesis of lung cancer, we employed 

the Weighted Gene Co-expression Network Analysis 

(WGCNA) algorithm to select aging-related genes for 

the construction of a Lasso-Cox model. The genes 

employed in the development of the prognostic model 

include BLK, ITGB4, PRKCH, and SNAI1. Notably, 

research findings substantiate the credibility of our gene 

selection. Specifically, BLK has been associated with 

inducing autophagy in bladder cancer cells, thereby 

impeding the progression of bladder cancer [29]. And 

Chen et al. have demonstrated that ITGB4, under  

the stimulation of KCNF1, promotes the proliferation  

of lung cancer cells and advances tumorigenesis [30]. 

The overexpression of PRKCH has been linked to  

the facilitation of neuroglioma occurrence and the 

modulation of neuroglioma stem cell characteristics 

[31]. Moreover, a body of research indicates that the 

upregulation of SNAIL initiates epithelial-mesenchymal 

transition, thereby facilitating tumor cell migration  

and lung cancer metastasis [32]. Subsequently, our 

riskScore model underwent comprehensive analysis 

utilizing three distinct datasets. The results consistently 

depict a notably inferior prognosis for patients  

in the high-risk group compared to their low-risk 

counterparts. Receiver Operating Characteristic (ROC) 

curves underscore the model’s robust predictive 

performance. Further, both single-factor and multi-

factor Cox regression analyses underscore the value of 

this riskScore as an independent prognostic factor. 

 
To further delve into the disparities in prognosis 

between the high-risk and low-risk groups, we 

employed GO analysis and KEGG analysis to unveil 

underlying biological processes and mechanistic 

pathways. In the context of GO analysis, notable 

enrichments were observed in nucleoside-triphosphatase 

regulator activity, mitotic nuclear division, and 

chromosomal region. It is noteworthy that mitosis is an 

indispensable process in cancer proliferation [33, 34]. 

Intriguingly, KEGG enrichment revealed pathways such 

as Cell cycle, Focal adhesion, p53 signaling pathway, 

and small cell lung cancer. Cancer, characterized by 

uncontrolled cell division, is intricately associated 

with disruptions in the cell cycle [35]. The significance 

of the p53/AMPK/mTOR pathway in the pathogenesis 

of lung cancer has been substantiated in research  

[36]. Remarkably, these findings align closely with the 

outcomes of our enrichment analyses. Additionally, 

mutation analysis revealed a remarkable convergence 

in mutated genes between the high-risk and low-risk 

groups. 

 
Through the utilization of the ssGSEA algorithm,  

we extensively probed the relationship between 

riskScore and 16 types of immune cells, as well as  

13 immune-related functionalities. Notably, Cytolytic 

activity, HLA, Inflammation-promoting, and T cell co-

stimulation were found to exhibit significantly lower 

scores in the high-risk group compared to the low- 

risk group. Immunotherapy stands as a burgeoning 

approach in contemporary cancer treatment. Given  

the substantial heterogeneity among different tumor 

patients, identifying biomarkers capable of predicting 

immunotherapeutic efficacy remains of paramount 

significance [9, 11]. The utility of Mismatch Repair 

(MMR) as a common prognostic marker for immuno-

therapy outcomes is well established [37]. In our study, 

a remarkably strong correlation was observed between 

the riskScore and several genes, namely EPCAM, 

MLH1, MSH6, with MLH1 displaying the highest 

correlation. Notably, prior research has suggested  

a potential link between the gene polymorphism 

MLH1 −93A>G and the etiology of lung cancer [38]. 

Subsequently, a comprehensive assessment of the 

association between the riskScore and immune 

checkpoints was performed. The outcomes revealed  

a pronounced connection between CTLA4 and PD1 

with the riskScore, while PDL1 failed to exhibit a 
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significant correlation. This underscores the importance 

of considering PD1 and CTLA4 in clinical medication 

decisions. This observation was further substantiated 

by our extended analysis of immunotherapeutic trends. 

 
Single-cell sequencing analysis is an advanced 

genomic technique enabling researchers to perform 

high-resolution exploration of individual cell gene 

expression, thereby revealing heterogeneity within cell 

populations [39]. In order to investigate the expression 

patterns of the pivotal genes in diverse cell types, we 

employed a single-cell analysis using the GEO data-

set. Notably, ITGB4 exhibited elevated expression 

levels in both Endothelial cells and Epithelial cells, 

whereas PRKCH and SNAI1 demonstrated pre-

dominant expression within Endothelial cells. Cellular 

communication analysis, as a crucial method for 

studying intercellular interactions, is of significant 

importance in revealing the processes of life and the 

mechanisms of diseases. By comprehensively applying 

biochemical experimental methods and computational 

analysis approaches, we can dissect the regulatory 

networks of cellular communication at the molecular 

level, providing new insights and tools for biomedical 

research [26, 27]. Cellular communication plays a 

pivotal role in coordinating various physiological and 

biochemical processes among cells through signal 

transduction and interactions [40]. We meticulously 

examined cellular communication and potential mole-

cular interactions among distinct cell types within lung 

cancer tissue. We found that cancer cells play a crucial 

role in the process of cell communication, and they 

interact with T cells, Macrophage, Fibroblasts, and 

Endothelial cells. Our results reveal the interacting 

molecules among different cell types. This analysis 

provides valuable insights directing our subsequent 

mechanistic exploration. 

 
Certainly, it is imperative to acknowledge several 

limitations inherent in our study. To begin with, the 

reliability of bioinformatics heavily relies on the quality 

of data. The presence of subpar experimental data, 

sequencing errors, and other confounding factors can 

significantly impact the accuracy and dependability of 

the analyses. In light of this, it is imperative for us to 

conduct subsequent sequencing and analyses using our 

own samples to enhance data quality. Moreover, our 

study assumes a retrospective design. In the future,  

a prospective approach might be warranted to delve 

further into the explored aspects. Lastly, we did not 

delve into comprehensive mechanistic explorations 

downstream of the model genes. This aspect could 

potentially influence the precision of our predictions 

regarding immunotherapeutic efficacy and targeted 

medications. Therefore, an in-depth investigation is 

warranted to address these aspects. In an overarching 

context, this research holds substantial clinical 

applicability. We achieved this by combining bulk 

sequencing with single-cell sequencing in a com-

prehensive joint analysis. The riskScore formulated 

through the integration of WGCNA and Lasso- 

Cox methods emerges as a pivotal biomarker for 

prognosticating lung cancer patients’ outcomes. 

Importantly, this riskScore serves as an effective 

predictor for both immune therapy response and the 

efficacy of diverse chemotherapy agents. Collectively, 

these findings provide a substantial impetus toward 

advancing personalized immune therapy for lung 

cancer patients, thereby elevating the prospects of 

tailored treatment strategies. 

 

CONCLUSION 
 

In conclusion, our endeavor has culminated in the 

development of a model centered around pivotal genes, 

capable of prognosticating lung cancer outcomes. 

Significantly, this model demonstrates adeptness in 

predicting the efficacy of immunotherapeutic inter-

ventions for patients. 
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