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INTRODUCTION 
 
Computed tomography (CT) plays a crucial role in  
the diagnosis, staging, and follow-up of gastric cancer. 
Gastric cancer, a malignant tumor typically originating 
from cells within the gastric mucosa layer, initially 
forms as small tumors and may subsequently spread to 
surrounding tissues and organs [1]. It can be classified 

into different subtypes, including adenocarcinoma, 
infiltrative adenocarcinoma, mucinous adenocarcinoma, 
among others. Gastric cancer is a global cancer with 
varying incidence rates across different countries and 
regions. Epidemiological studies indicate higher 
incidence rates in Asia, Latin America, and Eastern 
Europe, while lower rates are observed in North 
America and Western Europe. Gastric cancer is 
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ABSTRACT 
 
Objective: Computed tomography (CT) is an important tool for grading gastric cancer. Gastric cancer typically 
originates from epithelial cells of gastric mucosa. However, complementary markers for gastric cancer, 
relationship between DSCC1, GINS1 and gastric cancer remain unclear. 
Methods: Gastric cancer data were obtained from gene expression omnibus (GEO). Differentially expressed 
genes (DEGs) were identified, weighted gene co-expression network analysis (WGCNA) was conducted. Protein-
protein interaction (PPI) network was constructed and analyzed. Functional enrichment analysis, gene set 
enrichment analysis (GSEA), gene expression heatmaps, immune infiltration analysis were performed. The most 
relevant diseases related to core genes were identified using Comparative Toxicogenomics Database (CTD). 
TargetScan was used to screen miRNAs. Validation was carried out using Western blotting (WB) and reverse 
transcription-polymerase chain reaction (RT-PCR). 
Results: 1243 DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) 
analyses revealed significant enrichment in cell cycle regulation, macrophage migration control, basement 
membrane, extracellular regions, growth factor binding, protein complex binding, P53 signaling pathway, 
protein digestion and absorption, metabolic pathways. Immune infiltration analysis indicated that high 
expression of activated Mast cells and Neutrophils, with a strong positive correlation between them, may 
influence progression of gastric cancer. CTD analysis revealed associations between DSCC1, GINS1 and gastric 
tumors, gastrointestinal diseases, tumors, gastritis, inflammation, necrosis. WB and RT-PCR results 
demonstrated high expression of DSCC1 and GINS1 in gastric cancer. 
Conclusion: The expressions of DSCC1 and GINS1 are up-regulated in gastric cancer, which can be used as 
supplementary markers for CT diagnostic grading of gastric cancer. 
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characterized by its heterogeneity, with different 
subtypes exhibiting distinct features [2]. CT is valuable 
in staging gastric cancer, which involves determining 
the extent of the disease and whether it has spread to 
nearby organs or lymph nodes. CT scans can help 
evaluate the size and location of the tumor and assess its 
involvement with adjacent structures. 
 
Clinical presentations of Gastric cancer may vary 
among individuals, but common symptoms include 
indigestion, upper abdominal discomfort, loss of appetite, 
weight loss, vomiting, and black stools. These 
symptoms often appear in advanced stages, under-
scoring the importance of early diagnosis for successful 
treatment [3]. Pathological characteristics of Gastric 
cancer include tumor type, grading, depth of invasion, 
lymph node metastasis, and the morphological features 
of tumor cells. These characteristics are vital for 
assessing the severity of the condition and determining 
appropriate treatment strategies. Without timely 
diagnosis and treatment, Gastric cancer can rapidly 
spread to surrounding tissues and organs, posing a 
significant threat to the patient’s life [4, 5]. It can impact 
a patient’s appetite and nutritional intake, leading to 
weight loss and weakness. 
 
To date, the exact causes of Gastric cancer remain 
unclear. However, certain risk factors have been 
identified, including dietary habits, Helicobacter pylori 
infection, smoking, family history, and genetic factors. 
Understanding the molecular mechanisms of Gastric 
cancer is crucial for gaining insights into its pathogenesis 
and developing more effective treatment strategies. CT 
scans are essential for detecting distant metastases, 
especially to organs such as the liver, lungs, and 
peritoneum. This information is crucial for determining 
the overall stage of the disease and planning appropriate 
treatment. 
 
In recent years, the field of bioinformatics has played a 
pivotal role in advancing research. It enables in-depth 
investigations at the genomic, proteomic, and metabolic 
levels, helping reveal new biological knowledge and 
potential drug targets [6]. These advances contribute to 
the realization of precision medicine, making health-care 
more personalized and capable of predicting disease risks 
and tailoring treatment plans to individual patients [7]. 
 
DSCC1 and GINS1 are two genes or proteins associated 
with DNA replication and cell cycle regulation [8, 9]. 
DSCC1 is involved in the process of DNA replication 
and sister chromatid cohesion. It acts as an accessory 
protein, working in collaboration with other replication 
and cohesion proteins to ensure the smooth replication 
and segregation of DNA during cell division. GINS1  
is a component of the GINS complex, which plays a 

significant role in DNA replication and cell division, 
similar to DSCC1. In recent years, bioinformatics 
techniques have been employed in Gastric cancer 
research to identify potential therapeutic targets, such  
as HER2, PD-L1, and others [10], all of which have 
demonstrated a certain degree of regulatory impact on 
gastric tumors. However, the exact relationship between 
DSCC1, GINS1, and Gastric cancer is not yet clear. 
However, complementary markers of computed 
tomography for diagnostic grading of gastric cancer are 
currently unclear, and the relationship between DSCC1 
and GINS1 and gastric cancer remains unclear. 
 
Therefore, this study aims to use bioinformatics tech-
niques to screen complementary markers of computed 
tomography for diagnostic grading of gastric cancer, 
conducting enrichment analysis and pathway analysis. 
DSCC1 and GINS1’s significant roles in gastric cancer 
will be validated using public datasets. Furthermore, 
basic cellular experiments will be applied to validate 
their functions. 
 
METHODS 
 
Gastric cancer dataset 
 
In this study, Gastric cancer datasets GSE79973, 
GSE118916, GSE118897, and GSE172032 were 
downloaded from the Gene Expression Omnibus  
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). 
GSE79973 includes 10 Gastric cancer and 10 normal 
tissue samples, GSE118916 includes 15 Gastric cancer 
and 15 normal tissue samples, GSE118897 includes 10 
Gastric cancer and 10 normal tissue samples, and 
GSE172032 includes 4 Gastric cancer and 4 normal 
tissue samples. These datasets were used to identify 
differentially expressed genes (DEGs). 
 
Batch removal 
 
For data integration and batch removal, the R package 
“inSilicoMerging” was first used to merge the datasets 
GSE79973, GSE118916, GSE118897, and GSE172032, 
generating a merged matrix. Further batch effect removal 
was performed using the “removeBatchEffect” function 
from the R package “limma” (version 3.42.2). 
 
DEG selection 
 
The R package “limma” was employed for probe sum-
marization and background correction of the merged 
matrix from GSE79973, GSE118916, GSE118897, and 
GSE172032. The Benjamini-Hochberg method was 
used to adjust the raw p-values, and the fold change 
(FC) was calculated using the false discovery rate 
(FDR). DEGs were selected based on the criteria of p < 
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0.05 and FC >1.5, and a volcano plot was generated to 
visualize DEGs. 
 
Weighted gene co-expression network analysis 
(WGCNA) 
 
WGCNA was performed using the merged and batch-
corrected gene expression matrix from GSE79973, 
GSE118916, GSE118897, and GSE172032. First, the 
median absolute deviation (MAD) of each gene was 
calculated, and the lowest 50% of genes with the smallest 
MAD were removed. The “goodSamplesGenes” function 
from the R package WGCNA was used to remove outlier 
genes and samples. The scale-free co-expression network 
was constructed using WGCNA. A power function 
A_mn = |C_mn|^β was employed to create a weighted 
adjacency matrix, where C_mn represents the Pearson 
correlation between Gene_m and Gene_n, and A_mn 
represents the adjacency between Gene_m and Gene_n.  
β is a soft thresholding parameter that emphasizes  
strong correlations between genes and diminishes the 
impact of weak and negative correlations. A power of 10 
was chosen, and the adjacency matrix was transformed 
into a topological overlap matrix (TOM) to measure  
the connectivity of genes. Modules were defined using 
hierarchical clustering based on the TOM-based dis-
similarity. The minimum module size was set to 30 
genes, and a sensitivity of 3 was applied. Modules with  
a dissimilarity of less than 0.25 were merged, with the 
“grey” module representing unassigned genes. 
 
Functional enrichment analysis 
 
Gene Ontology (GO) and Kyoto Encyclopedia of  
Genes and Genomes (KEGG) analyses were conducted 
to assess gene function and biological pathways. The 
enrichment analysis was performed using the R package 
“clusterProfiler” based on gene lists generated from the 
Venn diagram. The most recent KEGG pathway gene 
annotations were obtained by inputting the DEG list to 
the KEGG REST API (https://www.kegg.jp/kegg/rest/ 
keggapi.html). The enrichment analysis was conducted 
with a background of the gene list and set significance 
criteria with a minimum gene set size of 5, a maximum 
gene set size of 5000, a p-value of < 0.05, and an  
FDR of < 0.25. Additionally, the Metascape database 
was used for comprehensive gene list annotation and 
analysis. 
 
Gene set enrichment analysis (GSEA) 
 
For Gene Set Enrichment Analysis (GSEA),  
samples were divided into two groups, disease  
and normal, based on the phenotype. The gene set 
“c2.cp.kegg.v7.4.symbols.gmt” was downloaded from 
the Molecular Signatures Database to assess relevant 

pathways and molecular mechanisms. GSEA software 
(version 3.0) was used to perform GSEA based on gene 
expression profiles, with parameters set to a minimum 
gene set size of 5, a maximum gene set size of 5000, 
1000 permutations, a p-value of < 0.05, and an FDR of 
< 0.25. GO and KEGG analyses were also performed on 
the entire gene list. 
 
Immune infiltration analysis 
 
CIBERSORT, a widely used method for estimating 
immune cell infiltration, was applied to the merged and 
batch-corrected gene expression matrix of the Gastric 
cancer datasets GSE79973, GSE118916, GSE118897, 
and GSE172032. The CIBERSORT algorithm was  
used to deconvolve the immune cell subtype expression 
matrix, and samples with a confidence p-value of < 0.05 
were selected. 
 
Protein-protein interaction (PPI) network 
construction and analysis 
 
The Search Tool for the Retrieval of Interacting  
Genes (STRING) database (http://string-db.org/) was 
used to construct a PPI network of the identified core 
genes. Cytoscape software was employed for network 
visualization and to predict core genes. MCODE was 
used to find the best modules within the PPI network. 
Additionally, the top ten genes with the highest cor-
relation using four different algorithms (MCC, DMNC, 
EPC, Radiality) were identified and the intersection was 
considered as the core gene list. 
 
Survival analysis 
 
Clinical survival data for Gastric cancer were obtained 
from TCGA. The “maxstat” function in R was used to 
calculate the optimal cutoff value for the RiskScore  
of core genes. Patients were divided into high and  
low-risk groups based on the cutoff value, and survival 
differences were analyzed using the “survfit” function 
in R with the log-rank test to evaluate the significance 
of survival differences between sample groups. 
 
Gene expression heatmaps 
 
Gene expression heatmaps were generated using the  
R package “heatmap” for the core genes identified in 
the PPI network, showing the expression differences in 
GSE79973, GSE118916, GSE118897, and GSE172032 
after batch correction and merging. 
 
CTD analysis 
 
The Comparative Toxicogenomics Database (CTD) was 
used to identify the most relevant diseases associated 
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with the core genes. Radar plots of gene expression 
differences for each gene were created using Excel. 
 
miRNA analysis 
 
TargetScan (https://www.targetscan.org) was utilized to 
predict miRNAs that may regulate the identified DEGs. 
In this study, TargetScan was used to screen miRNAs 
that potentially regulate the central DEGs. 
 
The experimental assays 
 
Cell lines and Western blotting (WB)  
The normal gastric mucosal epithelial cells (NGEC, 
GES-1, CAT#STCC10401G, Servicebio, Wuhan) and 
gastric cancer cells (HGC-27, CAT#STCC10403G, 
Servicebio, Wuhan) were cultured. We set up control 
group (normal gastric mucosal epithelial cells), gastric 
cancer cell group, gastric cancer DSCC1 gene 
overexpression group (Gastric cancer-DSCC1_OE) and 
gastric cancer DSCC1 gene knockout group (Gastric 
cancer-DSCC1_KO), and carried out Western blotting 
experiments in four groups.  
 
To construct DSCC1 downregulated cell line, small 
interference (si) RNAs against DSCC1 (DSCC1-Hu- 
396 CCAAGUUAAAGAAGCUAAAGAUUUAGCUU 
CUUUAACUUGGGU) was transfected into HGC-27 
cells. The pcDNA3.1-DSCC1 (>NM_024094.3: 100-
1281) vector was transfected into HGC-27 cells to 
construct DSCC1 overexpression cell line. Transfection 
process was conducted using SweTransRNA 
transfection reagent (CAT# G1806, Servicebio, Wuhan) 
as per manufacturers’ directions. After transfection for 
24 h, cells were collected to conduct follow-up 
experiments. All the si-RNAs and plasmids were 
synthesized by Shanghai GenePharma Co., Ltd 
(Shanghai, China). 
 
Sample preparation (total protein): Place the cell culture 
dish on ice and wash the cells three times with ice-cold 
PBS. Aspirate the PBS, then add ice-cold RIPA buffer 
(Protease and phosphatase inhibitors should be added 
before use). Scrape adherent cells off the dish, then 
gently transfer the cell suspension into a 1.5mL 
microcentrifuge tube. Maintain constant agitation for 30 
min in ice bath, use pipette to mix it up. Centrifuge at 
12,000 rpm, 4°C for 10 min. Gently remove the tubes 
from the centrifuge and place on ice, transfer the 
supernatant to a fresh tube. Protein quantification was 
performed using the BCA protein quantification reagent 
kit, and a standard curve was generated using a 
spectrophotometer. Protein separation: The quantified 
proteins were separated using SDS-Polyacrylamide Gel 
Electrophoresis (SDS-PAGE). Transfer to PVDF 
membrane: The proteins were then transferred to a 
Polyvinylidene Fluoride (PVDF) membrane. Blocking: 

The membrane was blocked using 5% Bovine Serum 
Albumin (BSA) at room temperature for 1 hour. Anti-
body incubation: Subsequently, the membrane was 
incubated with specific antibodies, including DSCC1 
antibody, GINS1 antibody, and GAPDH antibody, to 
detect the respective proteins. GAPDH was used as an 
internal reference. Washing and secondary antibody 
incubation: The membrane was incubated with the 
respective secondary antibodies (diluted at 1:5000) at 
room temperature for 60 minutes after washing the 
membrane with TBST three times, each for 5-10 
minutes. Chemiluminescence detection: After washing 
off excess solution from the PVDF membrane and 
placing it on absorbent paper, the membrane was 
submerged in a mixture of Enhanced Chemilumines-
cence (ECL) reagent. After a 1-minute incubation, the 
membrane was placed in a chemiluminescence imager, 
and chemiluminescence was initiated according to the 
preset program. The original data were saved, and 
subsequent data analysis was performed using 
AIWBwellTM analysis software. 
 
Reverse transcription-polymerase chain reaction (RT-
PCR) 
RNA-Quick Purification Kit (ESscience Biotech, 
CAT#RN001), Fast All-in-One RT Kit (with gDNA 
Remover) (ESscience Biotech, CAT#RT001) and 
2×Taq PCR MasterMix (Biomed, CAT#MT201) kits 
were used. 
 
The RT-PCR grouping is consistent with the Western 
blot (WB) experiments. The specific operational steps 
are as follows: a suspension containing 1×10^6 cells is 
transferred to a 1.5 ml centrifuge tube and centrifuge at 
500×g in an Eppendorf centrifuge (Model 5810R, 
Germany) for 3 min to precipitate the cells. Then add 
500 μl of lysis buffer, pipette vigorously 10 times and 
vortex for 10 seconds. Add equal volumes of anhydrous 
ethanol to the lysed cells and mix the mixture 
thoroughly. Invert the tube several times or pipette 
vigorously 10 times to disperse any potential 
precipitate. The liquid is then transferred to a 
centrifugal column and centrifuged for 1 minute. Next, 
remove the genomic DNA. Take total RNA 100 ng ~ 2 
μg and add DNase 2 μl. Add water to a final volume of 
16 μl and gently pipette 5-10 times to mix. The mixture 
is reacted at room temperature (about 25°C) for 5 
minutes and then placed on ice. The concentration and 
purity of RNA are detected by ultramicro- 
spectrophotometer (NanoDrop2000, Thermo). Take 16 
μl volume of DNAzyme-treated total RNA, add 4 μl 
5×RT Mix (ES Science, RT001, Shanghai, China), 
Pipette 10 times to mix thoroughly, incubate for 15 min 
at 42°C and dilute 5-10 times as PCR template. PCR 
amplification proceeds through a series of temperature 
cycles, involving denaturation, annealing, and extension  
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steps. Primer sequences are as follows: DSCC1 Forward 
5’TCGTGGTGATAAAGACGAGCA3’, Reverse 
5’CCGGAGTTTTACAACCAGGAAT3’; GINS1 
Forward 5’ACGAGGATGGACTCAGACAAG3’, 
Reverse 5’TGCAGCGTCGATTTCTTAACA3’; 
GAPDH Forward 5’GGAGCGAGATCCCTCCAA 
AAT3’, Reverse 5’GGCTGTTGTCATACTTCTCA 
TGG3’. After the amplification is completed, a final 
extension step is often carried out to ensure that all 
DNA strands have been fully synthesized. 
 
Data availability 
 
The datasets generated during and/or analyzed during 
the current study are available from the corresponding 
author on reasonable request. 
 
RESULTS 
 
Differential gene expression analysis 
 
In this study, differential gene expression was identified 
in the merged and batch-corrected matrices of Gastric 
cancer datasets GSE79973, GSE118916, GSE118897, 
and GSE172032 using a predefined cutoff value. In 
total, 1243 DEGs were identified (Figure 1). 
 
Functional enrichment analysis 
 
DEGs 
We performed GO and KEGG analyses on these  
DEGs. According to the GO analysis, in the Biological 
Process (BP) category, DEGs were mainly enriched in 
the cell cycle and regulation of macrophage migration 
(Figure 2A). In the Cellular Component (CC) category, 
DEGs were mainly enriched in the basement membrane 
and extracellular region (Figure 2B). In the Molecular 
Function (MF) category, they were primarily involved 
in growth factor binding and protein complex binding  

 

(Figure 2C). In the KEGG analysis, DEGs were enriched 
in the P53 signaling pathway, protein digestion and 
absorption, and metabolic pathways (Figure 2D). 
 
GSEA 
Additionally, a GSEA was conducted on the entire 
genome to identify potential enrichments among non-
differentially expressed genes and validate the results 
obtained from DEGs. The intersection of enrichment 
terms with GO and KEGG enrichments for the merged 
Gastric cancer dataset indicated that DEGs were 
significantly enriched in the cell cycle, regulation of 
macrophage migration, protein complex binding, and 
the P53 signaling pathway (Figure 2E–2H). 
 
Metascape enrichment analysis 
In Metascape’s enrichment analysis, the GO enrichment 
terms included the regulation of macrophage migration 
and mitotic cell cycle (Figure 3A). Enrichment networks 
colored by enrichment terms and p-values were 
visualized (Figure 3B–3D), providing a representation 
of associations and confidence levels for each 
enrichment term. 
 
Immune infiltration analysis 
We used the CIBERSORT package to analyze the 
merged matrix of Gastric cancer datasets. At a 95% 
confidence level, the proportions of immune cells in the 
whole gene expression matrix were estimated. The 
results indicated a relatively high proportion of T cells 
CD4 naive in the samples (Figure 4A). An immune cell 
expression heatmap for the dataset was also generated 
(Figure 4B). Furthermore, correlation analysis was 
conducted on infiltrating immune cells, revealing that 
when Mast cells activated were highly expressed, 
Neutrophils also showed elevated expression. A strong 
positive correlation between Neutrophils and Mast  
cells activated might influence the disease progression 
of Gastric cancer (Figure 4C). 

Figure 1. Analysis of differentially expressed genes. A total of 1243 DEGs were identified. 
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WGCNA 
 
The selection of the soft-thresholding power is an 
important step in WGCNA analysis. The network 
topology analysis determined a soft thresholding power 
of 10 (Figure 5A). A hierarchical clustering tree of all 
genes was constructed, and interactions between 
important modules were analyzed (Figure 5B). A total 

of 29 modules were identified (Figure 5C). Additionally, 
a module-phenotype correlation heatmap was generated 
(Figure 5D), as well as a scatter plot showing the 
correlation between GS and MM for relevant hub genes 
(Figure 6A). 
 
Hub genes were identified by calculating the correlation 
of module eigengenes (MM) with gene expression.  

 

 
 

Figure 2. Functional enrichment analysis. (A–D) DEGs. (E–H) GSEA. 
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Using a cutoff criterion of |MM| >0.8, six highly connected 
genes were designated as hub genes in clinically 

significant modules. A Venn diagram of hub genes and 
DEGs was created for subsequent analysis (Figure 6B). 
  

 

 
 
Figure 3. Metascape enrichment analysis. (A) GO enrichment highlights macrophage migration control and mitotic cell cycle. (B–D) 
Output the enrichment network colored by enrichment terms; output the enrichment network colored by p-value; visualize the association 
and confidence representing each enrichment item. 
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Protein-Protein interaction (PPI) network 
construction and analysis 
 
The PPI network for DEGs was constructed using the 
STRING online database and analyzed using 
Cytoscape software (Figure 7A). Four algorithms 
(MCC, DMNC, EPC, Radiality) were employed to 
identify central genes (Figure 7B–7E). A Venn diagram 

was used to obtain the intersection as core genes (Figure 
7F), ultimately resulting in two core genes, DSCC1 and 
GINS1 (Figure 7G). 
 
Survival analysis 
 
Clinical survival data for Gastric cancer were 
downloaded from TCGA. The survival analysis 

 

 
 
Figure 4. Immune infiltration analysis. (A) Proportion of naive CD4 T cells in samples. (B) Heatmap of immune cell expression levels. (C) 
Analysis of immune cell correlations. 
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Figure 5. WGCNA. (A) β = 10, 0.86, β = 10, 3.41. (B) Gene hierarchical clustering tree. (C) Generated 29 modules. (D) Heatmap showing 
the correlation between modules and phenotypes. 
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revealed that as the risk score increased, the 
patient's survival rate significantly decreased. The 
low-risk group exhibited significantly higher 
survival time and rate compared to the high-risk 
group (Figure 8A). A heatmap of core gene 
expression in Gastric cancer survival data indicated 
that the core genes, DSCC1 and GINS1, acted as 
protective factors. As the risk score increased, their 
expression showed a downregulation trend (Figure 
8B). Box plots of core gene expression in Gastric 
cancer and normal samples demonstrated 
differential expression of core genes (DSCC1 and 
GINS1), with higher expression in Gastric cancer 

samples and lower expression in normal samples 
(Figure 8C). 
 
Core gene expression heatmaps 
 
Heatmaps visualizing the expression of core genes in the 
merged matrices of Gastric cancer datasets GSE79973, 
GSE118916, GSE118897, and GSE172032 were 
generated (Figure 9A). These heatmaps indicated higher 
expression of the core genes (DSCC1 and GINS1) in 
Gastric cancer samples compared to normal samples. 
Based on these results, it is hypothesized that these core 
genes may play a regulatory role in Gastric cancer.

 
 

 
 

Figure 6. WGCNA. (A) GS to MM correlation scatter plot of associated hub genes. (B) Venn diagram. 
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CTD analysis 
 
In this study, the list of hub genes was input into the 
CTD website to identify diseases associated with core 
genes, improving our understanding of the gene-disease 
associations. The core genes (DSCC1 and GINS1) were 
found to be associated with gastric neoplasms, gastro-
intestinal diseases, tumors, gastritis, inflammation, and 
necrosis (Figure 9B). 
 

Prediction and functional annotation of miRNAs 
related to hub genes 
 
In this study, the list of hub genes was input into 
TargetScan to identify miRNAs that might regulate 
these genes, enhancing our understanding of gene 
expression regulation. We found that the miRNA 
related to GINS1 is hsa-miR-205-5p, while the miRNA 
related to DSCC1 is hsa-miR-325-3p (Table 1). 

 

 
 
Figure 7. Construction and analysis of protein-protein interaction (PPI) networks. (A) The PPI network. (B–E) Identification of 
central genes using four algorithms (MCC, DMNC, EPC, Radiality). (F) Venn diagram to obtain the union as core genes. (G) Identification of 2 
core genes (DSCC1, GINS1). 
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DSCC1 and GINS1 expression levels 
 
DSCC1 and GINS1 protein expression levels 
WB results show that the expression levels of DSCC1, 
GINS1, PIDD, DR5, CASP8, BID, CYTC, CASP9 in 

the Gastric cancer group are significantly higher than  
in the Control group (P < 0.01). In the Gastric cancer-
OE group, their expression levels are significantly 
higher than in the Gastric cancer group. In the Gastric 
cancer-KO group (P < 0.01), their expression levels are 

 

 
 
Figure 8. Survival analysis. (A) Relationship graph between prognosis scores. (B) Visualization of core gene expression in the gastric 
cancer survival data heatmap. (C) Boxplot results for core gene expression in gastric cancer. 
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Table 1. A summary of miRNAs that regulate hub genes. 

 Gene MIRNA 
1 GINS1 hsa-miR-205-5p 
2 DSCC1 hsa-miR-325-3p 

 

 
 
Figure 9. Heatmap of core gene expression. (A) Visualization of core gene expression in the merged matrix of gastric cancer datasets 
GSE79973, GSE118916, GSE118897, GSE172032, with respective heatmaps. (B) CTD analysis showing associations of core genes (DSCC1, 
GINS1) with gastric tumors, gastrointestinal diseases, tumors, gastritis, inflammation, and necrosis. 
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significantly lower than in the Gastric cancer group  
(P < 0.01) (Figure 10). 
 
Inflammatory molecule IL-6, cell cycle regulator C-
Myc, cell migration molecule MMP-9, and apoptosis 

molecule Caspase-3 exhibit significantly higher 
expression levels in the Gastric cancer group compared 
to the Control group (P < 0.01). In the Gastric cancer-
OE group (P < 0.01), their expression levels are 
significantly higher than in the Gastric cancer group. In 

 

 
 

Figure 10. Western blotting. Protein expression levels of DSCC1, GINS1, PIDD, DR5, CASP8, BID, CYTC, CASP9. 
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the Gastric cancer-KO group, their expression levels  
are significantly lower than in the Gastric cancer group 
(P < 0.01) (Figure 11). 

The mRNA expression levels of DSCC1 and GINS1 
The RT-PCR results showed that, compared to the 
Control group, the mRNA expression levels of DSCC1 

 
 

 
 

Figure 11. Western blotting. Protein expression levels of IL-6, C-Myc, MMP-9, Caspase-3. 
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and GINS1 in the Gastric cancer group were 
significantly increased (P < 0.01). In the Gastric cancer-
OE group, the mRNA expression levels of DSCC1 and 
GINS1 were significantly higher than in the Gastric 

cancer group (P < 0.01). In the Gastric cancer-KO 
group, the mRNA expression levels of DSCC1 and 
GINS1 were significantly lower than in the “Gastric 
cancer” group (P < 0.01) (Figures 12, 13). 

 

 
 

Figure 12. Reverse transcription-polymerase chain reaction. mRNA expression levels of DSCC1. 
 

 
 

Figure 13. Reverse transcription-polymerase chain reaction. mRNA expression levels of GINS1. 
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DISCUSSION 
 
Gastric cancer is a highly lethal disease that, without 
early diagnosis and treatment, can quickly spread to 
adjacent tissues and other organs, posing a grave  
threat to patients’ lives [11]. Researchers have focused 
on the role of CT in accurately staging gastric cancer, 
determining the extent of tumor invasion, lymph node 
involvement, and the presence of distant metastases. 
Late-stage Gastric cancer presents significant 
treatment challenges and often results in low cure 
rates. The symptoms of Gastric cancer significantly 
impact patients’ quality of life, severely affecting their 
dietary habits and physical health, including issues 
such as in-digestion, upper abdominal discomfort, loss 
of appetite, weight loss, vomiting, and black stools [12, 
13]. The treatment of Gastric cancer can be financially 
burden-some, involving costly procedures such as 
surgery, chemotherapy, radiation therapy, and drug 
treatments, potentially imposing substantial economic 
burdens on patients and their families [14]. 
Furthermore, Gastric cancer patients often experience 
psychological burdens, including anxiety, depression, 
and social isolation. Given the severity of Gastric 
cancer’s impact, an in-depth exploration of its 
molecular mechanisms is crucial for a better under-
standing of disease progression and the development of 
more effective treatment methods [15]. Although CT 
plays a crucial role in the diagnosis and management 
of gastric cancer, there are still limitations and 
shortcomings, including: Limitations in Early Lesion 
Detection: CT has relatively low sensitivity for early-
stage gastric cancer. Small lesions, early infiltrative 
growth stages, and submucosal infiltration may not be 
easily detected through routine CT scans. Limited 
Histological Information: CT provides anatomical 
information, but details regarding differentiation, 
histological types, and other aspects are limited.  
For a more comprehensive assessment of tumor 
characteristics, additional tests such as endoscopy or 
tissue biopsy may be needed. 
 
The findings of this study reveal that DSCC1 and GINS1 
are overexpressed in Gastric cancer, and higher 
expression levels are associated with worse patient 
outcomes, suggesting that these two genes may play 
pivotal roles in Gastric cancer. These target genes likely 
contribute to the regulation of DNA replication, cell 
division, and chromosome stability [16, 17]. This 
research offers a foundation for the development of 
targeted therapies and personalized treatment strategies, 
aiming to improve the treatment and prognosis of Gastric 
cancer patients. Additionally, it paves the way for 
exciting avenues in future cancer research, fostering a 
better understanding of tumor molecular mechanisms 
and the development of novel therapeutic approaches. 

DNA Replication and Sister Chromatid Cohesion 1 
(DSCC1) is a gene or protein associated with DNA 
replication and the cohesion of sister chromatids, 
playing a significant role in cell biology [8, 18]. 
DSCC1 collaborates with other proteins, forming a 
complex connector known as the Cohesin complex, 
which assists in keeping sister chromatids together 
during cell division—a crucial step in ensuring the 
correct separation of chromosomes into newly formed 
cells [19]. Disruption of Cohesin complex function may 
result in abnormal chromosome separation, leading to 
chromosome instability and other cellular biology issues 
[20]. Research suggests that abnormal expression of 
DSCC1 may be linked to the development of certain 
cancers, as seen in a study related to lung adeno-
carcinoma [21]. Notably, adenocarcinoma is the most 
common type of Gastric cancer, typically originating  
in the glandular cells of the stomach mucosa. 
 
DSCC1’s expression is dynamic throughout various 
stages of cell division, playing a role during the S 
phase (DNA replication phase) and M phase (mitosis), 
assisting in chromosome replication and sister chromatid 
cohesion [22]. Aberrant DSCC1 function is associated 
with diseases, particularly those characterized by 
chromosome instability and rearrangements. For 
example, a study found that DSCC1, along with 
POLE3, interacts with the catalytic subunit of 
polymerase ε, potentially affecting DNA replication 
and emphasizing the importance of these factors in 
parallel pathways for leading strand DNA replication 
[23]. Similarly, in colorectal cancer, it was observed 
that DSCC1 is over-expressed in tumor tissues, and 
higher cytoplasmic DSCC1 expression in tumor areas 
is associated with lower survival rates (P = 0.047), 
further validated in a study by Kim et al. [24]. DSCC1 
is identified as a crucial component of the CTF18-RFC 
module, highly correlated with the growth and 
metastasis of colon cancer cells. 
 
GINS complex subunit 1 (GINS1) is a component of the 
GINS complex, a protein complex consisting of GINS1, 
GINS2, GINS3, and GINS4. The GINS complex plays a 
vital role in the initiation and maintenance of DNA 
replication [25, 26]. Working in coordination with DNA 
polymerase, the GINS complex ensures the smooth 
progression of DNA strand replication, and GINS1, 
along with its related subunits, performs specific 
functions within the DNA replication complex, assisting 
in DNA unwinding, replication, and synthesis. This  
is critical in ensuring that newly formed cells have 
accurate genetic information after each cell division 
[27]. GINS1’s expression is related to different stages 
of the cell cycle, especially during the S phase (DNA 
replication) and M phase (mitosis), where it plays an 
essential role in aiding DNA replication and ensuring 
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proper chromosome separation [28]. Dysfunctional 
GINS1 may lead to DNA replication errors, chromo-
some instability, and cell cycle issues, highly relevant 
to various diseases, including cancer. 
 
Studies have found that GINS1 is downregulated  
in one subtype of human cancer and typically up-
regulated in 23 different subtypes, with the upregulation 
of GINS1 significantly correlating with poorer overall 
survival in liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), and kidney renal clear cell 
carcinoma (KIRC) [29]. Results from Yang et al. [30] 
further validate the upregulation of GINS1 expression 
in glioblastoma cells and tissues. The analysis reveals 
that GINS1 promotes glioblastoma cell proliferation  
and migration through the mediation of USP15 and 
TOP2A deubiquitination. 
 
The literature review presented aligns with our  
findings that DSCC1 and GINS1 are overexpressed  
in Gastric cancer, and higher expression levels are 
associated with poor prognosis. These two proteins  
are key players in DNA replication and cell cycle 
regulation, working in synergy with other replication 
proteins to ensure accurate DNA replication and cell 
division. Consequently, DSCC1 and GINS1 are likely 
to play important roles in the development of Gastric 
cancer. Studying the role of DSCC1 and GINS1 in 
clinical gastric cancer samples and their relationship 
with patient prognosis is of great significance for 
understanding the pathogenesis of gastric cancer and 
developing potential therapeutic strategies, which will 
help to more accurately evaluate the value of these  
two genes as potential therapeutic targets. This research 
has far-reaching societal and scientific implications, 
impacting human life, health, and healthcare. It holds 
broad potential clinical applications to significantly 
improve the quality of patients’ lives, extend lifespans, 
and provide more effective treatment options, driving 
continuous advancements in healthcare. It aids in the 
discovery of new biomarkers and diagnostic methods 
for early disease detection. It contributes to achieving 
precision personalized medicine by tailoring treatment 
plans for each individual based on their genotype, 
lifestyle, and medical history, incorporating applica-
tions in genomics, transcriptomics, and proteomics  
to understand individual biological characteristics. 
Medical research findings also closely relate to targeted 
therapy. By unraveling the molecular mechanisms of 
diseases, it facilitates the design and development of 
drugs targeting specific molecular targets. It helps 
understand the mechanisms of drug resistance and 
develop strategies to overcome it. Furthermore, it offers 
biomarkers for monitoring treatment effectiveness, 
evaluating patient responses, adjusting treatment plans, 
and intervening early when necessary. 

While this study conducted rigorous bioinformatic 
analyses, further validation of their functions through 
in vivo experiments, such as gene overexpression or 
knockout studies in animals, is warranted. In future 
research, in-depth exploration in this direction should  
be considered. 
 
In summary, DSCC1 and GINS1 are overexpressed  
in gastric cancer, and higher expression levels are 
associated with worse prognosis. DSCC1 and GINS1 
might be the complementary biomarkers of computed 
tomography for diagnostic grading of gastric cancer. 
These genes primarily function in cell cycle regulation, 
macrophage migration, protein complex binding, P53 
signaling pathways, protein digestion and absorption, 
and metabolic pathways, suggesting their regulatory 
roles in Gastric cancer. In the future, in-depth explo-
ration of the functions of organisms will be conducted 
to better understand the biological and physiological 
basis and provide more comprehensive knowledge  
for the treatment of diseases and health maintenance. 
Research directions focus on elucidating the functions 
of molecules, cells, organs, and physiological systems, 
thereby driving advances in medicine and biology. 
The process of translating research findings into 
clinical practice to assess their efficacy, safety, and 
practical applicability. Translating new treatments, 
drugs, diagnostic tools, and treatment strategies into 
medical practice. Conduct clinical trials to evaluate 
the efficacy of new treatments or drugs. Clinical 
observational studies can also be conducted to assess 
the effectiveness of new methods by looking at 
treatment outcomes in large patient populations. 
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