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INTRODUCTION 
 

Ovarian cancer has exhibited a rising incidence  

globally in recent years, ranking as the most common 

and highly aggressive malignancy among gynecological 

tumors [1, 2]. Due to the lack of distinctive early 

symptoms, early detection through non-invasive means 

is challenging, resulting in a diagnosis at an advanced 

stage in up to 70% of ovarian cancer patients [3,  

4]. According to global cancer statistics from 2020,  

there were 313,959 newly diagnosed cases of ovarian 

cancer worldwide, with 207,252 ovarian cancer-related 

deaths reported [5]. BRCA1 and BRCA2 stand out  

as widely recognized genetic susceptibility genes for 

ovarian cancer. Mutations in BRCA genes escalate the 

hereditary risk of ovarian cancer. Studies have indicated 

that females with mutations in the BRCA1 gene face a  

3 to 4 times higher risk of developing ovarian cancer 

compared to those with mutations in the BRCA2 gene 

[6]. Like many cancer treatment modalities, surgery  

and chemotherapy are commonly employed in ovarian 

cancer management. However, the associated side 

effects and diminished quality of life often pose 

significant challenges for patients [7]. Furthermore,  

the high recurrence rates and development of drug 

resistance contribute to a 5-year survival rate of only 

approximately 47% for ovarian cancer patients [8]. 

Research has revealed that although most ovarian 

cancer patients initially respond to platinum-based 

chemotherapy, approximately 70-80% of patients 

eventually relapse and develop resistance, with the 

situation worsening over time [9–12]. In fact, the 5-year 

survival rate for advanced-stage high-grade serous 

ovarian cancer can be as low as 26% [13]. Presently, 

while neoadjuvant chemotherapy has emerged as a 

frontline treatment for certain patients, the impact of 

certain agents in neoadjuvant chemotherapy, such as 

bevacizumab, on the overall survival period of ovarian 
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ABSTRACT 
 

Ovarian cancer stands as a prevalent malignancy within the realm of gynecology, and the emergence of 
resistance to chemotherapeutic agents remains a pivotal impediment to both prognosis and treatment. 
Through a single-cell level investigation, we scrutinize the drug resistance and mitotic activity of the core tumor 
cells in ovarian cancer. Our study revisits the interrelationships and temporal trajectories of distinct epithelial 
cells (EPCs) subpopulations, while identifying genes associated with ovarian cancer prognosis. Notably, our 
findings establish a strong association between the drug resistance of EPCs and oxidative phosphorylation 
pathways. Subsequently, through subpopulation and temporal trajectory analysis, we confirm the intermediate 
position of EPCs subpopulation C0. Furthermore, we delve into the immunological functions and differentially 
expressed genes associated with the prognosis of C0, shedding light on the potential for constructing novel 
ovarian cancer prognosis models and identifying new therapeutic targets. 
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cancer, requires further investigation [14]. Additionally, 

there is a tendency for elevated drug resistance and 

recurrence rates with certain neoadjuvant chemotherapy 

approaches [15]. Targeted therapies for ovarian cancer 

have also shown limited success [16]. Immunotherapy 

primarily aims to disrupt immune suppression and 

tolerance states by enhancing the body’s immune 

recognition capabilities and immune-mediated tumor-

killing abilities [17]. Some experts suggest that 

combining immunotherapy with PARP inhibitors and 

other treatment approaches can address the issue of 

tumor-infiltrating lymphocytes, but the effectiveness of 

such combinations still requires further research [18]. 

Due to the high heterogeneity of ovarian cancer, the 

development of immunotherapy has been relatively 

slow [19], and adverse treatment reactions have been 

reported intermittently [20].  In light of the diminished 

survival rates and heightened drug resistance observed 

in ovarian cancer recurrence, a thorough exploration  

of the mechanisms underpinning drug resistance in 

ovarian cancer becomes imperative. The search for 

novel therapeutic targets and immunotherapeutic 

strategies is crucial to enhance the efficacy of ovarian 

cancer treatment and to establish innovative prognostic 

models. In this study, we conducted a comprehensive 

investigation at the single-cell level to elucidate the 

mechanisms governing the extent of ovarian cancer’s 

response to drugs. Employing a subpopulation approach 

to epithelial cells (EPCs), we delineated the cellular 

trajectories and immune functionalities within relevant 

subgroups. Based on these research findings, we 

postulate a strong correlation between ovarian cancer 

drug resistance and the oxidative phosphorylation 

pathway, substantiated by our empirical evidence. These 

studies contribute to a more profound understanding of 

the distinctions between drug resistance and sensitivity 

at the cellular level in ovarian cancer, with the aim of 

informing the design of superior treatment targets and 

prognostic models for ovarian cancer. 

 

MATERIALS AND METHODS 
 

Data retrieval and processing 
 

Single-cell samples from five cases of ovarian cancer 

were procured via the National Center for Biotech-

nology Information (NCBI) Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

The GSE number is GSE154600. These samples  

were identified as GSM4675273, GSM4675274, 

GSM4675275, GSM4675276, and GSM4675277. Gene 

expression quantification data derived from RNA-Seq 

(HTSeq TPM) and clinical information pertaining to 
ovarian cancer were sourced from The Cancer Genome 

Atlas (TCGA) platform (https://portal.gdc.cancer.gov). 

Subsequently, these datasets were subjected to rigorous 

standardization procedures using the R software 

environment (version 4.3.0). 

 

Data quality control 

 

Utilizing the R package DoubletFinder, we 

meticulously filtered and excluded data from  

samples containing doublets and subpar cells. The 

filtration criteria encompassed: total gene transcription 

counts (nCount) per cell falling within the range of 

500 to 80,000. Total number of genes detected per  

cell (nFeature) within the range of 200 to 6,000. 

Mitochondrial gene proportions lower than 25%. Red 

blood cell gene count proportions less than 5%. 

 

Dimension reduction, clustering, and annotation of 

data 

 

Subsequent to filtering, we imported the single- 

cell data and performed normalization using the 

NormalizeData function from the Seurat package in 

the R environment [21, 22]. The FindVariableFeatures 

function was employed to compute the variance of 

each gene, enabling the selection of the top 2000 

highly variable genes based on both their dispersion 

and mean expression [23, 24]. We centralized all  

genes using the ScaleData function, calculated cell 

cycle effects using the CellCycleFeatures function, and 

conducted dimensionality reduction through PCA on 

the top 2000 highly variable genes. Further, to mitigate 

batch effects originating from different samples, the 

RunHarmony function from the harmony package 

within R was deployed. Clustering was executed using 

the FindNeighbors and FindClusters functions from the 

Seurat package. Cell annotations were performed by 

cross-referencing available literature, the CellMarker 

database (http://bio-bigdata.hrbmu.edu.cn/CellMarker/), 

and SingleR, focusing on different cellular clusters. 

Differential gene expression between clusters was 

assessed via the FindAllMarkers function, with the top 

5 marker genes being showcased. 

 

Drug resistance and staging analysis of entire cell 

population 

 

Drug sensitivity among distinct cellular clusters  

in ovarian cancer was visually represented using  

UMAP visualization. Relationships between drug 

sensitivity and the relative proportions of various 

clusters were explored. Furthermore, employing the 

Ro/e algorithm, cell abundance under different drug 

sensitivity conditions was quantified. Similarly, using 

the aforementioned methodologies, cell staging in 
ovarian cancer clusters was calculated, including 

abundance and inter-cluster proportion relationships. 

To delve deeper into the relationship between cellular 
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cluster staging and drug resistance, G2M and S phase 

scoring was computed for different ovarian cancer 

clusters, and their correlation with drug sensitivity was 

investigated. 

 

Enrichment analysis of entire cell population 

 

Identification of differentially expressed genes (DEGs) 

between cellular clusters and other cell types was 

conducted. DEGs were considered significant if they 

were detected in at least 25% of cells with P < 0.01, a 

false discovery rate (FDR) < 0.05, and | logFCfilter | > 

1. These DEGs were then subjected to Gene Ontology 

(GO) enrichment analysis. Furthermore, Gene Set 

Enrichment Analysis (GSEA) was performed, utilizing 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

databases (c2.cp.kegg.v7.5.1.symbols.gmt) to filter and 

analyze differentially expressed genes in Epithelial 

Cells (EPCs) compared to other clusters, with statistical 

significance defined as FDR < 0.05. 

 

Metabolism analysis of entire cell population 

 

Employing the R package scMetabolism, we  

computed cellular metabolic pathways for different 

ovarian cancer clusters, stages, and drug resistance 

levels. The top 20 pathways were visually presented 

using a heatmap. We selected the top three pathways  

for in-depth exploration, investigating their expression 

patterns in UMAP representations and their associations 

with ovarian cancer clusters, drug sensitivity, and cell 

staging. 

 

EPCs subpopulation trajectory analysis 

 

To investigate the transformation and evolution among 

subpopulations of EPCs, we conducted pseudo-time 

analysis. Using the R package Cytotrace, we predicted 

the relative differentiation status of each subpopulation 

of EPCs, with scores ranging from 0 to 1, where higher 

scores indicated a stronger cell stemness. Employing 

the R package monocle, we calculated the relative 

developmental time and sorted various subpopulations 

of EPCs accordingly. These cells were roughly 

categorized into three periods based on their sorting 

order. We explored the distribution of cell proportions 

among these three periods within each subpopulation 

of cells. Additionally, with respect to these three 

distinct states, we further investigated the temporal 

changes in cell cycle, subpopulation-specific genes, 

and marker genes. Genes were clustered into different 

groups based on their expression patterns over time, 

and we explored enriched pathways between these 
groups. Finally, we utilized slingshot to construct  

cell differentiation lineages and infer pseudo-time 

trajectories among different subpopulations of cells, 

incorporating both cell clustering and spatial 

dimension information. 

 

Gene and enrichment analysis of EPCs 

subpopulations 

 

We explored genes related to subpopulations, especially 

those associated with cell stemness, and their expression 

changes over time. The expression distributions of four 

stemness-related genes significantly differing from other 

groups were visualized using UMAP. We employed the 

pyscenic algorithm to compute the top five transcription 

factors for both C0 and C2 subpopulations, investigating 

their overall distribution and regulatory regions within 

subpopulations. Furthermore, we calculated differential 

gene expression among subpopulations and performed 

GO and KEGG enrichment analyses. We also conducted 

GSEA enrichment analysis specifically for the C0 sub-

population. 

 

Clinical relevance and independent prognostic 

analysis of C0 subpopulation 

 

Using R software, we identified intersection  

genes between C0 subpopulation marker genes and  

ovarian cancer tumor tissues and normal tissues. 

Incomplete clinical data for ovarian cancer samples 

were removed, and the intersection genes were merged 

with standardized clinical data for ovarian cancer.  

Cox proportional hazards regression analysis, including 

single-variable analysis, was performed using the coxph 

function from the survival package. Subsequently, we 

validated the results using least absolute shrinkage and 

selection operator (LASSO)-penalized Cox regression 

and obtained prognostic differential genes through 

multivariate Cox hazard regression analysis. Risk scores 

were calculated for each sample, where risk score =  

Xλ (relative expression levels of prognostic-related 

genes) and coefλ (coefficients) [25, 26]. Samples were 

categorized into high- and low-risk groups based on the 

median risk score, and Principal Component Analysis 

(PCA) was used to assess their distributions. Heatmaps 

were generated to visualize the expression patterns  

of prognostic genes in high- and low-risk groups. 

Additionally, we computed coxef values for prognostic 

genes, demonstrated the differential survival outcomes 

between high- and low-risk groups using Kaplan-Meier 

curves, and evaluated the prognostic specificity and 

sensitivity through time-dependent receiver operating 

characteristic (ROC) curves [27, 28]. Correlation analysis 

between genes and risk scores was also conducted. We 

incorporated patient age and ethnicity data to construct 

a nomogram using the rms package to predict the 
prognosis of ovarian cancer patients. The prognostic 

model was validated using overall survival (OS) and 

ROC curves. 
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Immunological correlation analysis of C0 

subpopulation 

 

We calculated TIDE scores and major immune check-

point scores for high- and low-risk groups. Additionally, 

we leveraged xCell and CIBERSORT deconvolution 

algorithms to assess the immune infiltration status of 

patients in the high- and low-risk groups. Correlations 

between immune cells, risk scores, and self-expression 

were investigated, and the relationships between M1 

and M2 macrophages, T cells, and risk scores were 

explored based on the results. 

 

Enrichment analysis of prognostic genes 

 

Using the R package limma, we calculated  

differential genes between high- and low-risk groups 

with filtering criteria of |log FC| > 1 and FDR  

(BH) corrected threshold P.adj < 0.05. We conducted 

KEGG enrichment analyses and Gene Ontology  

(GO) enrichment analyses using the “clusterProfiler” R 

package, which encompassed biological processes, 

cellular components, and molecular functions [29, 30]. 

GSEA enrichment analysis was also performed for 

differential genes between high- and low-risk groups 

[31, 32]. 

 

Availability of data and material 

 

The data for this study come from the Gene Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

database and The Cancer Genome Atlas database 

(https://portal.gdc.cancer.gov/). The GEO accession is 

GSE154600. All the data in this paper support the 

results of this study.  

 

RESULTS 
 

Ovarian cancer cell subpopulation classification 
 

We obtained single-cell data from five ovarian  

cancer patients from the GEO database (GSM4675273-

GSM4675277). We used the R package DoubletFinder 

to remove doublets from the samples (Supplementary 

Figure 1A–1E) and further filtered out low-quality 

single-cell data through R software, resulting in a clean 

dataset (Supplementary Figure 1F). After the removal of 

doublets, the number of cells was 46436. After the 

removal of low-quality cells, the number of cells was 

45191. We observed that cells of different stages were 

relatively concentrated in the PCA plot (Supplementary 

Figure 1G), suggesting that cell staging had a minimal 

overall impact on our results. Based on gene expression 
and dispersion, we selected the top 2000 highly variable 

genes (Supplementary Figure 1H) and performed 

dimensionality reduction using RunPCA, choosing the 

top 30 dimensions for further analysis (Supplementary 

Figure 1I, 1J). We also explored the top ten highly 

variable genes for the first nine dimensions and 

presented them (Supplementary Figure 1K). Through 

clustering, we classified ovarian cancer cells into 27 

clusters (Figure 1A) and further annotated them into 

eight major cell types using the R package singleR, 

Cellmarker database, and literature references (Figure 

1B). These cell types included T_NK cells (14671), 

Endothelial Cells (ECs 838), Pericytes (729), Fibroblasts 

(7462), Epithelial Cells (EPCs 9683), B Cells (B 1113), 

Plasma Cells (1832), and Myeloid Cells (8863). 

Different samples showed variations in the distribution 

of cell types, possibly due to individual sample sources 

and the tissue of origin for the tumor cells (Figure 1C). 

We identified the top 5 MARKER genes for each of  

the eight major cell types and visualized them, along 

with G2M. Score, S.Score, and tumor treatment response 

(Figure 1D). We found that EPCs exhibited significantly 

elevated G2M.Score and S.Score, and their MARKER 

genes were highly correlated with drug resistance. 

Literature review revealed that EPCs are the primary 

tumor cells in ovarian cancer tissues, piquing our 

interest. 

 

Tumor treatment response and cell staging of EPCs 

 

Tumor treatment response can be categorized into  

three groups: Resistant, Refractory, and Sensitive. We 

studied the treatment response of various cell types  

in ovarian cancer tissues (Figure 2A) and found that  

the Resistant group was predominantly located within 

the EPCs cluster. Similarly, we observed that the  

G1 phase is a period after cell division and before  

DNA replication, the S phase is dedicated to DNA 

replication, and the G2M phase is the cell division 

preparation and mitotic phase. Abnormalities in these 

stages can lead to tumorigenesis. Combining cell 

staging with our findings, we noted that the G2M  

and S stages were significantly concentrated within  

the EPCs cluster (Figure 2B). To gain a more intuitive 

understanding of the distribution of treatment responses, 

we examined the proportions of different cell types  

in ovarian cancer (Figure 2C, 2G) and found that  

the Resistant group had the highest proportion of  

EPCs. Regarding tumor staging (Figure 2D, 2H), the 

proportion of EPCs in the G2M and S stages was 

significantly higher than in other cell types, while  

the G1 stage proportion was relatively lower. We  

also investigated the cell abundance of different cell 

groups in ovarian cancer, based on treatment response 

and cell cycle (Figure 2E, 2F). We observed that  

the Resistant group had the highest cell purity of  
EPCs. Similarly, in the G2M and S phases, the purity 

of EPCs was much higher than that of other types  

of ovarian cancer cells. This suggests that EPCs are 
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highly resistant to treatment and exhibit more vigorous 

cellular activity, and there may be some underlying 

connections between these characteristics. Furthermore, 

we validated our findings using G2M.Score and 

S.Score, which showed that EPCs had significantly 

higher scores compared to other cell types, with the 

Resistant group exhibiting the highest scores among all 

groups (Figure 2I–2P). We also examined the number 

and types of DNA replications among different cell 

groups (Figure 2Q, 2R) and found that EPCs exhibited 

significantly higher scores. This might be related to the 

robust proliferative capacity of tumor cells. 

 

 

 

Figure 1. Ovarian cancer cell cluster classification. (A) A total of 28 clusters were identified after clustering 5 ovarian cancer patients. 

(B) Ovarian cancer cells were annotated into T_NK, ECs, Pericytes, Fibroblasts, EPCs, B Cells, Plasma, and Myeloid Cells based on distinct 
MARKER genes. (C) Distribution of cells from 5 different samples. (D) Expression patterns of the top 5 MARKER genes in each major cell 
cluster. 
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Figure 2. Cell clustering by staging and drug treatment response level. (A) Distribution of UNMP drug treatment response levels. (B) 

Distribution of UNMP cell staging within major cell clusters. (C) Proportion of major cell clusters within the Resistant, Refractory, and 
Sensitive response groups. (D) Proportion of major cell clusters within the G2M, S, and G1 cell staging phases. (E, F) Abundance of major cell 
clusters concerning drug response groups and cell staging. (G) Proportion of major cell clusters within the Resistant, Refractory, and Sensitive 
response groups and their facets were shown. (H) Proportion of major cell clusters within the G2M, S, and G1 cell staging phases and their 
facets were shown. (I) Distribution of UNMP G2M.Score. (J–L) Violin plots for G2M.Score in major ovarian cancer cell clusters, cell staging, 
and drug response. (M) Distribution of UNMP S.Score. (N–P) Violin plots for S.Score in major ovarian cancer cell clusters, cell staging, and 
drug response. (Q, R) Distribution of UNMP nFeature and nCount. 
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Enrichment functional analysis of ovarian cancer 

cell subpopulations 

 

We conducted differential gene expression analysis 

among various cell types in ovarian cancer tissues and 

presented the top 5 most significant genes (Figure 3A–

3H). Using these differential genes, we performed GO 

enrichment functional analysis (Figure 3I) and found 

significant enrichment of pathways such as “Oxidative 

phosphorylation,” “Mitochondrial translation,” and 

“Aerobic respiration” in EPCs. Through GSEA 

enrichment functional analysis (Figure 3J–3S), we 

observed significant enrichment of pathways such as 

“Oxidative phosphorylation,” “Energy derivation by 

oxidation of organic compounds,” “Respiratory electron 

transport chain,” “Aerobic respiration,” and “Cellular 

respiration” in the high-expression group. In contrast, 

pathways including “T cell activation,” “Adaptive 

immune response,” “Inflammatory response,” “Positive 

regulation of the immune system process,” and “Antigen 

processing and presentation” were significantly enriched 

in the low-expression group. Oxygen-related pathways 

were prominently enriched in both GO and GSEA 

pathways. To further explore the underlying mechanisms, 

we conducted cellular metabolism analysis. 

 

Metabolism-related analysis of ovarian cancer cell 

subpopulations 

 

Through cellular metabolism analysis (Figure  

4A–4C), we found that Oxidative Phosphorylation, 

Glycolysis/Gluconeogenesis, and Pyruvate Metabolism 

scored significantly in various ovarian cancer cell 

subpopulations, treatment response levels, and cell 

staging. Among them, Oxidative Phosphorylation had 

a higher score in EPCs (Figure 4D–4G), suggesting 

that this metabolic pathway might be a key path- 

way in EPCs’ metabolism. The other two metabolic 

pathways, Glycolysis/Gluconeogenesis and Pyruvate 

Metabolism (Figure 4H–4O), scored higher not only  

in the EPCs group but also in the Resistant group and 

in cells in the G2M and S phases. We speculate that 

these two pathways may play a positive role in tumor 

progression. 

 

Subpopulations of EPCs 

 

To further study the composition and functions of 

EPCs, we re-clustered EPCs into five subpopulations 

(C0-C4). Based on the calculation of each sub-

population’s CNV (Figure 5A), we labeled the C4 

group with the lowest CNV as Low Malignant EPCs, 

and the C1, C2, and C3 groups with the highest CNV  
as High Malignant EPCs. The intermediate group,  

C0, was labeled as Moderate Malignant EPCs. We 

selected a signature gene for each subpopulation based 

on the expression level and percentage of MARKER 

genes (Figure 5B). We also investigated the top 5 

MARKER genes for each subpopulation, as well as 

their relationship with cell staging and treatment 

response levels (Figure 5C). We found that in EPCs, the 

expression of C0 subpopulation’s MARKER genes 

highly overlapped with the Sensitive group and was 

strongly correlated with G2M.Score and S.Score.  

This seemed contrary to the characteristics of the 

overall EPCs population being Resistant, which piqued 

our interest. We further explored the drug treatment 

response of each subpopulation (Figure 5D) and found 

that the C0 group exhibited higher drug sensitivity, 

while the C2 group showed higher drug resistance. 

Moreover, we observed the proportions of each 

subpopulation (Figure 5E, 5F), with C0 having the 

highest proportion of Sensitive cells, while C2 had the 

highest proportion of Resistant cells, and the C1 group 

showed a distribution between the two. Cell abundance 

calculations were consistent with these findings, with 

C0 having the highest purity in the Sensitive group, and 

C2 having the highest purity in the Resistant group 

(Figure 5K). We also calculated cell staging and 

proportions for each subpopulation (Figure 5G–5I) and 

found that in the cell cycle distribution, the G1 phase 

was most prevalent in C2, while the G2M and S phases 

were more common in C0 and C1 subpopulations. Cell 

abundance calculations corresponded to these results 

(Figure 5L). We further calculated G2M.Score, S.Score, 

nFeature, and nCount values for each subpopulation, 

finding that C0 and C1 subpopulations had higher 

proliferative activities (Figure 5J, 5M), while C2 had 

relatively higher metabolic activities (Figure 5N, 5O). 

We believe that C0 may represent a subpopulation of 

drug-sensitive cells within the overall Resistant EPCs 

population. In-depth exploration of the causes and 

mechanisms of drug sensitivity is crucial for ovarian 

cancer treatment. 

 

Pseudotime analysis of subpopulation cells 

 

We predicted the differentiation status of each 

subpopulation using Cytotrace and found that the  

C2 group had the lowest differentiation, followed by  

C1 and C0 (Figure 6A, 6B). To understand the  

temporal relationships between subpopulation cells,  

we calculated the relative temporal order of each 

subpopulation using monocle (Figure 6C) and divided 

all subpopulations into three time stages: State1 as  

the initial stage, State2 as the intermediate stage, and 

State3 as the terminal stage (Figure 6D). We found that 

G1, G2M, and S stages were present in all three states 

(Figure 6E), but C2 was almost exclusively in State1, 
while C0 was more prevalent in State2 (Figure 6F). We 

speculate that the C2 group is at the starting point of the 

trajectory, while C0 is at the center of the trajectory and 
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Figure 3. Enrichment analysis of major cell clusters. (A–H) Differential gene distribution in major ovarian cancer cell clusters compared 

to other cell types, displaying the top 5 upregulated and downregulated genes for each. (I) GO enrichment analysis for major cell clusters. (J–
S) GSEA enrichment analysis for EPCs, displaying 5 pathways selected from both low and high expression groups. 
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progresses toward the surrounding subpopulations.  

We further validated the cell trajectory using slingshot 

and confirmed that C0 indeed occupies the intersection 

of the cellular trajectory (Figure 6G). This aligns with 

our previous research findings. Finally, we performed 

GO enrichment analysis based on the different gene 

expression order within each subpopulation and  

found that oxidative phosphorylation pathways were 

significantly enriched in the initial and intermediate 

stages, suggesting that this pathway plays a crucial 

role in the regulation of drug response, leading to  

the development of drug resistance and sensitivity 

(Figure 6H). 

 

Functional analysis of subpopulation cells 

 

We calculated the core genes and their expression 

changes over time in each subpopulation (Figure  

7A, 7B). We observed that NES and KDM5B were 

significantly expressed in the C2 group and decreased 

 

 
 

Figure 4. Metabolic pathways of major cell clusters. (A) Top 20 metabolic pathways in major ovarian cancer cell clusters. (B) Top 20 

metabolic pathways in G2M, S, and G1 cell staging. (C) Top 20 metabolic pathways in the Resistant, Refractory, and Sensitive response 
groups. (D–O) UNMP distribution and violin plots for the Oxidative Phosphorylation, Glycolysis / Gluconeogenesis, and Pyruvate Metabolism 
pathways in major ovarian cancer cell clusters, cell staging, and drug response. 
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Figure 5. Subgroup analysis of EPCs and related data. (A) Heatmap showing CNV status of subgroup cells. (B) UNMP distribution of 
subgroup cells. (C) Expression patterns of the top 5 signature genes in each subgroup. (D) UNMP distribution of drug responses in subgroup 
cells. (E) Proportion of subgroup cells within the Resistant, Refractory, and Sensitive response groups. (F) Proportion of subgroup cells within 
the Resistant, Refractory, and Sensitive response groups and their facets were shown. (G) UNMP distribution of cell staging in subgroup cells. 
(H) Proportion of subgroup cells within the G2M, S, and G1 cell staging phases. (I) Proportion of subgroup cells within the G2M, S, and G1 cell 
staging phases and their facets were shown. (J) UNMP distribution of G2M.Score. (K, L) Abundance of subgroup cells concerning drug 
response groups and cell staging. (M–O) UNMP distribution of S.Score, nFeature, and nCount. 
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with time, while the genes KLF4 and MYC increased 

with time (Figure 7C–7F). In addition, to study the 

relationship between the top five transcription factors in 

C0 and C2 and their regulatory regions, we analyzed 

them (Figure 7G–7T) and found that the transcription 

factor ZNF580 played a significant regulatory role  

not only in the C0 subpopulation but also in the C2 

subpopulation. By conducting GO enrichment analysis 

for subpopulation cells (Figure 8A), we found that 

oxidative phosphorylation pathways were significantly 

enriched in both C0 and C2 subpopulations, with  

a more concentrated presence of oxygen-related and 

cellular respiration pathways in C0. Based on this,  

we conducted GSEA enrichment analysis for the C0 

group and found significant enrichment of pathways 

such as “Cytoplasmic Translation,” “Mitochondrial 

Gene Expression,” and “Mitochondrial Translation”  

in the high-expression group (Figure 8B–8D). 

Conversely, pathways like “Positive Regulation of  

T Cell Activation,” “Regulation of Leukocyte- 

Mediated Cytotoxicity,” and “Positive Regulation of 

Cell Adhesion” were significantly enriched in the low-

expression group (Figure 8E–8G). This suggests that  

the C0 group is indeed associated with certain oxidative 

and respiratory functions. 

 

Prognostic analysis 

 

By intersecting the differential genes between ovarian 

cancer and C0 subpopulation signature genes in the 

 

 
 

Figure 6. Pseudotemporal analysis of subgroup cells. (A, B) Assessment of Cytotrace scores in subgroup cells. (C) Pseudotemporal 
chart of subgroup cell UNMP based on Monocle analysis. (D) Temporal distribution of 3 states, with time progressing from State 1 to State 3. 
(E) Temporal distribution of subgroup cell staging. (F) Pseudotemporal distribution chart of subgroup cells. (G) Time trajectory of subgroup 
cells based on Slingshot analysis. (H) Enrichment analysis pathways based on the order of gene expression. 
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Figure 7. Analysis of subgroup cell stemness genes and transcription factors. (A) Expression patterns of stemness genes in various 
subgroups. (B) Temporal order of stemness gene expression in subgroup cells. (C–F) Distribution of NES, KDM5B, KLF4, and MYC gene UNMP 
expression. (D–T) Distribution of UNMP for the top five transcription factors in both C0 and C2 and their regulatory regions. 
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TCGA database and using univariate Cox regression 

analysis, we identified 7 genes related to prognosis 

(Figure 9A). We verified these genes using LASSO  

Cox regression analysis, which showed stable and  

good performance (Figure 9B, 9C). Finally, through 

multivariate Cox regression analysis, we determined 6 

prognostic genes, where RPL21, RPL23A, and RPL23 

were high-risk genes, while SNRPD1, TMA7, and 

UBL5 were low-risk genes. We calculated the risk 

scores for each sample and divided them into high  

and low-risk groups based on the median score (Figure 

9D). We assessed the relationship between the high and 

low-risk groups in terms of survival status and survival 

time (Figure 9E) and found that as the risk score 

increased, the number of deceased patients became 

more concentrated. We further studied the expression of 

prognostic genes in the high and low-risk groups 

(Figure 9F) and examined the coefficient values of 

prognostic genes (Figure 9G). Among them, SNRPD1 

had the lowest coefficient, while RPL23 had the 

highest. Kaplan-Meier curves (Figure 9H) showed that 

the high-risk group had lower survival rates at different 

time points, with p < 0.001, indicating meaningful 

results. The ROC curve results for 1-year, 3-year, and 5-

year survival were 0.61, 0.58, and 0.63, respectively 

(Figure 9I), indicating stable and excellent predictive 

performance. We further explored the correlation 

between prognostic genes, risk scores, and OS (Figure 

9J–9P). The results were consistent with our previous 

research. We also investigated the correlation between 

different clinical factors and risk scores (Figure 10A, 

10B) and constructed nomogram plots based on risk 

scores and clinical factors to predict the 1-year, 3-year, 

and 5-year survival rates of different patients (Figure 

10C). We validated the accuracy of the 1-year, 3-year, 

and 5-year prognostic models (Figure 10D–10F). We 

also plotted ROC curves for each year’s survival 

(Figure 10G), with AUC values of 0.64, 0.60, and 0.66 

for 1-year, 3-year, and 5-year survival, respectively, 

indicating good sensitivity and specificity and excellent 

predictive value. 

 

Immune-related analysis and enrichment analysis 

 

We calculated the TIDE scores and found that the high-

risk group had higher scores (Figure 11A), indicating a 

higher likelihood of immune escape in high-risk group 

tumors. We screened immune checkpoint genes in the 

high and low-risk groups and found that TNFRSF14 

and C10orf54 were significantly expressed in the low-

risk group, while LAG3 was expressed at higher levels 

in the high-risk group (Figure 11B–11D). To further 

study the immune relevance of high and low-risk 

groups, we calculated immune cell infiltration (Figure 

11E, 11F) and explored the relationships between risk 

scores, immune cells, and prognostic genes (Figure 

11G, 11H). We found that M1 macrophages were 

negatively correlated with risk scores and RPL23, 

RPL21, while M2 macrophages were positively 

correlated with risk scores. Furthermore, T cells 

 

 
 

Figure 8. Enrichment analysis of subgroup cells. (A) GO enrichment analysis of subgroup cells. (B–G) GSEA enrichment analysis of C0 

subgroup cells. 
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follicular helper exhibited strong correlations with 

SNRPD1 and risk scores. We hypothesized that  

M1 macrophages and T cells follicular helper were 

crucial for prognosis and immunotherapy, while M2 

macrophages played an opposing role in this context. 

We also performed GO and KEGG enrichment analysis 

based on the differential genes between high and low-

risk groups (Figure 12A, 12B) and found significant 

enrichment of pathways such as “Feeding Behavior” 

and “Neuropeptide Signaling Pathway” in GO, and 

“Neuroactive Ligand−Receptor Interaction" and 

“Glycerolipid Metabolism” in KEGG. 
 

DISCUSSION 
 

Ovarian cancer stands as one of the three most prevalent 

malignancies within the female reproductive system. 

According to data from the United States in 2020, 

newly diagnosed cases of ovarian cancer accounted for 

2.4% of all new female cancer cases and contributed to 

 

 
 

Figure 9. Independent prognostic analysis. (A) Seven differentially expressed genes associated with prognosis. (B) Distribution of LASSO 

analysis coefficient spectrum for six prognostic genes. (C) Parameter selection in the optimal cross-validation LASSO regression. (D) Patients 
categorized into high- and low-risk groups based on their risk scores. (E) Distribution of patients in the high- and low-risk groups. (F) Heatmap 
showing the distribution of prognosis-related genes. (G) Cofe values of prognosis-related genes. (H) Kaplan-Meier survival analysis curves for 
high- and low-risk groups. (I) Time-dependent ROC curves with area under the curve (AUC) values of 0.61, 0.58, and 0.63 for 1-year, 3-year, 
and 5-year intervals. (J–P) Correlation analysis of genes with risk scores and overall survival (OS). 
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5% of female cancer-related mortalities [5]. The 

persistent challenge of platinum resistance and the 

consequent recurrence have consistently led to a low 5-

year survival rate among ovarian cancer patients [33]. 

Presently, our understanding of the mechanisms gover-

ning tumor resistance and sensitivity remains relatively 

limited [34]. Hence, the pursuit of the underlying 

mechanisms that contribute to tumor responsiveness  

and resistance assumes paramount importance. In our 

study, we observed that the Oxidative Phosphorylation 

pathway scored notably high in both enrichment  

and metabolic analyses within the tumor core cells, 

specifically EPCs. This high score was also evident in 

the crucial subpopulation C0. We postulate that this 

pathway might be involved in the mechanisms of tumor 

drug resistance and certain other aspects of progression. 

Notably, this pathway exhibits a close association  

with EPC subtypes, particularly C0 and C2. Prior 

studies have underscored the pivotal role of oxidative 

phosphorylation in sustaining the vital processes of 

certain cancers [35–37]. It fulfills the tumor’s energy 

and metabolite requirements, thereby fostering its 

growth [38]. Remarkably in ovarian cancer, research 

has also identified the upregulation of gene activity in 

the oxidative phosphorylation pathway within ovarian 

cancer tumor cells that are involved in chemotherapy 

resistance [39]. Moreover, the application of oxidative 

phosphorylation inhibitors has been found to effectively 

inhibit the progression of ovarian cancer [40]. Tang et al. 

observed that inhibiting the oxidative phosphorylation 

pathway with metformin resulted in a reduction in 

tumor growth and migration, accompanied by an 

increase in apoptosis [41]. Our research corroborates 

these findings by revealing a high correlation between 

the oxidative phosphorylation pathway and EPCs, a 

subset exhibiting the highest degree of resistance within 

the larger cell population. 

 

Matassa and colleagues have similarly suggested  

the involvement of the oxidative phosphorylation 

pathway in ovarian cancer cell resistance, possibly 

mediated through TRAP1 [42]. Our investigations have 

additionally exposed disparities between subtypes  

C0 and C2, hinting that targeted intervention within  

the oxidative phosphorylation pathway may induce 

alterations in the proportions of EPC subtypes. This 

intervention could potentially prompt a transition from 

C2 to C0 and other subtypes, thereby ameliorating drug 

resistance in ovarian cancer tumor cells. 

 

We have further discerned that the C0 EPC subtype 

exhibits a suppression of both immune infiltration and 

 

 

 

Figure 10. Clinical relevance analysis. (A, B) Analysis of the correlation between risk scores and age as well as ethnicity factors.  
(C) Survival curves for ovarian cancer patients at 1-year, 3-year, and 5-year intervals. (D–F) Nomo model charts for 1-year, 3-year, and 5-year 
OS tests. (G) Time-dependent ROC curve graphs with AUC values of 0.64, 0.60, and 0.66 for 1-year, 3-year, and 5-year intervals, respectively. 
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immune regulatory functions. Intriguingly, the 

correlation between macrophages M1 and M2 and risk 

scores runs contrary to expectations. Tumor-associated 

macrophages (TAMs) constitute a crucial component 

of the tumor microenvironment, infiltrating to levels 

exceeding 50%. They play a significant regulatory  

role in angiogenesis, tumor growth, and metastasis 

[43, 44]. TAMs can be specifically categorized into 

M1 and M2 macrophages. In the early stages of  

tumor development, TAMs exhibit a pro-inflam-

matory phenotype similar to M1, suppressing the 

immune response against tumor growth. As the tumor 

progresses, the hypoxic conditions within the tumor 

microenvironment gradually induce the transformation 

of TAMs towards an M2-like phenotype, promoting 

their involvement in immune escape and angiogenesis 

of tumor cells [45–48]. Therefore, M1 macrophages 

have the ability to inhibit the progression of  

tumors, while M2 macrophages are positively 

correlated with tumor advancement [49, 50]. Moreover, 

Kuo et al. have identified that the activation of 

oxidative-related pathways often results in the 

suppression of the immune functionality within the 

tumor microenvironment. This activation further 

induces the generation of reactive oxygen species 

(ROS), subsequently promoting the polarization of 

macrophages from the M1 to M2 phenotype. This,  

in turn, facilitates tumor growth and progression, 

exerting an adverse impact on patient prognosis [51, 

52]. The activation of ROS is often accompanied by 

increased angiogenesis and the suppression of immune 

microenvironment functions. This further enhances  

the production of macrophage-derived interferon (IFN) 

and interleukin-6 (IL-6), thereby inhibiting immune 

 

 
 

Figure 11. Immune-related analysis of C0 subgroup. (A) Violin plot of TIDE scores for high- and low-risk groups. (B–D) Immune 
checkpoint scores for high- and low-risk groups. (E) Heatmap showing differences in predictive genes, tumor microenvironment, and immune 
cells between high- and low-risk groups. (F) Proportion of immune cells in high- and low-risk groups. (G) Correlation between immune cells 
and risk scores. (H) Correlation between immune cells, prognosis-related genes, risk scores, and overall survival (OS). 
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responses within the tumor microenvironment [53, 54]. 

The oxidative-related pathways exhibit significant 

scores in both EPCs and the C0 subpopulation. 

Additionally, there is a notable negative correlation 

between the oxidative-related pathway scores and the 

GSEA immune pathway scores in C0. Consequently, 

we hypothesize that oxidative-related pathways play a 

crucial role in tumor progression, possibly establishing 

close associations with drug resistance and immune 

suppression Mouton’s research has similarly established 

the dependence of M2 macrophages on the tricarboxylic 

acid cycle and oxidative phosphorylation [55]. 

Consequently, we hypothesize that by modulating 

oxidative phosphorylation, not only can ovarian  

cancer cell resistance be improved, but the immune 

suppression within the tumor microenvironment can 

also be alleviated. 

 

Ultimately, we have identified six prognostically 

relevant genes, with RPL23 exhibiting the highest 

coefficient value. RPL23, a ribosomal protein 

responsible for translating mRNA into proteins, has 

been implicated in cancer progression across various 

cancer types, including lung cancer, colorectal cancer, 

and hepatocellular carcinoma [56–58]. It has also  

been associated with increased drug resistance, 

promoting multidrug resistance in gastric cancer cells 

by inhibiting drug-induced apoptosis [59, 60]. We 

postulate that RPL23 plays a positive role in ovarian 

cancer progression, potentially linked to immune 

function and oxidative phosphorylation. However, 

further experimental validation is warranted. Kang  

and colleagues have also identified RPL23’s role in 

promoting ovarian cancer cell progression, suggesting 

that its high expression may facilitate ovarian cancer 

recurrence, aligning with our research findings [61]. 

 

Notably, the absence of integrated omics data, including 

metabolomics, ATAC-seq, or proteomics, represents  

a noteworthy deficiency in the current analysis. This 

limitation underscores the need for future research 

endeavors that encompass a more comprehensive multi-

omics approach to enhance the depth and validity of our 

findings. 
 

CONCLUSIONS 
 

In this study, we conducted a systematic exploration  

of single-cell data from ovarian cancer tissues, 

providing insights into the resistance mechanisms 

within EPCs and their association with the Oxidative 

Phosphorylation pathway. We further performed 

temporal trajectory analysis of various EPCs sub-

types, highlighting the pivotal role of the central C0 

subtype in immune cell functionality and correlation. 

Additionally, we constructed a prognostic model 

relevant to ovarian cancer, emphasizing the potential 

significance of the high-risk gene RPL23 and the 

Oxidative Phosphorylation pathway as crucial targets 

for ovarian cancer treatment and drug resistance. In 

conclusion, our discoveries unveil novel mechanisms 

related to drug resistance in ovarian cancer, paving the 

 

 
 

Figure 12. Enrichment analysis of prognostic genes. (A) Functional enrichment analysis of prognostic genes using GO terms.  
(B) Functional enrichment analysis of prognostic genes using KEGG pathways. 
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way for subsequent research. They also suggest 

another potential direction for targeting in ovarian 

cancer treatment and contribute to the construction  

of a new and effective prognostic model. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Data control and standard procedures. (A–E) The dimplot and violin plots illustrate the distribution of 
double cells in each single-cell sample. (F) Violin plots of the filtered data. (G) Cell cycle distribution. (H) Distribution of highly variable genes. 
(I) Differences in each dimension. (J) Sample distribution in the first two principal components (PC1 and PC2). (K) Highly variable genes in 
each principal component (first 9 PCs). 
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