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INTRODUCTION 
 

It is well-established that transcriptome changes  

occur in various tissues throughout the course of 

normal aging. A study to profile gene expression 

changes and develop prediction models for age using 

transcriptome data from healthy brain samples may 

help elucidate the molecular changes associated with 

healthy aging and contribute to the prevention of age-
related cognitive decline and address susceptibility  

to age-related neurological diseases. Such a healthy 

brain aging prediction model could also be useful for 

devising a method to assess accelerated aging,  

such as by applying to postmortem samples from 

patients with cognitive impairment or Alzheimer’s 

Disease, or to evaluate possible molecular mechanisms 

of decelerated aging, for example, in samples from 

centennials. 

 

A previous study comparing transcriptome  

changes in the superior frontal gyrus region of the 
prefrontal cortex (PFC), hippocampus, and entorhinal 

cortex during aging, found the greatest number of 

differentially regulated genes with advanced age in  
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ABSTRACT 
 

Aging-related transcriptome changes in various regions of the healthy human brain have been explored in 
previous works, however, a study to develop prediction models for age based on the expression levels of 
specific panels of transcripts is lacking. Moreover, studies that have assessed sexually dimorphic gene activities 
in the aging brain have reported discrepant results, suggesting that additional studies would be advantageous. 
The prefrontal cortex (PFC) region was previously shown to have a particularly large number of significant 
transcriptome alterations during healthy aging in a study that compared different regions in the human brain. 
We harmonized neuropathologically normal PFC transcriptome datasets obtained from the Gene Expression 
Omnibus (GEO) repository, ranging in age from 21 to 105 years, and found a large number of differentially 
regulated transcripts in the old and elderly, compared to young samples overall, and compared female and 
male-specific expression alterations. We assessed the genes that were associated with age by employing 
ontology, pathway, and network analyses. Furthermore, we applied various established (least absolute 
shrinkage and selection operator (Lasso) and Elastic Net (EN)) and recent (eXtreme Gradient Boosting (XGBoost) 
and Light Gradient Boosting Machine (LightGBM)) machine learning algorithms to develop accurate prediction 
models for chronological age and validated them. Studies to further validate these models in other large 
populations and molecular studies to elucidate the potential mechanisms by which the transcripts identified 
may be related to aging phenotypes would be advantageous. 
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the superior frontal gyrus [1]. Neuroimaging studies 

have demonstrated the significant impact of age-

related changes in the activity and volume of the  

PFC on age-related cognitive decline (reviewed in  

[2]). These results suggest that using the PFC region 

that showed particularly significant transcriptome and 

physiological changes, may be effective for developing 

prediction models for age. Various previous studies 

have analyzed age-related transcriptome alterations in 

neuropathologically normal postmortem PFC samples 

[1, 3–8]. However, none of these studies specifically  

in the PFC have applied machine learning algorithms 

to identify panels of specific transcripts related to  

age prediction and develop models. A previous study 

simultaneously investigated the cortex, hippocampus, 

and cerebellum, rather than specifically the PFC,  

and applied Deep Learning Neural Networks, Support 

Vector Machine, and Random-Forest, RF machine 

learning algorithms to analyze a subset of protein-

coding genes, rather than all transcripts [9]. 

 

Moreover, differences in physiological changes of the 

aging female versus male human brain [10] and 

functional connectivity differences comparing female 

and male PFC [11] have been reported, suggesting that 

molecular assessment of sexual dimorphism in the PFC 

during healthy aging is also important. Several previous 

studies aiming to characterize PFC transcriptome 

changes during healthy human aging did not address  

sex differences [3, 5, 6], or controlled for this variable 

with the aim to eliminate sex-dependent effects [7]. 

Other previous studies have aimed to elucidate gene 

expression differences between females and males [1, 8, 

12, 13]. However, while one of them reported a larger 

number of differentially regulated transcripts in the male 

PFC than in females [1], another found the opposite 

result, that more transcripts were differentially regulated 

in the female PFC than in males [12]. A different  

study concluded that the female superior frontal gyrus 

showed accelerated aging gene expression changes that 

were related to Alzheimer’s Disease, compared to males 

[13]. Yet, in another study that profiled female versus 

male PFC changes in the expression of gene modules, 

instead of individual genes, no significant sex-specific 

associations were found for the modules investigated 

[8]. Due to these discrepancies, further studies assessing 

potential sexually dimorphic molecular changes of the 

aging healthy PFC would be advantageous. 

 

Taken together, we aimed to profile transcriptome 

changes in the aging PFC overall and compare  

females and males, and develop prediction models  

for age. Machine learning algorithms are a powerful 
tool for developing such prediction models and can  

be applied to PFC transcriptome data. Performing 

feature selection and regularization using the least 

absolute shrinkage and selection operator (Lasso) [14] 

and Elastic Net (EN) [15] algorithms have the potential 

to yield accurate and interpretable prediction models 

for age based on linear regression. The feasibility  

of applying these algorithms to transcriptome data  

to develop prediction models has previously been 

explored. Furthermore, the well-established epigenetic 

aging clock based on DNA methylation was developed 

using EN [16], also showing the utility of penalized 

regression in developing models for age. More recently, 

gradient boosting-based machine learning methods, 

including the eXtreme Gradient Boosting (XGBoost) 

[17], and the Light Gradient Boosting Machine 

(LightGBM) [18] were developed, which also have 

immense potential for yielding accurate prediction 

models by a different approach. The SHapely Additive 

exPlanations (SHAP) [19, 20] algorithm was also 

recently developed, that can be applied to XGboost- 

and LightGBM-trained models to quantify SHAP 

scores to assess how each model feature contributes  

to the outcome prediction, making these complex 

models relatively more interpretable. However, studies 

applying these novel machine learning algorithms  

to transcriptome data in any biological context are  

still limited, and they also have not been previously 

used to develop models for healthy aging using any 

type of data. Therefore, comparing these different 

methods is expected to aid in improving prediction  

and to be informative to guide future studies aimed at 

using transcriptome information to develop prediction 

models, or in aging studies, more generally. 

 

In this study, we first harmonized different postmortem 

neuropathologically normal PFC transcriptome datasets 

obtained from the Gene Expression Omnibus (GEO) 

repository, ranging in age from 21 to 105 to increase 

the sample size. Using this harmonized dataset, we 

identified transcripts that were differentially down- or 

up-regulated in middle-aged, old, and elderly PFC 

samples compared to young adults, and evaluated 

transcripts that were differentially expressed commonly 

in both females and males, versus unique to either. 

Furthermore, we applied various machine learning 

algorithms to develop accurate prediction models for 

chronological age. Our results support the notions  

that specific gene expression changes in the PFC are 

highly correlated with age, that some transcripts show 

female and male-specific differences, and that machine 

learning algorithms are useful tools for developing 

prediction models for age based on transcriptome 

information. A future large study to validate our 

prediction models would be advantageous, as well as 

molecular studies of the gene activities identified, to 
aid in understanding whether and how they may drive 

aging phenotypes or are merely passengers that alter in 

expression level with age. 
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RESULTS 
 

Characterization of differentially regulated 

transcripts in the old and elderly samples that show 

strong linear correlation with age and comparisons 

between males and females 

 

Using data obtained from Gene Expression Omnibus 

(GEO), we analyzed the transcriptome of postmortem 

PFC samples from neuropathologically normal subjects, 

ranging in age from 21 to 105 (Supplementary Table 1). 

We identified probe sets showing significant change 

(applying a cut-off of ≥1.2-fold change and FDR p-value 

< 0.05), comparing young adult (21–39 years) samples 

as the baseline, to middle age (40–64 years), old (65–84 

years) and elderly (85–105 years) samples (Figure 1A, 

Supplementary Table 2). We identified overlaps across 

age categories within each sex (Supplementary Table 3) 

and overlaps among the sexes (Supplementary Table 4). 

Overall, we found more downregulated probe sets 

compared to upregulated probe sets, and as expected, the 

number of differentially regulated probe sets increased 

with the older age category. We did not find significant 

differentially regulated genes (DEGs) in middle-aged 

(40–64 years) samples compared to the reference young 

samples, which may be due to the small sample size of 

our study. For the old (65–84 years) category, we found 

3,667 probe sets to be differentially regulated (2,275 

downregulated and 1,392 upregulated), and this increased 

to 7,209 (4,187 downregulated and 3,022 upregulated) in 

the elderly (85–105 years) category combining females 

and males (Figure 1A, Supplementary Table 2). In both 

the age categories, more differentially regulated probe 

sets were found among males (3,521 total with 2,177 

downregulated and 1,344 upregulated in the old, and 

5,644 total with 3,139 downregulated and 2,505 

upregulated in the elderly), compared to females (146 

total with 98 downregulated and 48 upregulated in  

the old, and 1,565 total with 1,048 downregulated and 

517 upregulated in the elderly). This may be due to the 

sample size of females being smaller overall (34 female 

vs. 53 male). However, while there were fewer female 

samples in the old group (5 female vs. 10 male), there 

were more in the elderly group (7 female vs. 5 male), 

and the differences in DEGs may still be informative 

(Supplementary Table 1). 

 

We identified 69 probe sets that were common DEGs in 

both old and elderly females and males, which included 

49 downregulated probe sets, mapping to 44 genes,  

and 20 downregulated probe sets corresponding to 16 

genes (Figure 1B, Supplementary Table 5). To identify 

transcripts that continually changed with age, we also 

performed univariate linear regression with all the probe 

sets to identify transcripts whose log2 expression had  

a notable linear relationship with age (Supplementary 

Table 6). All 69 overlapping differentially regulated 

transcripts also showed a strong linear relationship  

with age (coefficient estimates’ FDR-adjusted p-value 

< 0.05). Among these probe sets, the goodness-of-fit  

R-squared (R2) was ≥0.4 for 26 of them, ≥0.3 for 60  

of them, and ≥0.2 for all 69 of them, suggesting that 

they likely represent continuous age-related gradual 

gene expression changes (Supplementary Table 6). The 

linear regression plot of the top 20 representative probe 

sets (Figure 1C), and the heatmap plot of the 69 probe 

sets ordered across age (Figure 1D), also show that they 

change in expression gradually with age. 

 

Among the downregulated genes, two probe sets were 

each found for Carbonic Anhydrase 4 (CA4), Calbindin 1 

(CALB1), Neuropilin and Tolloid Like 2 (NETO2), and 

Olfactomedin1 (OLFM1). Among the upregulated genes, 

there were three probe sets mapping to Rho Related  

BRB Domain Containing 3 (RHOBTB3), and two  

probe sets each for FKBP prolyl isomerase 5 (FKBP5) 

and Polypeptide N-Acetylgalactosaminyltransferase 15 

(GALNT15). Having found multiple probe sets for the 

same genes suggest that they are likely important. Two 

Transmembrane Protein (TMEM) family members, 

TMEM132D and TMEM196 were also found among  

the downregulated probe sets. Multiple genes related to 

the G-protein coupled receptor pathway, Adrenoceptor 
Alpha 2A (ADRA2A), C-X3-C Motif Chemokine Ligand  

1 (CX3CL1), Neuromedin U (NMU), Phospholipid 
Phosphatase Related 4 (PLPPR4), Regulator of G 

Protein Signaling 8 (RGS8), and Vasoactive Intestinal 

Peptide (VIP) were also found. 

 
The gene network plot found that the overall DEGs 

were highly interconnected (Figure 1E). Gene Ontology 

(GO) enrichment analysis found that the DEG set was 

associated with GO terms that were mainly related to 

protein post-translational modifications, cell junctions, 

hormone activity, and G-protein coupled receptor 

signaling pathway (Figure 1F). Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway terms implicated 

metabolism, cytoskeleton, cell adhesion, alcoholism, 

various signaling pathways, and infection responses 

(Figure 1G), which have previously been implicated in 

aging. 

 
Distinct female and male-specific PFC transcripts 

were identified 

 

We also compared transcriptome differences between 

females and males within each age category, rather  

than comparing differentially regulated probe sets 

relative to the reference young category (Figure 2A, 2B, 

Supplementary Table 7). There were 29 differentially 

regulated female versus male differentially regulated 

probe sets within the young group, and 26 differentially 
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Figure 1. Differential gene expression analysis overall and by sex. (A) The number of probe sets with at least 1.2-fold difference 

and FDR-adjusted p-value < 0.05 to the reference young category. (B) Overlaps of differentially regulated transcripts between females and 
males for the old and elderly categories. (C) Univariate linear regression plots of the top 20 common differentially regulated transcripts, 
overall and stratified by sex. (D) Heatmap plot showing log2 expression level change of the 69 common probe sets across age. (E) Gene 
network plot, with the genes corresponding to the common transcripts represented by black filled nodes and interconnected genes in gray. 
Green edges indicate genetic interactions, purple edges indicate co-expression, blue edges indicate co-localization, and red edges indicate 
physical interactions. (F) GO terms (combined all, BP, MF, CC), and (G) KEGG pathway enrichment analysis. 

4078



www.aging-us.com 5 AGING 

 
 

Figure 2. Female versus male gene expression analyses within age categories. (A) Chromosomal locations of probe sets found to 

have at least 1.2-fold difference and with FDR-adjusted p-value < 0.05 comparing females and males within each age category. (B) Overlaps 
of transcripts found to be differentially expressed in females and males (reference: females) in different age categories. The 16 probe sets 
found in all age categories are listed, with their probe set annotation, gene name, and chromosomal location indicated in square brackets. 
(C) Female-specific age-related transcripts by the stringent criteria. Transcripts that were found to be differentially regulated in the old and 
elderly categories compared to the young (at least 1.2-fold difference and FDR p-value < 0.05) only in females (35 probe sets) were 
assessed whether they were also associated with age in a univariate linear regression model (R2 value ≥0.3 and coefficient estimate t-test  
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p-value < 0.05) only in females. (D) Linear regression models were plotted by sex, where the top panels with black circles correspond to 
females and the bottom panels with open circles correspond to males. Top ten representative probe sets with high R2 and FDR p-value 
< 0.05 only among females, while having higher FDR p-value among males, were plotted. (E) Male-specific age-related transcripts by the 
stringent criteria. Transcripts that were found to be differentially regulated in the old and elderly categories compared to the young (at 
least 1.2-fold difference and FDR p-value < 0.05) only in males (1999 probe sets) were assessed whether they were also associated with age 
in a univariate linear regression model (R2 value ≥0.3 and coefficient estimate p-value < 0.05) only in males. (F) Linear regression models 
were plotted by sex, where the top panels with black circles correspond to females and the bottom panels with open circles correspond to 
males. Top ten representative probe sets with high R2 and FDR p-value < 0.05 only among males, while having higher FDR p-value among 
females, were plotted. 

 

regulated probe sets within the middle-aged group,  

both of which included only genes encoded on sex 

chromosomes. For the old age group, most of the 27 

differentially regulated probe sets were found on sex 

chromosomes, although some were also two found on 

autosomes. On the other hand, for the elderly group, the 

number of differentially regulated probe sets between 

females and males increased notably and was found 

across all the different chromosomes, which may suggest 

that more differences arise in later years. 

 

As expected, most of the probe sets found to be 

downregulated among males compared to females were 

mapped to the X-chromosome, and on the other hand, 

most probe sets found in the upregulated sets were 

mapped to the Y-chromosome (Figure 2A). Exceptions 

to this trend included pseudoautosomal regions and 

known to escape X-chromosome inactivation, such as 

acetylserotonin O-methyltransferase-like (ASMTL) and 

CD99 Molecule (CD99), colony-stimulating factor 2 

receptor, alpha (CSF2RA), and GTP binding protein 6 

(putative) (GTPBP6) [21], among others. Six probe sets 

corresponding to the well-established female-specific 

transcript, X inactive specific transcript (Xist), were 

significantly downregulated in males in all four age 

categories, as expected. Moreover, ten transcripts found 

to be upregulated in males in all four age categories 

were all encoded on the Y-chromosome, as expected, 

including DEAD-Box Helicase 3 Y-linked (DDX3y), 

Eukaryotic Translation Initiation Factor 1A Y-linked 

(EIF1AY), Ribosomal Protein S4 Y-Linked 1 (RPS4Y1), 

Ubiquitin Specific Peptidase 9 Y-linked (USP9Y) 

(Figure 2B). These transcripts, therefore, do not appear 

to be age-related sexual dimorphic gene expression, 

however, provide further support for the results. 

 

To identify transcripts showing gradual down- or up-

regulation with age only in females or only in males, we 

used stringent criteria of both evidence from DEG 

(≥1.2-fold change and FDR p-value < 0.05 in both the 

old and elderly compared to the young only among 

females or among males), and linear regression analyses 

(R2 ≥0.3 and FDR p-value < 0.05 with age). Among 

female old and elderly overlapping DEGs, we found 14 
probe sets that also had a significant linear relationship 

with age (10 declining, and 4 increasing probe sets) 

(Figure 2C, 2D, Supplementary Table 6). We also used 

the same stringent criteria among males to identify 555 

probe sets (385 declining and 170 increasing probe sets) 

(Figure 2E, 2F, Supplementary Table 6). 

 

Applying four different machine learning algorithms 

yielded highly accurate age prediction models 

 

We applied well-established algorithms based on 

penalized regression methods, Lasso and EN, as well  

as more recently developed gradient boosting-based 

algorithms, XGBoost and LightGBM to the harmonized 

genome-wide transcriptome dataset to develop prediction 

models for age. The Lasso model included 22 probe sets 

(each corresponding to a unique gene) and yielded 

accurate age prediction in the training set (r = 0.912 and 

MAE = 7.606 compared to the actual age) and was 

validated in the test set (r = 0.866 and MAE = 9.361) 

(Figure 3A, Supplementary Table 8). The EN model, 

included 252 probe sets (corresponding to 230 unique 

genes), and also yielded accurate age prediction in the 

training set (r = 0.939 and MAE = 6.416) and was 

validated in the test set (r = 0.847 and MAE = 10.020) 

(Figure 3B, Supplementary Table 8). The XGBoost 

model yielded 269 probe sets (corresponding to 264 

unique genes) with mean SHAP scores showing 

importance for prediction. This model had exceptional 

accuracy in the training set (r = 1.000 and MAE = 

0.108), and validated in the test set (r = 0.945 and MAE 

= 6.143) (Figure 3C, Supplementary Table 8). The 

LightGBM model yielded 404 probe sets (corresponding 

to 394 unique genes) with importance for prediction, 

also resulted in exceptional prediction in the training  

set (r = 1.000 and MAE = 0.056) and validated in the 

test set (r = 0.954 and MAE 7.019) (Figure 3D, 

Supplementary Table 8). To further ensure that the 

predictors and the model we developed are indeed 

generalizable, we additionally applied each of them to an 

external validation set (Figure 3E). The Lasso (r = 0.885 

and MAE = 7.405) and EN (r = 0.861, MAE = 8.778) 

models performed slightly better than the XGBoost  

(r = 0.728 and MAE = 13.177) or LightGBM (r = 0.822 

and MAE = 14.547) models, suggesting that the latter 

models may be more overfit. The latter models tended to 

provide an overestimated prediction. 
 

We evaluated overlaps in unique genes whose transcript 

levels were found to be important for age prediction by 
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the EN, XGBoost, and LightGBM models (Figure 

 3F), which may strongly suggest that they are indeed 

impactful. All the probe sets from the Lasso model were 

included in the EN model and thus the overlaps  

among the three models, EN, XGBoost and LightGBM 

were evaluated. We found 15 genes including Aspartate 
 

 
 

Figure 3. Age prediction model fit results in the training set and validation in the test set, developed with (A) Lasso, (B) EN, (C) XGBoost, 
and (D) LightGBM machine learning algorithms. (E) Results of the prediction by applying models developed using the training set to the 
external validation set. (F) Overlaps of genes whose expression levels were found to be important for the age prediction. Initially, 6,551 
unique genes were considered, corresponding to the 9,296 probe sets showing linear relationship with age (FDR p-value < 0.05) in 
univariate linear regression modeling. 
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Beta-Hydroxylase Domain Containing 2 (ASPHD2), 

BCL2 Associated Agonist of Cell Death (BAD), 

Carbonic Anhydrase 10 (CA10), Cell Division Cycle 42 
(CDC42), G Protein-Coupled Receptor 26 (GPR26), 

Nectin Cell Adhesion Molecule 3 (NECTIN3), Neuropilin 

And Tolloid Like 2 (NETO2), Serine Racemase (SRR), 

Single Stranded DNA Binding Protein 4 (SSBP4), 

Transmembrane Protein 132D (TMEM132D), and Zinc 

Finger Protein 436 (ZNF436), whose transcript levels 

were found to decrease linearly with age, and Cartilage 

Associated Protein (CRTAP), Imprinted In Prader- 
Willi Syndrome (IPW), Kelch Repeat and BTB Domain 

Containing 11 (KBTBD11), and Zinc Finger Protein 

106 (ZNF106) found to increase with age (Figure 3F). 

 

DISCUSSION 
 

The goal of our study was to profile PFC transcriptome 

changes during healthy human aging overall and 

comparing potential differences between female and 

male samples, as well as developing chronological age 

prediction models by various methods. As expected,  

we found more DEGs with increasing age category. 

Furthermore, we used stringent criteria of significant 

differential expression across old and elderly categories, 

together with evidence of strong linear association 

showing gradual age-related decline or increase across 

age, in order to identify age-related transcripts in the 

overall population. Multiple probe sets were found for 

genes previously implicated in aging or aging-related 

diseases, including downregulated genes CA4, CALB1, 

NETO2, and OLFM1, and upregulated genes, FKBP5, 

RHOBTB3, and GALNT15, suggesting that they are 

indeed age-related transcripts and validate our approach. 

We also found various transcripts that were found  

to be important for age prediction commonly by the 

different models constructed (ASPHD2, BAD, CA10, 

CDC42, GPR26, NECTIN3, NETO2, SRR, TMEM132D, 

and ZNF436 decreasing transcripts, and CRTAP,  
IPW, KBTBD11, and ZNF106 increasing transcripts), 

indicating their significance. Our approach identified 

genes that were previously implicated in aging, as well 

as new ones that may warrant further investigation. 

 

We found evidence of CA4 downregulation with age 

and importance for prediction. Carbonic anhydrases 

(CA) catalyze the conversion of carbon dioxide to 

bicarbonate and important for pH regulation, and are 

expressed in glial cells in the brain, as well as widely in 

other tissues (reviewed in [22]). CA4 mutations have 

been found to be associated with retinal diseases and 

photoreceptor degeneration [23–25], and also found to 

be downregulated in various tumors [26–29]. The 

downregulation of these CA4 detected in this study may 

thus suggest deregulation of carbon dioxide and pH 

homeostasis in the aging brain. CA10, encoding a non-

catalytic related protein acting as a ligand for neurexins 

in neurons [30], was also found in our study as a 

transcript important for age prediction. It is also down-

regulated in gliomas, with lower expression among 

glioma patients associated with high grade subtype and 

shorter survival [31]. Considering its important role in 

synaptic Ca2+ signaling via neurexin, as well as its 

association with glioma, an aging-related disease, our 

results showing the importance of CA10 transcript in 

age prediction may be important. 

 
Consistent with previous findings, we detected 

downregulation of multiple CALB1 probe sets with age 

[5, 32]. CALB1, a calcium-binding protein that buffers 

intracellular Ca2+ to maintain signaling homeostasis, 

has been demonstrated to be important for memory 

[33], and its overexpression has been shown to have 

neuroprotective effects in a murine Parkinson’s disease 

(PD) model [34]. It was found to be downregulated in 

Huntington’s disease (HD) postmortem PFC samples 

[35] and in a murine HD model [36]. Reduced 

CALB1-expressing neurons have been associated with 

cell death and damaged sites in HD [37]. In a mouse 

Alzheimer’s disease (AD) model, ablation of CALB1 

was found to exacerbate pathogenesis [38], and in both 

healthy and AD human patient tissues, its down-

regulation was found to be correlated with that of 

chitotriosidase (CHIT1) that is involved with AD 

pathogenesis [39], demonstrating its protective role 

against neurodegenerative diseases. Thus, it may be 

plausible to speculate that decreased CALB1 expression 

during aging and altered Ca2+ signaling could result in 

increased risk of various neurodegenerative diseases. 

 
NETO2 was also found among genes with multiple 

DEG probe sets and found to be important for age 

prediction, highlighting its importance. NETO2 and 

Somatostatin receptor 1 (SSTR1), which was also a 

DEG identified in our study, has previously been 

found to be downregulated in post-mortem aging  

and AD hippocampus [40], as well as the aging  

brain in rats [41]. The crucial function of NETO2  

in the central nervous system is well-established,  

as an auxiliary protein for the kainate [42–44] and 

NMDA [45] glutamate receptors. It also interacts  

with neuron-specific K+/Cl− cotransporter type 2 

(KCC2) to regulate neuronal chloride homeostasis and 

GABAergic inhibition [46]. Furthermore, it has been 

reported that NETO2 is aberrantly expressed in various 

cancers, and its knockdown in human colorectal 

carcinoma cell line led to changes in the expression of 

transcripts involved in the circadian rhythm and 

various major signaling pathways, including Wnt, 

transforming growth factor (TGF)-β, Janus kinase 

(JAK)-signal transducer and activator of transcription 

(STAT), mitogen-activated protein kinase (MAPK), 
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and phosphatidylinositol 3-kinase (PI3K)/protein kinase 

B (AKT) pathways [47]. 

 

OLFM1 was also found to be downregulated with  

age in our study, validating previous findings [48, 49]. 

Age-related decline in the olfactory system is well 

documented (reviewed in [50]), and the disruption of 

the OLFM1 gene in mice has been shown to result in 

brain dystrophy and behavioral abnormalities [51]. 
ACTR3B downregulation in the aging brain has also 

been reported previously [8]. Transmembrane Protein 

(TMEM) family members, TMEM132D and TMEM196 

were also found among the stringent downregulated 

transcripts, and TMEM132D was also found to be 

important among the different prediction models. 

Polymorphisms of the TMEM family of genes have 

been shown to be associated with Parkinson’s disease 

[52, 53]. KBTBD11 polymorphism was also found  

to be associated with cognitive decline [54]. Multiple 

transcripts related to the G-protein coupled receptor 

pathway (ADRA2A, CX3CL1, NMU, PLPPR4, RGS8, 

and VIP as DEGs, and GPR26 as a common predictor 

of the different models) were also found in our study, 

which have been previously linked with the aging brain 

(reviewed in [55]). These results support the validity of 

our approach. 

 

NECTIN3, another gene found to be downregulated and 

important for prediction, has been shown to be crucial for 

hippocampus-dependent memory [56], and documented 

to become reduced in the hippocampus upon stress [57, 

58]. CDC42 has been shown to be important for synaptic 

plasticity and memory recall [59] and contribute to 

hematopoietic stem cell aging [60]. SRR downregulation 

in the aging rat hippocampus has been shown to play  

a role in cognitive decline [61]. Understanding the 

contribution of the regulation of these genes in the human 

PFC and aging phenotypes may be beneficial. 

 

FKBP5 was found to be upregulated in our study,  

which was previously shown to be demethylated  

and upregulated in peripheral blood with aging and  

stress [62], and similarly in mice, it was shown to  

be demethylated with age [63], and its role in age- and 

stress-related inflammation was demonstrated. Another 

upregulated gene, GALNT15 has been previously shown 

to be upregulated in low grade glioma [64]. RHOBTB3, 

another transcript found to be upregulated, has been 

associated with AD in a genome-wide single nucleotide 

association study [65]. Other upregulated genes identified 

included MOAB and GFAP, which were also previously 

shown in the aging human brain [5], validating our 

findings. Taken together, these upregulated transcripts 
found in our study that have been linked to aging-related 

diseases in the brain, but not yet with expression changes 

in the healthy aging may warrant further investigation. 

Furthermore, additional studies on the link between 

human brain aging or aging-related cognitive decline and 

changes in the expression of ASPHD2, BAD, CRTAP, 
IPW, and ZNF106 which remain elusive, may also be 

advantageous. Taken together, future investigations of 

these newly identified biomarkers of aging may yield 

additional informative results. 

 

When we assessed sex differences, we found notably 

more DEGs in males compared to females overall, 

which is similar to a previous finding by Berchtold  

et al. [1] and opposite to the result found by Wruck  

et al. [12]. One disadvantage of our study is that  

the sample size was overall smaller for the females 

compared to the males, however, there were relatively 

more female samples in the elderly category, and  

given the substantially larger number of differentially 

regulated transcripts found in males in both the old and 

elderly categories, these results may still be important. 

For example, in our study, we found four probe sets 

mapping to genes implicated in neurological diseases 

such as AD, including Homeodomain Interacting 
Protein Kinase 2 (HIPK2) [66] and platelet-activating 

factor acetylhydrolase 1b (PAFAH1B1) [67], and three 

probe sets mapping to genes including BIN1 [68, 69], 

APLP2 [70, 71], and VCAN [72], more specifically in 

males. However, this contrasts with epidemiological 

findings describing disproportionately more prevalent 

cases of AD and dementia among females [23]. 

Additional molecular mechanistic studies to understand 

how dimorphic expression changes occur and their 

effects would be informative. In support of our finding 

detecting molecular differences between female and 

male PFC, a recent study reported a lower metabolic 

brain age compared to chronological age in old female 

human subjects compared to male [73]. On the other 

hand, a recent study concluded that when controlling for 

overall size, sex differences in structure, connectome, 

and processing could not be found [74]. Therefore, 

further work on evaluating sexually dimorphic changes 

in various molecular markers of age and comparing 

them with chronological age would be informative. 

 

When comparing female and male samples within  

each age category, rather than differentially regulated 

transcripts relative to the young, we found, for the 

most part, X- and Y-chromosome encoded transcripts. 

These included multiple probe sets for Xist in the male-

downregulated set, as expected, and genes encoded  

on the Y-chromosome (DDX3y, EIF1AY, KDM5D, 
NLGN4Y1, TTTY15, USP9Y, UTY, ZFY) in the male-

upregulated set, providing added evidence of the 

validity of our analysis results. The elderly category 
had the largest number of DEGs comparing females 

and males, and spread across autosomes as well as the 

sex chromosomes. This increase in both the number of 
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DEGs and different chromosomal locations may imply 

that gene expression patterns between females and 

males become more divergent with age. 

 

Among our main goals was to develop prediction 

models for age by employing well-established methods, 

Lasso and EN, based on regularized regression,  

and novel methods, XGBoost and LightGBM, based  

on gradient boosting. Making these comparisons are 

informative, as applications of XGBoost and LightGBM 

to transcriptome data are still limited and they have also 

not been utilized yet in aging studies. We harmonized 

various studies to achieve a sample size that made it 

possible to perform model building, although it was 

smaller than ideal. Despite the small sample size of our 

study, accurate age prediction models were developed, 

and found to be generalizable by applying them to a test 

set and an external validation set. The different model-

developing techniques resulted in largely different 

transcripts being selected as important for prediction. 

This finding is informative and suggests that employing 

different algorithms could aid in improving the discovery 

of predictors of outcomes in future studies. Our results 

showed that gradient boosting machine-based methods 

notably improved prediction in the training set compared 

to regularized regression-based methods, however,  

did not improve prediction in the external validation  

set. A recent study directly comparing diabetes out-

come prediction models built by Lasso, XGBoost, and 

LightGBM using clinical variables, rather than tran-

scriptome data, also found the overall performance of 

the different models to be comparable [75]. Therefore, 

the authors concluded that established regression-based 

models may still be advantageous, given that they are 

interpretable and more easily implemented in practice. 

 

Additional studies to externally validate our findings in 

a larger study would be highly informative and would 

provide a more concrete assessment of which model’s 

performance is best. In addition to validation in larger 

studies, mechanistic studies would also be advantageous 

for further elucidating potential biological roles and 

validating the age-related and sexually dimorphic 

transcripts identified in our study. Moreover, this study 

was limited to comparing samples labeled as female  

or male, presumably by assignment at birth, and more 

inclusive studies, which are currently lacking, would  

be important. 

 

METHODS 
 

Data availability and study population 

 

The datasets used in this study were obtained  

from the Gene Expression Omnibus (GEO) repository 

(http://www.ncbi.nlm.nih.gov/geo/) [76]. The three data 

series all used microarray transcriptome, Affymetrix 

Human Genome U133 Plus 2.0 Arrays. Data series 

GSE53890 included postmortem PFC samples from 41 

neuropathologically normal subjects, 24 to 106 years 

old, with 21 labeled as females and 20 as males [7]. 

GSE21138 included postmortem PFC (Brodman Area 

46 (BA46)) from schizophrenic and matched control 

samples [77], from which 29 control arrays were used, 

with age range 21 to 80 years old, with 5 labeled as 

females and 24 as males. GSE53987 was derived from a 

study that profiled the PFC, striatum, and hippocampus 

of subjects diagnosed with schizophrenia, bipolar, or 

major depressive disorder, and matched controls [78], 

from which, the 19 control PFC arrays aged 22 to 68 

years, with 9 labeled as females and 10 males, were 

included in this study. 

 
Microarray dataset pre-processing and harmonization 

 

First, the three data series [7, 77, 78] were accessed 

from GEO using the “GEOquery” package [79]. The 

CEL files obtained were normalized and converted to 

log2 expression data with frozen robust multi-array 

average (fRMA) using the “frma” package [80]. Then 

the original 54,675 probe sets were filtered to keep  

only those with Entrez Gene ID annotation using the 

“genefilter” package [81], to yield 43,135 probe sets for 

subsequent analyses. The “limma” package [82] was 

applied to account for batch effect and for implementing 

quantile normalization between arrays and visually 

inspected with a box plot. Principal components analysis 

(PCA) was performed using the base “stats” package 

[83], where two samples were identified as outliers and 

removed from the study. The final harmonized dataset 

included 87 samples, ranging in age from 21 to 105, 

with 34 labeled as females and 53 as males. The PCA 

results of the final harmonized dataset were visualized 

with the “factoextra” package [84] (Supplementary 

Figure 1). The GSM number for each CEL file used in 

this study and corresponding age and sex are provided 

in Supplementary Table 1. 

 
Differentially expressed gene (DEG) analysis 

 

The data from the 87 subjects were categorized into age 

groups of 21–39-year-old, 40–64-year-old, 65–84-year-

old, and 85–105-year-old. The “limma” package [82] was 

used to identify probe sets with at least a 1.2-fold change 

compared to the reference 21–39-year-old category and 

to compute the Benjamini-Hochberg false discovery rate 

(FDR)-adjusted p-values. Those showing overlap across 

all age categories in all subjects, versus only in female 

subjects, versus only in male subjects were identified and 

plotted in a Venn diagram. To compare the fold change 

between sexes between each age category, the female 

group was used as the reference. 
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Univariate linear regression models 

 

Univariate linear regression models were constructed 

for age versus each of the 43,135 probe sets’ log2 

expression values in the base “stats” package [83]. 

Coefficient estimate FDR-adjusted p-value < 0.05 was 

determined to assess significant linear relationship with 

age. 

 

Gene ontology (GO) analysis 

 

Functional annotation analysis was conducted to 

understand biological mechanisms related to the 69 

DEG probe sets, using the “pathfindR” package [85]. 

The fold enrichment and FDR-adjusted p-values  

were obtained for all the Gene Ontology (GO) terms 

combined (Biological Process (BP), Molecular Function 

(MF), and Cellular Component (CC)), and for the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

terms. For both enrichment analyses, the Biological 

General Repository for Interaction Datasets (BioGRID) 

and STRING database were used for the Protein-Protein 

Interaction (PPI) Network search. Significant terms 

(FDR p-value < 0.05) that also had at least two genes 

identified in the term, were plotted in a bubble chart. 

 

Heatmap and network plots 

 

The heatmap of the 69 DEG probe sets was  

created using the “gplots” package [86]. The network 

plot was constructed using the GENEMania Cytoscape 

plug-in [87]. 

 

Machine learning application to develop age 

prediction models 

 

Data description 

Among the 87 subjects, 72 (~80%) were randomly 

selected as the training set and the other 15 (~20%) 

were used as the test set, using the “caret” package 

[88]. The age and sex distributions of the training 

versus the test set were evaluated to ensure that  

they were comparable and similar to the overall 

distribution (Supplementary Table 9). The machine 

learning algorithms below were performed using 

expression levels of 9,296 probe sets (mapping to 

6,551 unique genes) with coefficient estimate FDR  

p-value < 0.05 when performing univariate linear 

regression indicating that they are associated with age 

overall. 

 

Least absolute shrinkage and selection operator 

(Lasso) and elastic net (EN) 

 

We employed the Lasso and EN regression using 

the “glmnet” package [89], to select features. First, a 

five-fold CV was performed to find the regularization 

parameters based on obtaining the minimum mean 

square error (MSE) (Supplementary Table 10). Using 

these parameters, a stringent panel of 22 probe sets 

was selected with Lasso, and a more comprehensive 

panel of 252 probe sets was selected with EN. Then, 

ridge regression was performed on the log2 expression 

levels of the selected probe sets using the training set, 

based on λ giving minimum MSE with leave-one-out 

cross-validation (LOOCV), to yield the final model’s 

coefficient estimates. 

 

eXtreme gradient boosting (XGBoost) light gradient 

boosting machine (LightGBM) 

 

XGBoost was applied using the “xgboost”  

package [90], and LightGBM was applied using the 

“lightgbm” package [91]. Five-fold CV was performed 

to find the parameters that minimized the root MSE 

(Supplementary Table 10), and the final models were 

constructed using the training set. For both these 

models, the SHapely Additive exPlanations (SHAP) 

score was found for each of the probe set expression 

levels with the “SHAPforXGBoost” package [92]. The 

XGBoost model included 269 probe sets and the 

LightGBM model included 404 probe sets that had 

mean feature importance and SHAP value of above 0. 

 

Test set validation 

 

Each of the four final models, developed in the 

training set, was applied to the test set to find the 

predicted ages, and the concordance between the 

predicted versus the actual ages was compared with 

Pearson’s correlation and finding the mean absolute 

error (MAE). 

 

External validation 

 

Using the “GEOquery” package [79] to access the 

GEO repository, adult postmortem PFC transcriptome 

CEL files generated by the Affymetrix Human 

Genome U133 Plus 2.0 Array in data series GSE13564 

were obtained [4]. Similarly to the training set, they 

were converted to log2 expression data using the 

“frma” package [80], and filtered using the “genefilter” 

package to keep only those with Entrez Gene ID 

annotation [81]. The “limma” package [82] was used 

to perform quantile normalization, considering the 

previously harmonized training dataset as the target 

quantile, as well as to remove batch effect. Each of  

the four final models was applied to this external 

validation set to find the predicted ages, and the 
concordance between the predicted versus the actual 

ages was compared with Pearson’s correlation and 

finding the MAE. 
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Dataset and code availability 

 

R version 4.1.3 [83] was used. The harmonized  

training and CV sets, external validation set,  

and R code scripts are deposited in Github 

(https://github.com/feimae/PrefrontalCortextAgingModel). 
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PFC: Prefrontal cortex; GEO: Gene Expression 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. PCA plot of the harmonized dataset generated from this study, related to Figures 1–3. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–8. 

 

Supplementary Table 1. Summary of the file names of the CEL files from GEO used, and corresponding age and sex of 
the samples used for the analysis. 

 

Supplementary Table 2. Summary of differentially regulated transcripts across age categories in reference to the 
young among females and males, related to Figure 1. 

 

Supplementary Table 3. Overlaps of differentially regulated transcripts in the old and elderly categories within sex, 
related to Figure 1. 

 

Supplementary Table 4. Overlaps of differentially regulated transcripts between sex the old and elderly categories, 
related to Figure 1. 

 

Supplementary Table 5. The 69 probe sets overlapping in both the old and elderly categories among both females 
and males, related to Figure 1. 

 

Supplementary Table 6. Univariate linear regression models of each probe set, in the overall population and 
stratified by sex, related to Figures 1 and 2. 

 

Supplementary Table 7. Summary of differentially regulated genes comparing females and males within each age 
category, related to Figure 2. 

 

Supplementary Table 8. Results from machine learning prediction model development, related to Figure 3. 
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Supplementary Table 9. The age and sex distributions of the training and test set. 

 Total (N = 87) Training Set (N = 72) test set (N = 15) p-value (Training vs. test set) 

Age: mean (min–max) 52.8 (21–105) 52.4 (21–105) 54.8 (25–103) 0.732a 

Female: n (%) 34 (39.1%) 28 (38.8%) 6 (40.0%) 
1.000b 

Male: n (%) 53 (60.9%) 44 (61.1%) 9 (60.0%) 

aStudent’s T-test, bFisher’s Exact Test. 

 

 

Supplementary Table 10. The parameters used to construct the four prediction models, based on the initial five-fold 
CV results. 

Lasso (22 probe sets) EN (252 probe sets) XGBoost (269 probe sets) LightGBM (404 probe sets) 

Alpha = 1 Alpha = 0.05 Learning rate = 0.1 Learning rate = 0.05 

Lambda = 4.335 Lambda = 45.205 Gamma = 0.425 Max. tree depth = 5 

  Max. tree depth = 3 Num. of leaves = 30 

  Min. child weight = 9.5 Min. data in a leaf = 22 

  Subsample ratio = 1 Min. sum hessian in a leaf = 0.001 

  Column sample ratio = 0.8 Subsample ratio = 0.85 

  L1 regularization = 0 Column sample ratio = 0.6 

  L2 regularization = 3.5 L1 regularization = 0.4 

  Num. boosting rounds = 366 L2 regularization = 0.4 

   Min. gain to split = 0 

   Num. boosting rounds = 970 
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