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ABSTRACT 

The Hedgehog (Hh) signaling pathway has been implicated in the pathogenesis of various cancers. However, the 
roles of the downstream GLI family (GLI1, GLI2, and GLI3) in tumorigenesis remain elusive. This study aimed to 
unravel the genetic alterations of GLI1/2/3 in cancer and their association with the immune microenvironment 
and related signaling pathways. Firstly, we evaluated the expression profiles of GLI1/2/3 in different cancer 
types, analyzed their prognostic and predictive values, and assessed their correlation with tumor-infiltrating 
immune cells. Secondly, we explored the relationships between GLI1/2/3 and genetic mutations, epigenetic 
modifications, and clinically relevant drugs. Finally, we performed enrichment analysis to decipher the 
underlying mechanisms of GLI1/2/3 in cancer initiation and progression. Our results revealed that the 
expression levels of GLI1/2/3 were positively correlated in most cancer tissues, suggesting a cooperative role of 
these factors in tumorigenesis. We also identified tissue-specific expression patterns of GLI1/2/3, which may 
reflect the distinct functions of these factors in different cell types. Furthermore, GLI1/2/3 expression displayed 
significant associations with poor prognosis in several cancers, indicating their potential as prognostic 
biomarkers and therapeutic targets. Importantly, we found that GLI1/2/3 modulated the immune 
microenvironment by regulating the recruitment, activation, and polarization of cancer-associated fibroblasts, 
endothelial cells, and macrophages. Additionally, functional enrichment analyses indicated that GLI1/2/3 are 
involved in the regulation of epithelial-mesenchymal transition (EMT). Together, our findings shed new light on 
the roles of GLI1/2/3 in tumorigenesis and provide a potential basis for the development of novel therapeutic 
strategies targeting GLI-mediated signaling pathways in cancer. 
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INTRODUCTION 
 
The adaptive and innate immune systems collaborate to 
create a sophisticated immune surveillance network that 
detects and eliminates abnormal cells carrying genetic 
mutations, thereby preventing the emergence of cancer. 
However, tumorigenesis driven by clonal selection and 
epigenetic changes involves multiple molecular 
mechanisms that ultimately culminate in the 
suppression of anti-tumor immunity and the evasion of 
tumor cells from immune recognition and elimination 
[1]. Remarkably, immune checkpoint inhibitors have 
demonstrated remarkable therapeutic efficacy by 
restoring the anti-tumor immune response in various 
metastatic cancers [2–4]. The emergence of cancer 
immunotherapy has revolutionized the field of oncology 
by providing a promising avenue for cancer treatment. 
Despite the remarkable effectiveness demonstrated in 
certain patients, the majority of patients exhibit intrinsic 
or acquired resistance to these interventions [5]. 
Numerous investigators are actively pursuing novel 
therapeutic approaches for the treatment of tumors [6, 
7]. It is imperative, therefore, to elucidate the 
underlying mechanisms involved in cancer 
pathogenesis. 
 
The Hedgehog (Hh) signaling pathway plays a crucial 
role in mammalian embryonic development, as well as 
in the growth and differentiation of cells following 
embryogenesis. Moreover, dysregulated activation of 
this pathway is implicated in the pathogenesis of 
malignant neoplasms affecting almost all human organ 
systems [8, 9]. GLI1, GLI2, and GLI3 are key 
downstream effectors of the Hh signaling pathway, 
acting as nuclear transcription factors that bind to 
promoters to regulate target gene expression. Originally 
discovered as highly expressed genes in human gliomas, 
the GLI family members all contain five C2H2 
Krüppel-like zinc finger domains [10–12]. GLI1 
contains only an activating C-terminal domain, whereas 
GLI2 and GLI3 possess both activating C-terminal 
domains and inhibitory N-terminal domains [13]. 
Despite sharing over 1,000 amino acids and functioning 
as zinc finger transcription factors, GLI1 functions 
primarily as a transcriptional activator, while GLI2 and 
GLI3 exhibit both activating and repressive properties 
[14]. GLI proteins are localized in both the nucleus and 
cytoplasmic compartments, where they are incorporated 
into a multimolecular complex that associates with the 
cytoskeleton [15]. 
 
GLI is implicated in the regulation of mammalian 
tumorigenesis by inducing factors associated with tumor 
stem cells, promoting cancer cell proliferation through 
cell cycle-related proteins, inhibiting apoptosis via 
direct binding to anti-apoptotic promoters, and 

upregulating Smad-interacting protein-1 (Sip1), which 
drives epithelial-mesenchymal transition (EMT). The 
expression of Sip1, an EMT-associated transcription 
factor regulator, plays a crucial role in tumor invasion 
and metastasis [14–18]. While studies investigating the 
role of GLI family genes in cancer have primarily 
focused on GLI1, the contribution of GLI2/3 to 
tumorigenesis, especially in the context of the tumor 
immune microenvironment (TIME), remains largely 
unknown. The TIME consists of a diverse array of 
immune components, including tumor cells, immune 
cells, and cytokines. The interplay among these immune 
constituents ultimately determines the immune status 
that can either promote or suppress tumor growth [19]. 
Extensive research has demonstrated the close 
association between TIME and various aspects of tumor 
development, recurrence, and metastasis. Activation of 
the Hh signaling pathway plays a pivotal role in 
modulating TIME, thereby influencing tumor initiation, 
progression, and metastasis [20]. Given the important 
role of GLI1/2/3 in the Hh signaling pathway. 
Systematically understanding their mechanisms in 
cancer and the immune microenvironment is necessary. 
 
In this study, we conducted comprehensive analyses of 
the expression patterns, prognostic value, clinical 
characteristics, and genetic alterations of GLI1/2/3. We 
systematically investigated the mechanisms underlying 
their modulation of the tumor immune 
microenvironment, including immune infiltration, gene 
correlations, microsatellite instability (MSI), and tumor 
mutational burden (TMB). Furthermore, Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Gene Set Enrichment Analysis (GSEA) 
were utilized to explore the biological processes 
affected by GLI1/2/3 in tumors. Finally, we identified 
potential drug targets that could simultaneously 
modulate these factors. Our results provide novel 
insights into the molecular mechanisms underlying the 
involvement of GLI1/2/3 in tumor development and 
their impact on the immune microenvironment. This 
study may also facilitate future research efforts focused 
on GLI1/2/3 as promising targets for cancer 
immunotherapy. 
 
RESULTS 
 
Correlation analysis 
 
Spearman correlation analyses of normal tissues from 
the GTEx database revealed that GLI1 and GLI2 
exhibited a significant positive correlation in 22 of the 
examined tissues (Figure 1A). GLI1 and GLI3 also 
showed a significant positive correlation in 16 of the 
tissues, although in 5 cases the correlation was negative 
(Figure 1B). Meanwhile, GLI2 and GLI3 displayed a 
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significant positive correlation in 24 of the analyzed 
normal tissues (Figure 1C). Similar analyses carried out 
on tumor cell lines indicated that GLI1 and GLI2 were 
significantly positively correlated in 15 of the tested cell 
lines (Figure 1D), while GLI1 and GLI3 exhibited 
significant positive correlations in 6 cell lines, but a 
negative correlation in 1 cell line (Figure 1E). 
Additionally, GLI2 and GLI3 displayed a significant 
positive correlation in 9 of the examined tumor cell 
lines (Figure 1F). Moreover, Spearman correlation 
analyses conducted on tumor tissues obtained from 
TCGA demonstrated significant positive correlations 
between GLI1 and GLI2 in 30 tumor tissues, with only 

one tissue showing a significant negative correlation 
(Figure 1G). GLI1 and GLI3 were significantly 
positively correlated in 21 tumor tissues but negatively 
correlated in one tissue (Figure 1H). Finally, GLI2 and 
GLI3 exhibited a significant positive correlation in 29 
tumor tissues (Figure 1I). 
 
Expression level analysis results 
 
Data from the GTEx database revealed that GLI1 
(Figure 2A) and GLI2 (Figure 2B) were most highly 
expressed in ovarian tissues, whereas GLI3 (Figure 2C) 
exhibited peak expression in uterine samples. In tumor 

 

 
 
Figure 1. Correlation between GLI1, GLI2, and GLI3. Correlation of (A) GLI1 and GLI2, (B) GLI1 and GLI3, (C) GLI2 and GLI3 in normal 
tissues. Correlation of (D) GLI1 and GLI2, (E) GLI1 and GLI3, (F) GLI2 and GLI3 in tumor cell lines. Correlation of (G) GLI1 and GLI2, (H) GLI1 
and GLI3, (I) GLI2 and GLI3 in tumor tissues. 
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cell lines, bone tumors displayed the highest expression 
of both GLI1 (Figure 2D) and GLI2 (Figure 2E), 
whereas skin tumor cell lines exhibited the greatest 
expression of GLI3 (Figure 2F). Regarding tumor 

tissues, TGCT, MESO, and SKCM exhibited the 
highest levels of GLI1 (Figure 2G), GLI2 (Figure 2H), 
and GLI3 (Figure 2I), respectively. Combining data 
from TCGA tumor samples and normal tissues from the 

 

 
 
Figure 2. Expression profiles of GLI1, GLI2, and GLI3. Expression levels of GLI1, GLI2, and GLI3 in normal tissues (A–C), tumor cell lines 
(D–F), and tumor tissues (G–I) using data from the GTEx database. Combined TCGA and GTEx data of GLI1 (J), GLI2 (K), and GLI3 (L) 
expression differences between tumor and normal tissues (*p < 0.05, **p < 0.01, and ***p < 0.001; Abbreviation: ns: no significance). 
Differential expression of GLI1 (M), GLI2 (N), and GLI3 (O) between paired tumors and normal tissues using data from the TGGA database 
(*p < 0.05, **p < 0.01, and ***p < 0.001; Abbreviation: ns: no significance). 
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GETx database showed significant expression of GLI1 
(Figure 2J), GLI2 (Figure 2K), and GLI3 (Figure 2L) in 
24, 28, and 23 types of cancer, respectively. Analysis of 
paired tumor and normal tissue samples from the TCGA 
database further verified significant expression of GLI1 
(Figure 2M), GLI2 (Figure 2N), and GLI3 (Figure 2O) 
in nine, ten, and ten types of tumors, respectively. 
Immunohistochemistry (IHC) results for GLI1 in 
BRCA, CESC, LUNG, HNSC, OV, PRAD, READ, 
PAAD, and corresponding normal tissues are shown in 
Figure 3. In normal tissue, GLI1 IHC staining is 
negative or shows mild intensity. In tumor tissue, GLI1 
IHC staining exhibits moderate to strong intensity. By 
performing immunofluorescence staining for GLI in 
Rh30 and U2OS cell lines, we obtained spatial 
localization and expression intensity information for 
GLI. Additionally, we conducted immunofluorescence 
staining for GLI2 in A-549, BJ, and U2OS cell lines, as 
well as for GLI3 in HeLa, U-251MG, and U2OS cell 
lines. Through these analyses, we were able to assess 
the spatial distribution and expression levels of these 
genes. The immunofluorescence staining provided 
insights into the localization and relative abundance of 
GLI, GLI2, and GLI3 proteins in the respective cell 
lines. Immunofluorescence (IF) images demonstrated 
that GLI1 was primarily located in the nucleoplasm, 

followed by the cytosol (Figure 4A). Meanwhile, GLI2 
was predominantly found in the nucleoplasm and 
nucleoli (Figure 4B), and GLI3 was primarily found in 
the nucleoplasm, followed by nucleoli and vesicles 
(Figure 4C). Figure 3 (https://www. 
proteinatlas.org/search/GLI1) and Figure 4 
(https://www.proteinatlas.org/search/GLI1, 
https://www.proteinatlas.org/search/GLI2, 
https://www.proteinatlas.org/search/GLI3) available 
from v23.0. https://www.proteinatlas.org. 
 
Survival analysis 
 
Univariate Cox analysis for overall survival (OS) 
demonstrated that GLI1 (Figure 5A), GLI2 (Figure 5B), 
and GLI3 (Figure 5C) were risk factors for patients with 
12, 8, and 6 types of cancer, respectively. Similarly, 
GLI1 (Figure 5D), GLI2 (Figure 5E), and GLI3 (Figure 
5F) were identified as prognostic risk factors for 
patients with 9, 8, and 6 types of cancer, respectively, 
using progression-free interval (PFI) analyses. 
Additionally, univariate Cox analysis of disease-specific 
survival (DSS) revealed that GLI1 (Figure 5G), GLI2 
(Figure 5H), and GLI3 (Figure 5I) were risk factors for 
patients with 10, 7, and 5 types of cancer, respectively. 
Kaplan-Meier analysis of GLI1 (Figure 6) indicated that 

 

 
 
Figure 3. Protein expression of GLI1 in normal and tumor tissues. Immunohistochemical staining of normal and tumor tissues in the 
HPA database. (A) Breast normal, BRCA. (B) Cervix normal, CESC. (C) Lung normal, LUNG. (D) Oral mucosa normal, HNSC. (E) Ovary normal, 
OV. (F) Prostate normal, PRAD. (G) Rectum normal, READ. (H) Pancreas normal, PAAD. 
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high expression of GLI1 was associated with decreased 
probability of survival in 14 types of tumors and 
increased probability in three types of tumors. 
Moreover, GLI1 (Figure 7A), GLI2 (Figure 7B), and 
GLI3 (Figure 7C) were significantly expressed in ten, 
ten, and thirteen tumor stages, respectively, suggesting 
their involvement in tumor progression. 

Genetic variation analysis 
 
Figure 8A displays the mutation information for 
GLI1/2/3. The highest mutation rates were found in 
GLI1 (Figure 8B), GLI2 (Figure 8C), and GLI3 (Figure 
8D) at approximately 10%, 14%, and 13%, respectively. 
Mutation site information for GLI1 (Figure 8E), GLI2 

 

 
 

Figure 4. Protein subcellular localization the immunofluorescence images of (A) GLI1, (B) GLI2, and (C) GLI3 protein. 
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(Figure 8F), and GLI3 (Figure 8G) are also presented. 
Mutations in GLI1 were shown to affect patient 
survival, reducing the probability of OS (Figure 8H), 
DSS (Figure 8I), and progression-free survival (PFS) 

(Figure 8J). Hete amp was the most common copy 
number variation (CNV) type observed in tumors 
(Figure 9A). CNV expression levels of GLI1/2/3 are 
illustrated in Figure 9B, with correlation analysis 

 

 
 
Figure 5. Expression of GLI1, GLI2, and GLI3 with OS, PFI, and DSS in tumor patients. Forest plots of hazard ratios of GLI1, GLI2, 
and GLI3 in OS (A–C), PFI (D–F), and DSS (G–I). 
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revealing that mRNA expression levels of GLI1/2/3 
were positively correlated with CNV expression levels 
(Figure 9C). Notably, while hypermethylation was 
primarily associated with GLI1 and GLI3, 

hypomethylation was primarily associated with GLI2 
(Figure 9D). Figure 9E depicts the correlation between 
mRNA expression of GLI1/2/3 and methylation. Single-
nucleotide variants (SNV) mutation rate analyses 

 

 
 

Figure 6. Kaplan–Meier OS curves for patients stratified by different expression levels of GLI1 in seventeen cancer types. 
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showed that GLI1 and GLI3 had the highest SNV 
mutation rates of 47% and 67%, respectively, in UCEC, 
whereas GLI2 exhibited a 64% SNV mutation rate in 
SKCM (Figure 9F). Finally, Figure 9G shows that 
GLI1/2/3 were mainly associated with missense mutations. 

Immuno-infiltration analysis 
 
According to the correlation analysis of the TIMER2.0 
database, in most tumors, fibroblasts, endothelial cells, 
and macrophages exhibited strong positive connections 

 

 
 

Figure 7. Correlation between GLI1 (A), GLI2 (B), and GLI3 (C) expression with clinical stage in cancer patients. 
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with GLI1 (Figure 10A), GLI2 (Figure 10B), and GLI3 
(Figure 10C). Furthermore, gene set variation analysis 
(GSVA) scores for GLI1/2/3 demonstrated a positive 

correlation with CD8_naïve (Figure 10D). The 
correlation analysis results for GLI1/2/3 with 
StromalScore, ImmuneScore, and ESTIMATEScore are 

 

 
 
Figure 8. Mutation signature mapping of GLI1, GLI2, and GLI3 genes in the cBioPortal database. (A) An overview of the genomic 
alternations of GLI1, GLI2, and GLI3 occurred in pan-cancer. The mutation frequency and corresponding mutation types of GLI1 (B), GLI2 
(C), and GLI3 (D) in different cancers. Mutation sites of GLI1 (E), GLI2 (F), and GLI3 (G). Kaplan-Meier plot showing the comparison of OS (H), 
DSS (I), and PFS (J) in cases with/without GLI1 gene alterations in the tumor. 
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presented in Figure 10E, with significant positive 
correlations observed primarily. 
 
Correlation analysis 
 
In BLCA, BRCA, COAD, KIRP, LIHC, LUAD, LUSC, 
PAAD, PRAD, STAD, TGCA, and THAD, GLI1 was 
primarily associated with immune-related genes (Figure 
11A), while in BLCA, BRCA, COAD, HNSC, KICH, 
KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, STAD, 
TGCA, THAD, UVM, GLI2 was linked to immune-
related genes (Figure 11B). In contrast, GLI3 was 
associated with immune-related genes in BRCA, LGG, 

LIHC, LUAD, LUSC, PAAD, PRAD, READ, and 
STAD (Figure 11C). GLI1 (Figure 12A), GLI2 (Figure 
12B), and GLI3 (Figure 12C) were significantly 
positively correlated with methyltransferases, 
particularly GLI3. Correlation analysis of GLI1 (Figure 
12D), GLI2 (Figure 12E), and GLI3 (Figure 12F) with 
mismatch repair (MMR) genes was also shown in the 
figure. 
 
TMB and MSI analysis 
 
Significant correlations were observed between GLI1 
(Figure 13A), GLI2 (Figure 13B), and GLI3

 

 
 
Figure 9. Correlation analysis of GLI1, GLI2, and GLI3 with CNV, methylation, and mutation frequency. (A) Type of genetic 
variation. (B) CNV expression of GLI1, GLI2, and GLI3 in human pan-cancer. (C) Correlation between CNV expression of GLI1, GLI2, and GLI3 
and their mRNA expression. (D) Correlation between GLI1, GLI2, and GLI3 and methylation in various tumors. (E) Correlations between 
GLI1, GLI2, and GLI3 mRNA expression and methylation in various tumors. (F) The mutation frequency of GLI1, GLI2, and GLI3 in various 
tumors. (G) SNV oncoplot. An oncoplot showing the mutation distribution of GLI1, GLI2, and GLI3 and a classification of SNV types. 
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(Figure 13C) and TMB in 17, 16, and 19 types of 
tumors, respectively. Similarly, significant correlations 
between GLI1 (Figure 13D), GLI2 (Figure 13E), and 
GLI3 (Figure 13F) and MSI were found in seven, eight, 
and thirteen types of tumors, respectively. 

Drug sensitivity analysis 
 
Figure 13G presents the results from the CTRP 
database, demonstrating that GLI2 and GLI3 were 
significantly and positively correlated with 30 drugs, 

 

 
 
Figure 10. Infiltration of immune cells in tumors. Correlation of GLI1 (A), GLI2 (B), and GLI3 (C) with tumor-infiltrating immune cells 
according to different algorithms. (D) Correlation of GLI1, GLI2, and GLI3 with different species of immune cell subtypes. (E) Relationship 
between GLI1, GLI2, and GLI3 and three scores such as ESTIMATEScore, ImmuneScore, and StromalScore in different cancer types. 
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while GLI1 was significantly and positively correlated 
with only one drug. Similarly, the GDSC database 
revealed enhanced sensitivity or resistance to different 
drugs linked to GLI1/G2/3 (Figure 13H). Prognostic 
analysis of immunotherapy showed that in Kim cohort 
2019 (Anti−PD−1/PD−L1) and IMvigor210 cohort 
2018 (Anti−PD−L1), GLI1 (Supplementary Figure 1A, 
1B), GLI2 (Supplementary Figure 1C, 1D), GLI3 
(Supplementary Figure 1E, 1F), GLI1/23 gene set 
(Supplementary Figure 1G, 1H) were significant. 
 
Enrichment analysis 
 
Results from the GO analysis of similar genes revealed 
their association with extracellular matrix organization, 

extracellular structure organization, and external 
encapsulating structure organization (Figure 14A), with 
related terms including collagen-containing 
extracellular matrix, focal adhesion, cell-substrate 
junction, and coiled-coil domain (Figure 14A). 
Similarly, the similar genes were mainly enriched in 
extracellular matrix structural constituent of molecular 
function (MF), growth factor binding, and platelet-
derived growth factor binding (Figure 14A). In KEGG 
pathway analysis, similar genes were found to be 
involved in the Hedgehog signaling pathway, 
extracellular matrix (ECM)-receptor interaction, and 
Wnt-activated receptor activity (Figure 14B). GSEA 
analysis identified mechanisms associated with GLI1 
(Figure 14C), GLI2 (Figure 14D), GLI3 (Figure 14E), 

 

 
 

Figure 11. Coexpression of GLI1 (A), GLI2 (B), and GLI3 (C) with immune-related genes (X means P > 0.05). 
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and GLI1/2/3 gene sets in different cancers, where they 
were primarily linked to EMT activation. 
 
Single-cell analysis 
 
By utilizing different cancer single-cell datasets, we 
gained an understanding of the expression distribution 
of GLI1 (Figure 15A), GLI2 (Figure 15B), and GLI3 
(Figure 15C) at the single-cell level and found that 
GLI1, GLI2, and GLI3 were mainly highly expressed in 

fibroblasts. By integrating single-cell datasets, we 
analyzed the correlation between the gene set of 
GLI1/2/3 and cancer-related functional states (Figure 
15D), and found that there was a correlation between 
the gene set of GLI1/2/3 and different cancers and 
functional states. Figure 15E specifically demonstrates 
the correlation between the gene set of GLI1/2/3 and 
cancer-related functional states in RB. Figure 15F 
displays the expression distribution of the gene set of 
GLI1/2/3 with t-SNE plot in RB. 

 

 
 
Figure 12. Correlation analysis of GLI1 (A), GLI2 (B), and GLI3 (C) expression with DNA methyltransferases (Red represents DNMAT1, blue 
represents DNMT2, green represents DNMT3A, and purple represents DNMT3B). Correlation analysis of GLI1 (D), GLI2 (E), and GLI3 (F) 
expression with MMRs genes in human pan-cancer (*P < 0.05, **P < 0.01, ***P < 0.001). 
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DISCUSSION 
 
Biomarkers are closely associated with disease 
progression [21–24]. In particular, immune-related 
biomarkers are most relevant to tumor progression [25, 
26]. While much attention has been given to the study 
of GLI1, the role of GLI2 and GLI3 in tumors has 
received relatively less attention. Previous research 
reports have suggested that the aberrant activation of the 
Hh-GLI signaling pathway may contribute to tumor 
initiation and progression by enhancing cancer cell 
proliferation, stimulating stromal activation, and 
promoting angiogenesis [27]. Furthermore, other 
signaling pathways such as the mitogen-activated 
protein kinase (MAPK) cascade, transforming growth 
factor β (TGF-β) pathway, and epidermal growth factor 

receptor (EGFR) pathway can also intersect and 
excessively activate GLI proteins [28]. GLI proteins 
induce and support tumor development through the 
regulation of transcription of various oncogenic factors 
[29]. GLI1 and GLI2 have been found to have 
overlapping effects on tumor development, while the 
relationship between GLI3 and the former two is not yet 
fully understood [30–33]. To investigate the correlation 
between GLI1/2/3, we conducted correlation line 
analyses in tumor tissues, normal tissues, and tumor cell 
lines. Our results showed significant correlations among 
them in most tumor and normal tissues, but less so in 
tumor cell lines, possibly due to their higher expression 
levels in tumor and normal tissues and lower expression 
levels in cell lines. The significant correlation observed 
in tumor tissues underscores the importance of studying 

 

 
 
Figure 13. Relationship of GLI1, GLI2, and GLI3 with TMB, MSI, and drug sensitivity. The Relationship of GLI1, GLI2, and GLI3 
expression with TMB (A–C) and MSI (D–F). Drug sensitivity analysis in CTRP database (G) and GDSC database (H). 
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their roles in cancer. Moreover, our findings indicate 
that GLI1/2/3 are significantly expressed in most 
tumors, and their high expression levels are associated 
with poor prognosis. 
 
GLI1 enhances tumor drug resistance through inducible 
glucuronidation [34]. Downregulation of GLI1 in 

colorectal cancer inhibits cancer cell proliferation while 
involving activation of Wnt signaling [35]. In a study of 
advanced lung adenocarcinoma, GLI1 mRNA and GLI3 
mRNA expression were associated with lower 5-year 
survival rates in patients [36]. In gastric cancer, GLI2 
has been identified as an intrinsic regulator of 
programmed cell death ligand 1 (PD-L1) expression in 

 

 
 
Figure 14. Enrichment Analysis. (A) GO and KEGG of similar genes. GSEA of GLI1 (B), GLI2 (C), GLI3 (D), and GLI1/2/3 gene sets (E). 
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tumor cells that promote tumor growth by inhibiting the 
anti-tumor response [37]. Human epidermal growth 
factor receptor 2 (HER2) -mediated GLI2 stabilization 
promotes anoikis resistance and metastasis of breast 
cancer cells [38]. Enhanced GLI2 transcriptional 
activity promotes tumor angiogenesis and cancer 
stemness in renal cell carcinoma [39]. PI3K/AKT can 

activate GLI1 and GLI2 through the non-classical Hh 
signaling pathway to enhance renal cell carcinoma's 
proliferation and clonogenic ability. Hence, the 
combined inhibition of GLI1 and GLI2 using the 
GANT61 inhibitor and AKT inhibitor Perifosine has 
been shown to inhibit cancer cell growth and promote 
apoptosis [33]. GLI3 inhibition decreases stemness, cell 

 

 
 
Figure 15. Single-cell analysis. The expression distribution of GLI1 (A), GLI2 (B), and GLI3 (C) at the single-cell level. The correlation 
between the gene set of GLI1/2/3 and cancer-related functional states (D). The correlation between the gene set of GLI1/2/3 and cancer-
related functional states in RB (E). The expression distribution of the gene set of GLI1/2/3 with t-SNE plot in RB is displayed (F). T-SNE 
describes the distribution of cells, where each point represents a single cell, and the color of the point indicates the expression level of the 
gene list in that cell. 
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proliferation, and invasion in oral squamous cell 
carcinoma [40]. Excessive activation of GLI3 promotes 
prostate cancer growth [41]. Downregulation of GLI3 
expression mediates chemotherapy resistance in acute 
myeloid leukemia [42]. Furthermore, we observed low 
mutation rates in GLI1/2/3, indicating that their 
mutations are not major factors in tumorigenesis. We 
conducted preliminary investigations of their genetic 
alterations by analyzing the correlations between 
GLI1/2/3 and CNV, methylation patterns, MMR genes, 
and methyltransferases. Our findings suggest that 
inhibiting GLI activity could interfere with almost all 
types of DNA repair in human cancers, underscoring 
the potential importance of Hh/GLI function in enabling 
tumor cells to resist potentially lethal DNA damage 
induced by chemotherapy and radiation therapy.[43]. 
 
We conducted an immune infiltration analysis of 
GLI1/2/3, and our results revealed their strongest 
positive correlation with cancer-associated fibroblasts 
(CAFs) in tumors, followed by endothelial cells and 
macrophages. Furthermore, correlations with different T 
cells were also observed. CAFs in primary and 
metastatic tumors are highly versatile, plastic, and 
resilient cells that actively contribute to cancer 
progression through complex interactions with other 
cell types in the tumor microenvironment. CAFs 
undergo epigenetic alterations and release secretory 
factors, exosomes, and metabolites that affect tumor 
angiogenesis, immunology, and metabolism. These 
processes are in addition to the production of 
extracellular matrix components that contribute to the 
structure and function of the tumor stroma.[44]. It is a 
key player in the tumor immune microenvironment [5]. 
CAFs may serve as a potential source of Hh ligands in 
the tumor stroma of oral squamous cell carcinoma. 
Moreover, CAFs may respond to Hh signaling by 
activating nuclear GLI-1, thereby promoting its 
translocation into the nucleus [45]. Extraterminal 
domain (BET) proteins have been found to promote the 
growth of pancreatic ductal adenocarcinoma (PDAC) 
cells by directly interacting with members of the GLI 
transcription factor family and regulating their activity. 
Inhibition of the BET bromodomain reduces the content 
of tumor-associated fibroblasts in the tumor [46]. By 
inhibiting Hh signaling, the proliferation of CAF could 
be inhibited, and tumor immune tolerance and drug 
resistance could be attenuated [47]. Endothelial cells 
and fibroblasts in tumors can work together to enhance 
tumor angiogenesis and act as amplifiers [48]. 
Macrophages have a critical role in maintaining 
physiological homeostasis and immunity. However, in 
the context of cancer, they lose their protective function 
and become tumor-associated macrophages (TAMs), 
promoting tumor growth and invasion [49]. This is 
accompanied by an elevation in immunosuppressive 

TGF levels in the peritumor skin [50]. In this context, 
the Hh effector and zinc finger transcription factor GLI2 
can directly activate TGFβ expression in human Treg 
cells [51]. These findings suggest that GLI2 may impair 
T-cell activation and function by altering the gene 
expression profile in these cells. Moreover, GLI1/2/3 
were found to be positively correlated with immune 
regulatory genes and checkpoint genes in most tumors. 
These results suggest that GLI1/2/3 likely plays a role 
in cancer progression and prognosis through 
interactions with the tumor microenvironment. Notably, 
TMB and MSI have been associated with cancer 
immunotherapy [52]. Analysis of GLI1/2/3 and their 
correlation further extends their role in immunity. 
 
To explore the impact of the GLI family on cancer, we 
investigated how the GLI1, GLI2, GLI3, and GLI1/2/3 
gene sets affect tumors. Surprisingly, our findings 
revealed that GLI1, GLI2, and GLI3 promote EMT in 
most tumors, with the GLI1/2/3 gene set amplifying this 
effect. EMT remodels cell-cell and cell-extracellular 
matrix interactions, separating epithelial cells from each 
other and the underlying basement membrane while 
activating a novel transcriptional program to promote 
mesenchymal fate. In the context of tumors, EMT gives 
cancer cells a greater potential for tumor initiation and 
metastasis, as well as greater resistance to 
immunotherapy [53]. Interfering with GLI1/2 expression 
inhibits TGF-β1-induced EMT in neuroblastoma cells 
[54]. Pcaf inhibits hepatocellular carcinoma metastasis by 
targeting GLI-1 to suppress EMT [55]. Hedgehog-
GLI (Hh-GLI) promotes EMT in lung squamous cell 
carcinoma [56]. Suppression of GLI1 expression may 
inhibit the migration and invasion of HCC cells by down-
regulating the expression and activation of MMP-2 and 
MMP-9, as well as blocking EMT [57]. EMT cells 
increase breast cancer metastasis through paracrine GLI 
activation in adjacent tumor cells [58]. The VEGF-
C/NRP2/GLI axis is a novel and conserved paracrine 
means by which EMT cells promote proliferation, 
migration, and invasion of epithelial breast cancer cells 
[59]. GLI1 facilitates the EMT induced by TGF-β1 in 
gastric cancer [60]. Overexpression of SASH1 in 
hepatocellular carcinoma cells was found to inhibit SHH, 
SMO, PTC, and GLI1 expression, thereby reducing 
proliferation, migration/invasion, and EMT progression 
[61]. The function of Hh-GLI is necessary for the growth, 
recurrence, and metastasis of human colon cancer 
xenografts. This pathway induces an epithelial-to-
mesenchymal transition, forming solid tumors [62]. 
Therefore, further studies on the mechanism by which 
GLI1/2/3 affects tumors via EMT are warranted. 
 
Most medicines currently being tested to inhibit Hh 
signaling in clinical settings target Smo proteins as their 
primary focus. However, the development of Smo 
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inhibitors is limited by molecular abnormalities 
downstream of the Smo level in the Hh signaling 
pathway and cross-activation of other pathways with the 
Hh signaling pathway [63]. Since GLI1/2/3 are 
downstream transcription factors of the Hh signaling 
pathway, investigating drugs that target them is 
essential. By combining drug and gene expression data 
from the CTRP and GDSC databases, we have 
successfully identified drugs that can jointly target 
multiple members of this gene set. This approach is 
distinct from using a single drug to target a single gene. 
The recent approval of the first Hh inhibitor, glasdegib, 
for use in combination with low-dose cytarabine 
highlights the clinically relevant role of the Hh-GLI 
signaling pathway in treating acute myeloid leukemia 
(AML) patients unsuitable for high-dose chemotherapy. 
The therapeutic efficacy of this combination therapy 
underscores the importance of targeting the Hh-GLI 
signaling pathway in this fatal leukemia [64]. The 
combination therapy of HDAC1 and aPKC inhibitors 
has been shown to prevent GLI1 nuclear maturation and 
effectively antagonize basal cell carcinoma (BCC) at 
lower doses than either agent alone. Specifically, an 
ATP-competitive small molecule inhibitor of aPKC, 
used in conjunction with vorinostat, is highly effective in 
disrupting the aPKC-HDAC1 axis in somatic cell 
carcinoma [65]. PI3K-mTORC1 inhibitor NVP BEZ235 
(BEZ235) treatment of OE19 cells resulted in GLI1 and 
Ihh downregulation. It reduces OE19 cell survival 
in vitro, which can be utilized to treat esophageal cancer 
[66]. The combination of NVP-LDE-225 and NVP-
BEZ-235 was found to inhibit the transcription and 
expression of GLI in glioblastoma-initiating cells 
(GICs). Compared to single agents alone, this 
combination showed superior efficacy in inhibiting 
tumor growth, regulating the expression of pluripotency-
promoting factors and stem cell markers, modulating cell 
cycle and proliferation, as well as regulating EMT [67]. 
 
In summary, our findings in pan-cancer studies suggest 
that GLI1/2/3 primarily play a pro-cancer role. Immune 
microenvironment mapping reveals that they are 
associated with cancer-related fibroblasts, endothelial 
cells, and macrophages, serving as 
immunosuppressants. Moreover, they can promote 
cancer progression through EMT. Targeting GLI1/2/3 
may represent a promising therapeutic approach for 
treating cancer patients in the future. 
 
MATERIALS AND METHODS 
 
Correlation analysis between GLI1/2/3 
 
Data on tumor tissue, normal tissue, and tumor cell lines 
were collected from the UCSC Xena 
(https://xena.ucsc.edu/), Genotype-Tissue Expression 

(GTEx; https://gtexportal.org), and Cancer Cell Line 
Encyclopedia (CCLE; 
https://sites.broadinstitute.org/ccle/datasets) databases. 
Tumor tissue data was obtained from The Cancer 
Genome Atlas (TCGA; https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga) 
database within the UCSC Xena database. Correlation 
coefficients between GLI1 and GLI2, GLI1 and GLI3, 
and GLI2 and GLI3 were calculated using the Spearman 
algorithm for normal tissues, tumor cell lines, and tumor 
tissues, respectively, with p-values < 0.05 considered 
statistically significant. 
 
Expression and prognostic analysis of GLI1/2/3 
 
Many studies have been conducted to explore cancer-
related biomarkers using the TCGA database [68–71]. 
We conducted a comprehensive analysis of GLI1/2/3 
expression levels in normal tissues, tumor cell lines, and 
tumor tissues using data from GTEx, CCLE, and TCGA 
databases, respectively. Additionally, we analyzed the 
differential expression of GLI1/2/3 between tumor and 
normal tissues by combining TCGA tumor data and 
GTEx normal tissue data. Paired tumor tissues and 
normal tissues from TCGA were used to analyze the 
differential expression levels of GLI1/2/3 between 
paired samples. Protein expression profiles of human 
tissue types were obtained from the Human Protein Atlas 
(HPA) database (Human Protein Atlas 
https://proteinatlas.org), and we analyzed the protein 
expression level of GLI1 using this database. 
Immunofluorescence staining images were also used to 
demonstrate the subcellular localization of GLI1, GLI2, 
and GLI3 in cancer cells. We employed univariate Cox 
(unicox) analysis to evaluate their predictive 
performance with respect to OS, DSS, and PFI. UniCox 
analysis is commonly used to establish the predictive 
profile of tumor-associated biomarkers in various studies 
[72–74]. In addition, Kaplan-Meier analysis was used to 
assess the effect of GLI1 on OS, and the expression of 
GLI1/2/3 at different stages was further analyzed. 
 
Mutation profiles of GLI1/2/3 
 
The cBioPortal (https://www.cbioportal.org/) database 
facilitates the exploration of multidimensional cancer 
gene set data, allowing visual analysis of different 
genes, samples, and data types [75]. Detailed mutation 
information for GLI1/2/3 was analyzed using this 
database. The impact of mutations on OS was also 
analyzed. 
 
CNV, methylation, and mutation frequency analysis 
 
We analyzed the CNV type, CNV expression, 
methylation level, and mutation frequency of GLI1/2/3 
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in different tumors based on genetic information from 
the TCGA database. We also utilized the Spearman 
algorithm to further analyze the correlation of GLI1/2/3 
mRNA expression with CNV and methylation. 
 
Immuno-infiltration analysis 
 
The TIMER2.0 database (http://timer.cistrome.org/) is 
utilized to evaluate immune cell infiltration in tumor 
tissue using RNA-Seq expression profiling data and 
analyze the correlation between gene expression and 
immune cells. We have downloaded the correlation 
between immune cells and GLI1/2/3 in various cancers 
from the TIMER2.0 database, and visualized the results 
using the “ggplot2” R package. The Spearman 
algorithm was employed to calculate the GSVA score 
for GLI1/2/3 and determine the correlation between the 
GSVA score and immune cells [76]. Furthermore, the 
ESTIMATES R package calculates ESTIMATEScore, 
ImmuneScore, and StromalScore for each tumor. Using 
the Spearman algorithm, we analyzed the correlation 
between these three scores and GLI1/2/3. 
 
Correlation analysis of GLI1/2/3 and other genes 
 
We calculated the correlations between GLI1/2/3 and 
immune-related genes, and further analyzed their 
correlations with methyltransferase and MMR genes. 
 
Correlation analysis of GLI1/2/3 with TMB and MSI 
 
Based on the TCGA data, we calculated the TMB and 
MSI for each tumor sample. TMB is a measurement of 
the number of somatic mutations per megabase of the 
genome, while MSI reflects a defect in DNA mismatch 
repair mechanisms that result in the accumulation of 
errors in repetitive sequences. We employed the 
Spearman algorithm to calculate the correlations 
between GLI1/2/3 and TMB/MSI. These analyses can 
provide insights into the potential relationship between 
HH-GLI signaling pathway activation and genomic 
instability in various types of cancer. 
 
Drug sensitivity analysis 
 
We utilized drug and gene expression data from the 
Cancer Therapeutics Response Portal (CTRP; 
https://portals.broadinstitute.org/ctrp/) and Genomics of 
Drug Sensitivity in Cancer (GDSC; 
https://www.cancerrxgene.org) databases to identify 
drugs that could co-target GLI1/2/3. Specifically, the 
top 30 drugs that could co-target GLI1/2/3 were 
identified using gene set cancer analysis (GSCA; 
http://bioinfo.life.hust.edu.cn/GSCA) [77]. We analyzed 
the prognostic value of GLI1, GLI2, GLI3 in the 
GSE135222 and IMvigor210 datasets using Biomarker 

Exploration of Solid Tumors 
database(https://rookieutopia.com/app_direct/BEST/). 
 
Enrichment analysis 
 
We used the GEPIA2 (gepia2.cancer-pku.cn) database to 
search for genes associated with GLI1/2/3 in 33 different 
tumors. Additionally, we performed GO and KEGG 
analyses using the clusterprofiler R package. To further 
analyze the gene sets, we calculated enrichment scores 
separately for GLI1, GLI2, GLI3, and GLI1/2/3 using 
GSVA and categorized them into high and low 
expression groups based on median scores. Background 
gene sets for enrichment analysis were obtained from 
hallmark gene sets. Differential analysis of samples from 
the high and low expression groups was then conducted 
using the limma R package. Finally, GSEA analysis was 
performed to identify potential biological pathways that 
may be affected by GLI1/2/3 expression [78]. 
 
Single-cell analysis 
 
To analyze the expression of GLI1/2/3 at the single-cell 
level, we used the IMMUcan SingleCell RNAseq 
Database (https://immucanscdb.vital-it.ch/) to analyze 
their expression in different cancer single-cell datasets. 
Furthermore, we also utilized the CancerSEA database 
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) to 
investigate the correlation between the gene set of 
GLI1/2/3 and 14 cancer-related functional states. 
CancerSEA is a multifunctional website aimed at 
comprehensively exploring different functional states of 
cancer cells at the single-cell level, covering 14 cellular 
functional states including angiogenesis, apoptosis, cell 
cycle, differentiation, DNA damage, DNA repair, EMT, 
hypoxia, inflammation, invasion, metastasis, 
proliferation, quiescence, stemness. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 
Supplementary Figure 1. Prognostic analysis of immunotherapy cohort. Prognostic analysis of GLI1 (A, B), GLI2 (C, D), GLI3 (E, F), 
GLI1/2/3 gene set (G, H) in Kim cohort 2019 (Anti−PD−1/PD−L1) and IMvigor210 cohort 2018 (Anti−PD−L1). 
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