WWW.aging-us.com AGING 2024, Vol. 16, No. 6

Research Paper

The comprehensive landscape of prognosis, immunity, and function
of the GLI family by pan-cancer and single-cell analysis

Yinteng Wu'"*, Wenliang Guo*", Tao Wang?, Ying Liu®, Maria del Mar Requena Mullor®,
Raquel Alarcon Rodriguez®, Shijian Zhao®, Rugiong Wei*

!Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi 530021, China

2Department of Rehabilitation Medicine, Guigang City People’s Hospital, Guigang, Guangxi 537100, China
3Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
530021, China

“Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi 530021, China

®Faculty of Health Sciences, University of Almeria, Almeria 04120, Spain

®Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming,
Yunnan 650102, China

*Equal contribution

Correspondence to: Rugiong Wei, Shijian Zhao, Raquel Alarcon Rodriguez; email: rugiongwei@sr.gxmu.edu.cn,
https://orcid.org/0000-0003-2068-2494; zhaoshijian1025@163.com, https://orcid.org/0000-0002-2052-5600;
ralarcon@ual.es, https://orcid.org/0000-0002-2220-6128

Keywords: GLI, pan-cancer, single-cell, immune, prognosis, function

Received: May 30, 2023 Accepted: January 2, 2024 Published: March 18, 2024

Copyright: © 2024 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.

ABSTRACT

The Hedgehog (Hh) signaling pathway has been implicated in the pathogenesis of various cancers. However, the
roles of the downstream GLI family (GLI1, GLI2, and GLI3) in tumorigenesis remain elusive. This study aimed to
unravel the genetic alterations of GLI1/2/3 in cancer and their association with the immune microenvironment
and related signaling pathways. Firstly, we evaluated the expression profiles of GLI1/2/3 in different cancer
types, analyzed their prognostic and predictive values, and assessed their correlation with tumor-infiltrating
immune cells. Secondly, we explored the relationships between GLI1/2/3 and genetic mutations, epigenetic
modifications, and clinically relevant drugs. Finally, we performed enrichment analysis to decipher the
underlying mechanisms of GLI1/2/3 in cancer initiation and progression. Our results revealed that the
expression levels of GLI1/2/3 were positively correlated in most cancer tissues, suggesting a cooperative role of
these factors in tumorigenesis. We also identified tissue-specific expression patterns of GLI1/2/3, which may
reflect the distinct functions of these factors in different cell types. Furthermore, GLI1/2/3 expression displayed
significant associations with poor prognosis in several cancers, indicating their potential as prognostic
biomarkers and therapeutic targets. Importantly, we found that GLI1/2/3 modulated the immune
microenvironment by regulating the recruitment, activation, and polarization of cancer-associated fibroblasts,
endothelial cells, and macrophages. Additionally, functional enrichment analyses indicated that GLI1/2/3 are
involved in the regulation of epithelial-mesenchymal transition (EMT). Together, our findings shed new light on
the roles of GLI1/2/3 in tumorigenesis and provide a potential basis for the development of novel therapeutic
strategies targeting GLI-mediated signaling pathways in cancer.
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INTRODUCTION

The adaptive and innate immune systems collaborate to
create a sophisticated immune surveillance network that
detects and eliminates abnormal cells carrying genetic
mutations, thereby preventing the emergence of cancer.
However, tumorigenesis driven by clonal selection and
epigenetic changes involves multiple molecular
mechanisms that ultimately culminate in the
suppression of anti-tumor immunity and the evasion of
tumor cells from immune recognition and elimination
[1]. Remarkably, immune checkpoint inhibitors have
demonstrated remarkable therapeutic efficacy by
restoring the anti-tumor immune response in various
metastatic cancers [2-4]. The emergence of cancer
immunotherapy has revolutionized the field of oncology
by providing a promising avenue for cancer treatment.
Despite the remarkable effectiveness demonstrated in
certain patients, the majority of patients exhibit intrinsic
or acquired resistance to these interventions [5].
Numerous investigators are actively pursuing novel
therapeutic approaches for the treatment of tumors [6,

7]. Tt is imperative, therefore, to elucidate the
underlying  mechanisms  involved in  cancer
pathogenesis.

The Hedgehog (Hh) signaling pathway plays a crucial
role in mammalian embryonic development, as well as
in the growth and differentiation of cells following
embryogenesis. Moreover, dysregulated activation of
this pathway is implicated in the pathogenesis of
malignant neoplasms affecting almost all human organ
systems [8, 9]. GLIl, GLI2, and GLI3 are key
downstream effectors of the Hh signaling pathway,
acting as nuclear transcription factors that bind to
promoters to regulate target gene expression. Originally
discovered as highly expressed genes in human gliomas,
the GLI family members all contain five C2H2
Kriippel-like zinc finger domains [10-12]. GLI1
contains only an activating C-terminal domain, whereas
GLI2 and GLI3 possess both activating C-terminal
domains and inhibitory N-terminal domains [13].
Despite sharing over 1,000 amino acids and functioning
as zinc finger transcription factors, GLI1 functions
primarily as a transcriptional activator, while GLI2 and
GLI3 exhibit both activating and repressive properties
[14]. GLI proteins are localized in both the nucleus and
cytoplasmic compartments, where they are incorporated
into a multimolecular complex that associates with the
cytoskeleton [15].

GLI is implicated in the regulation of mammalian
tumorigenesis by inducing factors associated with tumor
stem cells, promoting cancer cell proliferation through
cell cycle-related proteins, inhibiting apoptosis via
direct binding to anti-apoptotic promoters, and

upregulating Smad-interacting protein-1 (Sipl), which
drives epithelial-mesenchymal transition (EMT). The
expression of Sipl, an EMT-associated transcription
factor regulator, plays a crucial role in tumor invasion
and metastasis [14—18]. While studies investigating the
role of GLI family genes in cancer have primarily
focused on GLII, the contribution of GLI2/3 to
tumorigenesis, especially in the context of the tumor
immune microenvironment (TIME), remains largely
unknown. The TIME consists of a diverse array of
immune components, including tumor cells, immune
cells, and cytokines. The interplay among these immune
constituents ultimately determines the immune status
that can either promote or suppress tumor growth [19].
Extensive research has demonstrated the close
association between TIME and various aspects of tumor
development, recurrence, and metastasis. Activation of
the Hh signaling pathway plays a pivotal role in
modulating TIME, thereby influencing tumor initiation,
progression, and metastasis [20]. Given the important
role of GLI1/2/3 in the Hh signaling pathway.
Systematically understanding their mechanisms in
cancer and the immune microenvironment is necessary.

In this study, we conducted comprehensive analyses of
the expression patterns, prognostic value, clinical
characteristics, and genetic alterations of GLI1/2/3. We
systematically investigated the mechanisms underlying
their  modulation of the tumor  immune
microenvironment, including immune infiltration, gene
correlations, microsatellite instability (MSI), and tumor
mutational burden (TMB). Furthermore, Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA)
were utilized to explore the biological processes
affected by GLI1/2/3 in tumors. Finally, we identified
potential drug targets that could simultaneously
modulate these factors. Our results provide novel
insights into the molecular mechanisms underlying the
involvement of GLI1/2/3 in tumor development and
their impact on the immune microenvironment. This
study may also facilitate future research efforts focused
on GLI1/2/3 as promising targets for cancer
immunotherapy.

RESULTS
Correlation analysis

Spearman correlation analyses of normal tissues from
the GTEx database revealed that GLI1 and GLI2
exhibited a significant positive correlation in 22 of the
examined tissues (Figure 1A). GLI1 and GLI3 also
showed a significant positive correlation in 16 of the
tissues, although in 5 cases the correlation was negative
(Figure 1B). Meanwhile, GLI2 and GLI3 displayed a
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significant positive correlation in 24 of the analyzed
normal tissues (Figure 1C). Similar analyses carried out
on tumor cell lines indicated that GLI1 and GLI2 were
significantly positively correlated in 15 of the tested cell
lines (Figure 1D), while GLI1 and GLI3 exhibited
significant positive correlations in 6 cell lines, but a
negative correlation in 1 cell line (Figure 1E).
Additionally, GLI2 and GLI3 displayed a significant
positive correlation in 9 of the examined tumor cell
lines (Figure 1F). Moreover, Spearman correlation
analyses conducted on tumor tissues obtained from
TCGA demonstrated significant positive correlations
between GLI1 and GLI2 in 30 tumor tissues, with only

A GLI1 and GLI2 in normal tissues

B GLI1 and GLI3 in normal tissues

one tissue showing a significant negative correlation
(Figure 1G). GLI1 and GLI3 were significantly
positively correlated in 21 tumor tissues but negatively
correlated in one tissue (Figure 1H). Finally, GLI2 and
GLI3 exhibited a significant positive correlation in 29
tumor tissues (Figure 11).

Expression level analysis results

Data from the GTEx database revealed that GLI1
(Figure 2A) and GLI2 (Figure 2B) were most highly
expressed in ovarian tissues, whereas GLI3 (Figure 2C)
exhibited peak expression in uterine samples. In tumor

C GLI2and GLI3 in normal tissues
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Figure 1. Correlation between GLI1, GLI2, and GLI3. Correlation of (A) GLI1 and GLI2, (B) GLI1 and GLI3, (C) GLI2 and GLI3 in normal
tissues. Correlation of (D) GLI1 and GLI2, (E) GLI1 and GLI3, (F) GLI2 and GLI3 in tumor cell lines. Correlation of (G) GLI1 and GLI2, (H) GLI1

and GLI3, (1) GLI2 and GLI3 in tumor tissues.
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Kruskal-Wallis test p=0

tissues, TGCT, MESO, and SKCM exhibited the
highest levels of GLI1 (Figure 2G), GLI2 (Figure 2H),
and GLI3 (Figure 2I), respectively. Combining data

from TCGA tumor samples and normal tissues from the

B Kruskal-Walls test p=0

cell lines, bone tumors displayed the highest expression
A Kruskal-Wallis test p=0

of both GLI1 (Figure 2D) and GLI2 (Figure 2E),
whereas skin tumor cell lines exhibited the greatest
expression of GLI3 (Figure 2F). Regarding tumor
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(D—F), and tumor tissues (G-1) using data from the GTEx database. Combined TCGA and GTEx data of GLI1 (J), GLI2 (K), and GLI3 (L)
5126

expression differences between tumor and normal tissues ("p < 0.05, “p < 0.01, and ***p < 0.001; Abbreviation: ns: no significance).
Differential expression of GLI1 (M), GLI2 (N), and GLI3 (O) between paired tumors and normal tissues using data from the TGGA database

Figure 2. Expression profiles of GLI1, GLI2, and GLI3. Expression levels of GLI1, GLI2, and GLI3 in normal tissues (A—C), tumor cell lines
(*p<0.05, "p<0.01, and "*p < 0.001; Abbreviation: ns: no significance).
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GETx database showed significant expression of GLI1
(Figure 2J), GLI2 (Figure 2K), and GLI3 (Figure 2L) in
24, 28, and 23 types of cancer, respectively. Analysis of
paired tumor and normal tissue samples from the TCGA
database further verified significant expression of GLI1
(Figure 2M), GLI2 (Figure 2N), and GLI3 (Figure 20)
in nine, ten, and ten types of tumors, respectively.
Immunohistochemistry (IHC) results for GLI1 in
BRCA, CESC, LUNG, HNSC, OV, PRAD, READ,
PAAD, and corresponding normal tissues are shown in
Figure 3. In normal tissue, GLI1 IHC staining is
negative or shows mild intensity. In tumor tissue, GLI1
IHC staining exhibits moderate to strong intensity. By
performing immunofluorescence staining for GLI in
Rh30 and U20S cell lines, we obtained spatial
localization and expression intensity information for
GLI. Additionally, we conducted immunofluorescence
staining for GLI2 in A-549, BJ, and U20S cell lines, as
well as for GLI3 in HeLa, U-251MG, and U20S cell
lines. Through these analyses, we were able to assess
the spatial distribution and expression levels of these
genes. The immunofluorescence staining provided
insights into the localization and relative abundance of
GLI, GLI2, and GLI3 proteins in the respective cell
lines. Immunofluorescence (IF) images demonstrated
that GLI1 was primarily located in the nucleoplasm,

Patient id: 2042~ Patiénﬁ 2392
Antibody: CAB009460 Antibody: CABO09460

Patient id: 3313 e
Antibody: CAB009460 .~

followed by the cytosol (Figure 4A). Meanwhile, GLI2
was predominantly found in the nucleoplasm and
nucleoli (Figure 4B), and GLI3 was primarily found in
the nucleoplasm, followed by nucleoli and vesicles
(Figure 4C). Figure 3 (https:/www.
proteinatlas.org/search/GLI1) and Figure 4
(https://www.proteinatlas.org/search/GLI]1,
https://www.proteinatlas.org/search/GLI2,
https://www.proteinatlas.org/search/GLI3)
from v23.0. https://www.proteinatlas.org.

available

Survival analysis

Univariate Cox analysis for overall survival (OS)
demonstrated that GLI1 (Figure 5A), GLI2 (Figure 5B),
and GLI3 (Figure 5C) were risk factors for patients with
12, 8, and 6 types of cancer, respectively. Similarly,
GLI1 (Figure 5D), GLI2 (Figure 5E), and GLI3 (Figure
5F) were identified as prognostic risk factors for
patients with 9, 8, and 6 types of cancer, respectively,
using progression-free interval (PFI) analyses.
Additionally, univariate Cox analysis of disease-specific
survival (DSS) revealed that GLI1 (Figure 5G), GLI2
(Figure SH), and GLI3 (Figure 5I) were risk factors for
patients with 10, 7, and 5 types of cancer, respectively.
Kaplan-Meier analysis of GLI1 (Figure 6) indicated that

4 X 3
Patient id: Patient id: 2268 Patient < e
Antibody: CAl Antibody: CAB009460 Antibody: CAB009460
CESC Lung normal LUNG

Breast normal BRCA Cervix normal
D E o
7~
Patient id: 1711 Patient id: 797 Patient id: 2264

Antibody: CAB009460 Antibody: CAB009460 Antibody: CAB009460

Oral mucosa normal HNSC

H

Patient id: PEVEDE ‘— < Patient id: 3408
Antibody: CABO0Z460 Antibody: CAB009460

READ

Patient id: 2329
Antibody: CAB009460

Rectum normal

Patient id: 3323
Antibody: CAB009460

Ovary normal

Patient id:
Antibody:

Patient id: 2053 A
Antibody: CAB009460

ov

PRAD

Prostate normal

Patientid: 2618 -
Antibody: CAB009460

Pancreas normal

PAAD

Figure 3. Protein expression of GLI1 in normal and tumor tissues. Immunohistochemical staining of normal and tumor tissues in the
HPA database. (A) Breast normal, BRCA. (B) Cervix normal, CESC. (C) Lung normal, LUNG. (D) Oral mucosa normal, HNSC. (E) Ovary normal,
OV. (F) Prostate normal, PRAD. (G) Rectum normal, READ. (H) Pancreas normal, PAAD.
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high expression of GLI1 was associated with decreased
probability of survival in 14 types of tumors and
increased probability in three types of tumors.
Moreover, GLI1 (Figure 7A), GLI2 (Figure 7B), and
GLI3 (Figure 7C) were significantly expressed in ten,
ten, and thirteen tumor stages, respectively, suggesting
their involvement in tumor progression.

Target protein

A

Gene:GLI1
Antibody:HPA065172

Cell line:Rh30

Gene:GLI1
Antibody:HPA065172

Cell line:U20S

Gene:GLI1
Antibody:HPA068903

Cell line:Rh30

B Target protein

m
Py

Gene:GLI2
Antibody:HPAQ74275

Cell line:A-549

Gene:GLI2
Antibody:HPA074275

Cell line:BJ

Gene:GLI2
Antibody:HPAQ74275

Cell line:U20S

Target protein

C

Gene:GLI3
Antibody:HPA005534

Cell line:HelLa

Gene:GLI3
Antibody:HPA005534
Cell line:U-251MG

Gene:GLI3
Antibody:HPA005534

Cell line:U20S

Genetic variation analysis

Figure 8A displays the mutation information for
GLI1/2/3. The highest mutation rates were found in
GLI1 (Figure 8B), GLI2 (Figure 8C), and GLI3 (Figure
8D) at approximately 10%, 14%, and 13%, respectively.
Mutation site information for GLI1 (Figure 8E), GLI2

Microtubules Nucleus

Merge A

Microtubules Nucleus

Microtubules Nucleus

Figure 4. Protein subcellular localization the immunofluorescence images of (A) GLI1, (B) GLI2, and (C) GLI3 protein.
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(Figure 8F), and GLI3 (Figure 8G) are also presented.
Mutations in GLI1 were shown to affect patient
survival, reducing the probability of OS (Figure 8H),
DSS (Figure 8I), and progression-free survival (PFS)
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Figure 5. Expression of GLI1, GLI2, and GLI3 with OS, PFl, and DSS in tumor patients. Forest plots of hazard ratios of GLI1, GLI2,

and GLI3 in OS (A—=C), PFI (D—F), and DSS (G—1).

www.aging-us.com

5129

AGING



primarily

Survival probabilty

Susa

Survival probability

svan Survival probability

Survival probability

Survival probability.

Strata < group=Low = group=High

revealing that mRNA expression levels of GLI1/2/3
were positively correlated with CNV expression levels
(Figure 9C). Notably, while hypermethylation was
associated with  GLII

and GLI3,

Strata  group=Low ~ group=High

hypomethylation was primarily associated with GLI2
(Figure 9D). Figure 9E depicts the correlation between
mRNA expression of GLI1/2/3 and methylation. Single-
nucleotide wvariants (SNV) mutation rate analyses
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Figure 6. Kaplan—Meier OS curves for patients stratified by different expression levels of GLI1 in seventeen cancer types.
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showed that GLI1 and GLI3 had the highest SNV Immuno-infiltration analysis

mutation rates of 47% and 67%, respectively, in UCEC,
whereas GLI2 exhibited a 64% SNV mutation rate in
SKCM (Figure 9F). Finally, Figure 9G shows that
GLI1/2/3 were mainly associated with missense mutations.

According to the correlation analysis of the TIMER2.0
database, in most tumors, fibroblasts, endothelial cells,
and macrophages exhibited strong positive connections
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Figure 7. Correlation between GLI1 (A), GLI2 (B), and GLI3 (C) expression with clinical stage in cancer patients.
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with GLI1 (Figure 10A), GLI2 (Figure 10B), and GLI3

(Figure 10C). Furthe

(GSVA) scores for GLI1/2/3 demonstrated a positive
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correlation with CD8 naive (Figure 10D). The
correlation analysis results for GLI1/2/3 with
StromalScore, ImmuneScore, and ESTIMATEScore are

rmore, gene set variation analysis
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Figure 8. Mutation signature mapping of GLI1, GLI2, and GLI3 genes in the cBioPortal database. (A) An overview of the genomic
alternations of GLI1, GLI2, and GLI3 occurred in pan-cancer. The mutation frequency and corresponding mutation types of GLI1 (B), GLI2
(C), and GLI3 (D) in different cancers. Mutation sites of GLI1 (E), GLI2 (F), and GLI3 (G). Kaplan-Meier plot showing the comparison of OS (H),
DSS (1), and PFS (J) in cases with/without GLI1 gene alterations in the tumor.
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LIHC, LUAD, LUSC, PAAD, PRAD, READ, and
STAD (Figure 11C). GLI1 (Figure 12A), GLI2 (Figure
12B), and GLI3 (Figure 12C) were significantly
positively  correlated ~ with  methyltransferases,
particularly GLI3. Correlation analysis of GLI1 (Figure
12D), GLI2 (Figure 12E), and GLI3 (Figure 12F) with
mismatch repair (MMR) genes was also shown in the
figure.

presented in Figure 10E, with significant positive
correlations observed primarily.

Correlation analysis

In BLCA, BRCA, COAD, KIRP, LIHC, LUAD, LUSC,
PAAD, PRAD, STAD, TGCA, and THAD, GLIl1 was
primarily associated with immune-related genes (Figure
11A), while in BLCA, BRCA, COAD, HNSC, KICH,
KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, STAD,
TGCA, THAD, UVM, GLI2 was linked to immune-
related genes (Figure 11B). In contrast, GLI3 was

TMB and MSI analysis

Significant correlations were observed between GLI1

associated with immune-related genes in BRCA, LGG, (Figure 13A), GLI2 (Figure 13B), and GLI3
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Figure 9. Correlation analysis of GLI1, GLI2, and GLI3 with CNV, methylation, and mutation frequency. (A) Type of genetic
variation. (B) CNV expression of GLI1, GLI2, and GLI3 in human pan-cancer. (C) Correlation between CNV expression of GLI1, GLI2, and GLI3
and their mRNA expression. (D) Correlation between GLI1, GLI2, and GLI3 and methylation in various tumors. (E) Correlations between
GLI1, GLI2, and GLI3 mRNA expression and methylation in various tumors. (F) The mutation frequency of GLI1, GLI2, and GLI3 in various
tumors. (G) SNV oncoplot. An oncoplot showing the mutation distribution of GLI1, GLI2, and GLI3 and a classification of SNV types.
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(Figure 13C) and TMB in 17, 16, and 19 types of Drug sensitivity analysis

tumors, respectively. Similarly, significant correlations

between GLI1 (Figure 13D), GLI2 (Figure 13E), and Figure 13G presents the results from the CTRP
GLI3 (Figure 13F) and MSI were found in seven, eight, database, demonstrating that GLI2 and GLI3 were
and thirteen types of tumors, respectively. significantly and positively correlated with 30 drugs,
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Figure 10. Infiltration of immune cells in tumors. Correlation of GLI1 (A), GLI2 (B), and GLI3 (C) with tumor-infiltrating immune cells
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while GLI1 was significantly and positively correlated
with only one drug. Similarly, the GDSC database
revealed enhanced sensitivity or resistance to different
drugs linked to GLI1/G2/3 (Figure 13H). Prognostic
analysis of immunotherapy showed that in Kim cohort
2019 (Anti—-PD-1/PD-L1) and IMvigor210 cohort
2018 (Anti—PD-L1), GLI1 (Supplementary Figure 1A,
1B), GLI2 (Supplementary Figure 1C, 1D), GLI3
(Supplementary Figure 1E, 1F), GLI1/23 gene set
(Supplementary Figure 1G, 1H) were significant.

Enrichment analysis

Results from the GO analysis of similar genes revealed
their association with extracellular matrix organization,

extracellular structure organization, and external
encapsulating structure organization (Figure 14A), with
related terms including collagen-containing
extracellular matrix, focal adhesion, cell-substrate
junction, and coiled-coil domain (Figure 14A).
Similarly, the similar genes were mainly enriched in
extracellular matrix structural constituent of molecular
function (MF), growth factor binding, and platelet-
derived growth factor binding (Figure 14A). In KEGG
pathway analysis, similar genes were found to be
involved in the Hedgehog signaling pathway,
extracellular matrix (ECM)-receptor interaction, and
Wht-activated receptor activity (Figure 14B). GSEA
analysis identified mechanisms associated with GLI1
(Figure 14C), GLI2 (Figure 14D), GLI3 (Figure 14E),
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Figure 11. Coexpression of GLI1 (A), GLI2 (B), and GLI3 (C) with immune-related genes (X means P > 0.05).
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and GLI1/2/3 gene sets in different cancers, where they
were primarily linked to EMT activation.

Single-cell analysis

By utilizing different cancer single-cell datasets, we
gained an understanding of the expression distribution
of GLI1 (Figure 15A), GLI2 (Figure 15B), and GLI3
(Figure 15C) at the single-cell level and found that
GLI1, GLI2, and GLI3 were mainly highly expressed in
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fibroblasts. By integrating single-cell datasets, we
analyzed the correlation between the gene set of
GLI1/2/3 and cancer-related functional states (Figure
15D), and found that there was a correlation between
the gene set of GLI1/2/3 and different cancers and
functional states. Figure 15E specifically demonstrates
the correlation between the gene set of GLI1/2/3 and
cancer-related functional states in RB. Figure 15F
displays the expression distribution of the gene set of
GLI1/2/3 with t-SNE plot in RB.
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Figure 12. Correlation analysis of GLI1 (A), GLI2 (B), and GLI3 (C) expression with DNA methyltransferases (Red represents DNMAT1, blue
represents DNMT2, green represents DNMT3A, and purple represents DNMT3B). Correlation analysis of GLI1 (D), GLI2 (E), and GLI3 (F)
expression with MMRs genes in human pan-cancer (*P < 0.05, **P < 0.01, ***P < 0.001).
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DISCUSSION

Biomarkers are closely associated with disease
progression [21-24]. In particular, immune-related
biomarkers are most relevant to tumor progression [25,
26]. While much attention has been given to the study
of GLI1, the role of GLI2 and GLI3 in tumors has
received relatively less attention. Previous research
reports have suggested that the aberrant activation of the
Hh-GLI signaling pathway may contribute to tumor
initiation and progression by enhancing cancer cell
proliferation, stimulating stromal activation, and
promoting angiogenesis [27]. Furthermore, other
signaling pathways such as the mitogen-activated
protein kinase (MAPK) cascade, transforming growth
factor B (TGF-B) pathway, and epidermal growth factor

receptor (EGFR) pathway can also intersect and
excessively activate GLI proteins [28]. GLI proteins
induce and support tumor development through the
regulation of transcription of various oncogenic factors
[29]. GLI1 and GLI2 have been found to have
overlapping effects on tumor development, while the
relationship between GLI3 and the former two is not yet
fully understood [30-33]. To investigate the correlation
between GLI1/2/3, we conducted correlation line
analyses in tumor tissues, normal tissues, and tumor cell
lines. Our results showed significant correlations among
them in most tumor and normal tissues, but less so in
tumor cell lines, possibly due to their higher expression
levels in tumor and normal tissues and lower expression
levels in cell lines. The significant correlation observed
in tumor tissues underscores the importance of studying
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their roles in cancer. Moreover, our findings indicate
that GLI1/2/3 are significantly expressed in most
tumors, and their high expression levels are associated
with poor prognosis.

GLI1 enhances tumor drug resistance through inducible
glucuronidation [34]. Downregulation of GLI1 in

colorectal cancer inhibits cancer cell proliferation while
involving activation of Wnt signaling [35]. In a study of
advanced lung adenocarcinoma, GLI1 mRNA and GLI3
mRNA expression were associated with lower 5-year
survival rates in patients [36]. In gastric cancer, GLI2
has been identified as an intrinsic regulator of
programmed cell death ligand 1 (PD-L1) expression in
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tumor cells that promote tumor growth by inhibiting the
anti-tumor response [37]. Human epidermal growth
factor receptor 2 (HER2) -mediated GLI2 stabilization
promotes anoikis resistance and metastasis of breast
cancer cells [38]. Enhanced GLI2 transcriptional
activity promotes tumor angiogenesis and cancer
stemness in renal cell carcinoma [39]. PI3K/AKT can
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activate GLI1 and GLI2 through the non-classical Hh
signaling pathway to enhance renal cell carcinoma's
proliferation and clonogenic ability. Hence, the
combined inhibition of GLI1 and GLI2 using the
GANT61 inhibitor and AKT inhibitor Perifosine has
been shown to inhibit cancer cell growth and promote
apoptosis [33]. GLI3 inhibition decreases stemness, cell
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Figure 15. Single-cell analysis. The expression distribution of GLI1 (A), GLI2 (B), and GLI3 (C) at the single-cell level. The correlation
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related functional states in RB (E). The expression distribution of the gene set of GLI1/2/3 with t-SNE plot in RB is displayed (F). T-SNE
describes the distribution of cells, where each point represents a single cell, and the color of the point indicates the expression level of the

gene list in that cell.
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proliferation, and invasion in oral squamous cell
carcinoma [40]. Excessive activation of GLI3 promotes
prostate cancer growth [41]. Downregulation of GLI3
expression mediates chemotherapy resistance in acute
myeloid leukemia [42]. Furthermore, we observed low
mutation rates in GLI1/2/3, indicating that their
mutations are not major factors in tumorigenesis. We
conducted preliminary investigations of their genetic
alterations by analyzing the correlations between
GLI1/2/3 and CNV, methylation patterns, MMR genes,
and methyltransferases. Our findings suggest that
inhibiting GLI activity could interfere with almost all
types of DNA repair in human cancers, underscoring
the potential importance of Hh/GLI function in enabling
tumor cells to resist potentially lethal DNA damage
induced by chemotherapy and radiation therapy.[43].

We conducted an immune infiltration analysis of
GLI1/2/3, and our results revealed their strongest
positive correlation with cancer-associated fibroblasts
(CAFs) in tumors, followed by endothelial cells and
macrophages. Furthermore, correlations with different T
cells were also observed. CAFs in primary and
metastatic tumors are highly versatile, plastic, and
resilient cells that actively contribute to cancer
progression through complex interactions with other
cell types in the tumor microenvironment. CAFs
undergo epigenetic alterations and release secretory
factors, exosomes, and metabolites that affect tumor
angiogenesis, immunology, and metabolism. These
processes are in addition to the production of
extracellular matrix components that contribute to the
structure and function of the tumor stroma.[44]. It is a
key player in the tumor immune microenvironment [5].
CAFs may serve as a potential source of Hh ligands in
the tumor stroma of oral squamous cell carcinoma.
Moreover, CAFs may respond to Hh signaling by
activating nuclear GLI-1, thereby promoting its
translocation into the nucleus [45]. Extraterminal
domain (BET) proteins have been found to promote the
growth of pancreatic ductal adenocarcinoma (PDAC)
cells by directly interacting with members of the GLI
transcription factor family and regulating their activity.
Inhibition of the BET bromodomain reduces the content
of tumor-associated fibroblasts in the tumor [46]. By
inhibiting Hh signaling, the proliferation of CAF could
be inhibited, and tumor immune tolerance and drug
resistance could be attenuated [47]. Endothelial cells
and fibroblasts in tumors can work together to enhance
tumor angiogenesis and act as amplifiers [48].
Macrophages have a critical role in maintaining
physiological homeostasis and immunity. However, in
the context of cancer, they lose their protective function
and become tumor-associated macrophages (TAMs),
promoting tumor growth and invasion [49]. This is
accompanied by an elevation in immunosuppressive

TGF levels in the peritumor skin [50]. In this context,
the Hh effector and zinc finger transcription factor GLI2
can directly activate TGFB expression in human Treg
cells [51]. These findings suggest that GLI2 may impair
T-cell activation and function by altering the gene
expression profile in these cells. Moreover, GLI1/2/3
were found to be positively correlated with immune
regulatory genes and checkpoint genes in most tumors.
These results suggest that GLI1/2/3 likely plays a role
in cancer progression and prognosis through
interactions with the tumor microenvironment. Notably,
TMB and MSI have been associated with cancer
immunotherapy [52]. Analysis of GLI1/2/3 and their
correlation further extends their role in immunity.

To explore the impact of the GLI family on cancer, we
investigated how the GLI1, GLI2, GLI3, and GLI1/2/3
gene sets affect tumors. Surprisingly, our findings
revealed that GLI1, GLI2, and GLI3 promote EMT in
most tumors, with the GLI1/2/3 gene set amplifying this
effect. EMT remodels cell-cell and cell-extracellular
matrix interactions, separating epithelial cells from each
other and the underlying basement membrane while
activating a novel transcriptional program to promote
mesenchymal fate. In the context of tumors, EMT gives
cancer cells a greater potential for tumor initiation and
metastasis, as well as greater resistance to
immunotherapy [53]. Interfering with GLI1/2 expression
inhibits TGF-B1-induced EMT in neuroblastoma cells
[54]. Pcaf inhibits hepatocellular carcinoma metastasis by
targeting GLI-1 to suppress EMT [55]. Hedgehog-
GLI (Hh-GLI) promotes EMT in lung squamous cell
carcinoma [56]. Suppression of GLI1 expression may
inhibit the migration and invasion of HCC cells by down-
regulating the expression and activation of MMP-2 and
MMP-9, as well as blocking EMT [57]. EMT cells
increase breast cancer metastasis through paracrine GLI
activation in adjacent tumor cells [58]. The VEGF-
C/NRP2/GLI axis is a novel and conserved paracrine
means by which EMT cells promote proliferation,
migration, and invasion of epithelial breast cancer cells
[59]. GLI1 facilitates the EMT induced by TGF-B1 in
gastric cancer [60]. Overexpression of SASHI1 in
hepatocellular carcinoma cells was found to inhibit SHH,
SMO, PTC, and GLI1 expression, thereby reducing
proliferation, migration/invasion, and EMT progression
[61]. The function of Hh-GLI is necessary for the growth,
recurrence, and metastasis of human colon cancer
xenografts. This pathway induces an epithelial-to-
mesenchymal transition, forming solid tumors [62].
Therefore, further studies on the mechanism by which
GLI1/2/3 affects tumors via EMT are warranted.

Most medicines currently being tested to inhibit Hh
signaling in clinical settings target Smo proteins as their
primary focus. However, the development of Smo

www.aging-us.com

5140

AGING



inhibitors is limited by molecular abnormalities
downstream of the Smo level in the Hh signaling
pathway and cross-activation of other pathways with the
Hh signaling pathway [63]. Since GLI1/2/3 are
downstream transcription factors of the Hh signaling
pathway, investigating drugs that target them is
essential. By combining drug and gene expression data
from the CTRP and GDSC databases, we have
successfully identified drugs that can jointly target
multiple members of this gene set. This approach is
distinct from using a single drug to target a single gene.
The recent approval of the first Hh inhibitor, glasdegib,
for use in combination with low-dose cytarabine
highlights the clinically relevant role of the Hh-GLI
signaling pathway in treating acute myeloid leukemia
(AML) patients unsuitable for high-dose chemotherapy.
The therapeutic efficacy of this combination therapy
underscores the importance of targeting the Hh-GLI
signaling pathway in this fatal leukemia [64]. The
combination therapy of HDACI1 and aPKC inhibitors
has been shown to prevent GLI1 nuclear maturation and
effectively antagonize basal cell carcinoma (BCC) at
lower doses than either agent alone. Specifically, an
ATP-competitive small molecule inhibitor of aPKC,
used in conjunction with vorinostat, is highly effective in
disrupting the aPKC-HDACI axis in somatic cell
carcinoma [65]. PI3K-mTORCI1 inhibitor NVP BEZ235
(BEZ235) treatment of OE19 cells resulted in GLI1 and
Ihh downregulation. It reduces OE19 cell survival
in vitro, which can be utilized to treat esophageal cancer
[66]. The combination of NVP-LDE-225 and NVP-
BEZ-235 was found to inhibit the transcription and
expression of GLI in glioblastoma-initiating cells
(GICs). Compared to single agents alone, this
combination showed superior efficacy in inhibiting
tumor growth, regulating the expression of pluripotency-
promoting factors and stem cell markers, modulating cell
cycle and proliferation, as well as regulating EMT [67].

In summary, our findings in pan-cancer studies suggest
that GLI1/2/3 primarily play a pro-cancer role. Immune
microenvironment mapping reveals that they are
associated with cancer-related fibroblasts, endothelial
cells, and macrophages, serving as
immunosuppressants. Moreover, they can promote
cancer progression through EMT. Targeting GLI1/2/3
may represent a promising therapeutic approach for
treating cancer patients in the future.

MATERIALS AND METHODS
Correlation analysis between GLI1/2/3
Data on tumor tissue, normal tissue, and tumor cell lines

were collected from the UCSC Xena
(https://xena.ucsc.edw/), Genotype-Tissue Expression

(GTEx; https://gtexportal.org), and Cancer Cell Line
Encyclopedia (CCLE;
https://sites.broadinstitute.org/ccle/datasets) databases.
Tumor tissue data was obtained from The Cancer
Genome Atlas (TCGA; https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga)
database within the UCSC Xena database. Correlation
coefficients between GLI1 and GLI2, GLI1 and GLI3,
and GLI2 and GLI3 were calculated using the Spearman
algorithm for normal tissues, tumor cell lines, and tumor
tissues, respectively, with p-values < 0.05 considered
statistically significant.

Expression and prognostic analysis of GLI1/2/3

Many studies have been conducted to explore cancer-
related biomarkers using the TCGA database [68—71].
We conducted a comprehensive analysis of GLI1/2/3
expression levels in normal tissues, tumor cell lines, and
tumor tissues using data from GTEx, CCLE, and TCGA
databases, respectively. Additionally, we analyzed the
differential expression of GLI1/2/3 between tumor and
normal tissues by combining TCGA tumor data and
GTEx normal tissue data. Paired tumor tissues and
normal tissues from TCGA were used to analyze the
differential expression levels of GLI1/2/3 between
paired samples. Protein expression profiles of human
tissue types were obtained from the Human Protein Atlas
(HPA) database (Human Protein Atlas
https://proteinatlas.org), and we analyzed the protein
expression level of GLI1 wusing this database.
Immunofluorescence staining images were also used to
demonstrate the subcellular localization of GLI1, GLI2,
and GLI3 in cancer cells. We employed univariate Cox
(unicox) analysis to evaluate their predictive
performance with respect to OS, DSS, and PFI. UniCox
analysis is commonly used to establish the predictive
profile of tumor-associated biomarkers in various studies
[72—74]. In addition, Kaplan-Meier analysis was used to
assess the effect of GLI1 on OS, and the expression of
GLI1/2/3 at different stages was further analyzed.

Mutation profiles of GLI1/2/3

The cBioPortal (https://www.cbioportal.org/) database
facilitates the exploration of multidimensional cancer
gene set data, allowing visual analysis of different
genes, samples, and data types [75]. Detailed mutation
information for GLI1/2/3 was analyzed using this
database. The impact of mutations on OS was also
analyzed.

CNV, methylation, and mutation frequency analysis

We analyzed the CNV type, CNV expression,
methylation level, and mutation frequency of GLI1/2/3
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in different tumors based on genetic information from
the TCGA database. We also utilized the Spearman
algorithm to further analyze the correlation of GLI1/2/3
mRNA expression with CNV and methylation.

Immuno-infiltration analysis

The TIMER2.0 database (http://timer.cistrome.org/) is
utilized to evaluate immune cell infiltration in tumor
tissue using RNA-Seq expression profiling data and
analyze the correlation between gene expression and
immune cells. We have downloaded the correlation
between immune cells and GLI1/2/3 in various cancers
from the TIMER2.0 database, and visualized the results
using the “ggplot2” R package. The Spearman
algorithm was employed to calculate the GSVA score
for GLI1/2/3 and determine the correlation between the
GSVA score and immune cells [76]. Furthermore, the
ESTIMATES R package calculates ESTIMATEScore,
ImmuneScore, and StromalScore for each tumor. Using
the Spearman algorithm, we analyzed the correlation
between these three scores and GLI1/2/3.

Correlation analysis of GLI1/2/3 and other genes

We calculated the correlations between GLI1/2/3 and
immune-related genes, and further analyzed their
correlations with methyltransferase and MMR genes.

Correlation analysis of GLI1/2/3 with TMB and MSI

Based on the TCGA data, we calculated the TMB and
MSI for each tumor sample. TMB is a measurement of
the number of somatic mutations per megabase of the
genome, while MSI reflects a defect in DNA mismatch
repair mechanisms that result in the accumulation of
errors in repetitive sequences. We employed the
Spearman algorithm to calculate the correlations
between GLI1/2/3 and TMB/MSI. These analyses can
provide insights into the potential relationship between
HH-GLI signaling pathway activation and genomic
instability in various types of cancer.

Drug sensitivity analysis

We utilized drug and gene expression data from the

Cancer Therapeutics Response Portal (CTRP;
https://portals.broadinstitute.org/ctrp/) and Genomics of
Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org) databases to identify
drugs that could co-target GLI1/2/3. Specifically, the
top 30 drugs that could co-target GLI1/2/3 were
identified using gene set cancer analysis (GSCA;
http://bioinfo.life.hust.edu.cn/GSCA) [77]. We analyzed
the prognostic value of GLI1, GLI2, GLI3 in the
GSE135222 and IMvigor210 datasets using Biomarker

Exploration of Solid Tumors
database(https://rookieutopia.com/app_direct/BEST/).

Enrichment analysis

We used the GEPIA2 (gepia2.cancer-pku.cn) database to
search for genes associated with GLI1/2/3 in 33 different
tumors. Additionally, we performed GO and KEGG
analyses using the clusterprofiler R package. To further
analyze the gene sets, we calculated enrichment scores
separately for GLI1, GLI2, GLI3, and GLI1/2/3 using
GSVA and categorized them into high and low
expression groups based on median scores. Background
gene sets for enrichment analysis were obtained from
hallmark gene sets. Differential analysis of samples from
the high and low expression groups was then conducted
using the limma R package. Finally, GSEA analysis was
performed to identify potential biological pathways that
may be affected by GLI1/2/3 expression [78].

Single-cell analysis

To analyze the expression of GLI1/2/3 at the single-cell
level, we used the IMMUcan SingleCell RNAseq
Database (https://immucanscdb.vital-it.ch/) to analyze
their expression in different cancer single-cell datasets.
Furthermore, we also utilized the CancerSEA database
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) to
investigate the correlation between the gene set of
GLI1/2/3 and 14 cancer-related functional states.
CancerSEA is a multifunctional website aimed at
comprehensively exploring different functional states of
cancer cells at the single-cell level, covering 14 cellular
functional states including angiogenesis, apoptosis, cell
cycle, differentiation, DNA damage, DNA repair, EMT,

hypoxia, inflammation, invasion, metastasis,
proliferation, quiescence, stemness.
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Supplementary Figure 1. Prognostic analysis of immunotherapy cohort. Prognostic analysis of GLI1 (A, B), GLI2 (C, D), GLI3 (E, F),
GLI1/2/3 gene set (G, H) in Kim cohort 2019 (Anti-PD-1/PD-L1) and IMvigor210 cohort 2018 (Anti-PD-L1).
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