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INTRODUCTION 
 
Coronavirus disease 2019 (COVID-19), a novel 
respiratory tract infection caused by severe acute 
respiratory syndrome coronavirus (SARS-COV-2), 
initially broke out in December 2019 [1–3]. As far,  
the global confirmed cases are 532,355,835, and the 
global death cases are 6,300,060 based on the report 
from the Center for Systems Science and Engineering 
(CSSE) (https://coronavirus.jhu.edu/) (June 2022) [4]. 

SARS-CoV-2 is an enveloped, single-strand RNA  
virus of the genus Betacoronavirus [5]. Patients with  
COVID-19 presented lung computed tomography (CT) 
abnormalities, along with mild flu-like symptoms (e.g., 
headache, fatigue, cough, nasal congestion and fever 
[6]. The pathological characteristics of COVID-19 
patients are very similar to those of SARS and MERS 
patients [7]. Middle-aged and older patients with 
comorbidities are prone to respiratory failure resulting 
in poor clinical outcome [8].  

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

A comprehensive investigation on the receptor BSG expression 
reveals the potential risk of healthy individuals and cancer 
patients to 2019-nCoV infection 
 
Yongbiao Huang1,*, Haiting Zhou1,*, Yuan Wang1, Lingyan Xiao1, Wan Qin1, Long Li1 
 
1Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China 
*Equal contribution 
 
Correspondence to: Wan Qin, Long Li; email: wanqin@tjh.tjmu.edu.cn, lilong@tjh.tjmu.edu.cn 
Keywords: SARS-CoV-2, COVID-19, BSG, cancer, susceptibility 
Received: October 25, 2023 Accepted: February 8, 2024 Published: March 13, 2024 
 
Copyright: © 2024 Huang et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 
ABSTRACT 
 
Background: Coronavirus disease-2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), a newly emerging coronavirus. BSG (basigin) is involved in the tumorigenesis of 
multiple tumors and recently emerged as a novel viral entry receptor for SARS-CoV-2. However, its expression 
profile in normal individuals and cancer patients are still unclear. 
Methods: We performed a comprehensive analysis of the expression and distribution of BSG in normal tissues, 
tumor tissues, and cell lines via bioinformatics analysis and experimental verification. In addition, we 
investigated the expression of BSG and its isoforms in multiple malignancies and adjacent normal tissues, and 
explored the prognostic values across pan-cancers. Finally, we conducted function analysis for co-expressed 
genes with BSG. 
Results: We found BSG was highly conserved in different species, and was ubiquitously expressed in almost all 
normal tissues and significantly increased in some types of cancer tissues. Moreover, BSG at mRNA expression 
level was higher than ACE2 in normal lung tissues, and lung cancer tissues. High expression of BSG indicated 
shorter overall survival (OS) in multiple tumors. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses indicated that BSG is mostly enriched in genes for mitochondria electron 
transport, oxidoreduction-driven active transmembrane transporter activity, mitochondrial inner membrane, 
oxidative phosphorylation, and genes involving COVID-19. 
Conclusions: Our present work emphasized the value of targeting BSG in the treatment of COVID-19 and cancer, 
and also provided several novel insights for understanding the SARS-CoV-2 pandemic. 
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SARS-CoV-2 (COVID-19) is highly homologous to 
SARS-CoV responsible for an outbreak in 2003 [9]. 
SARS-CoV-2 shares 79.5% genetic characteristics with 
SARS-CoV [5]. Both SARS-CoV-2 and SARS-CoV 
enter into cells by spike glycoproteins, which binds 
membrane protein angiotensin-converting enzyme II 
(ACE2) within the host [10–12]. Nevertheless, recent 
studies have confirmed that the binding affinity of 
SARS-CoV-2-related spike protein to ACE2 is 10–20 
folds stronger than that of SARS-CoV to ACE2 [13, 14]. 
This enhancement affinity with ACE2 is associated with 
the higher transmissibility of SARS-CoV-2 compared  
to SARS-CoV. ACE2 is expressed in gastrointestinal 
tract, kidney and lung, however, its expression level  
is very low, especially in lung [15]. Given the high 
transmissibility of SARS-CoV-2, we hypothesized that 
there might be other underlying receptors to promote its 
infection. 
 
BSG (basigin), also known as CD147 or EMMPRIN,  
is a plasma membrane protein of immunoglobulin 
superfamily [16]. BSG is widely expressed in epithelial 
and immune cells and served a variety of vital 
functions, including inflammatory, immune responses, 
tumor progression, bacterial and viral infections [17–
20]. CD147 has three N-glycosylation sites, and high 
mannose‐type and complex glycans may bind to them 
[21]. The spike protein of SARS‐CoV‐2 is highly 
glycosylated, which increases the chance of binding to 
cells [22]. As a target related to SARS-CoV-2 spike 
protein, BSG can enable SARS-CoV-2 to enter host 
cells through endocytosis. It even activates the MAPK 
pathway axis and induces cytokine storms via the  
spike protein/BSG/CyPA signal [23]. Thus, BSG is a 
key factor in COVID-19 infection and progression and 
can serve as a new target for effective treatment of 
COVID-19. In addition, BSG has numerous interacting 
partners, including cyclophilin A (CyPA), a member  
of the immunophilin family, is also important in viral 
infections [24]. The ability of viruses to invade into 
target cells relies on the interactions between BSG and 
CyPA [18]. The SARS-CoV nucleocapsid protein binds 
to CyPA, and further recognize BSG receptors on the 
cell surface of host [25]. It was reported that SARS-
CoV-2 spike protein interacted with the host cell receptor 
BSG as a novel entry route. The regulation of BSG 
level influenced the ability of virus to invade into host. 
In addition, BSG takes part in SARS-CoV-2 invasion 
into immune cells, which do not express ACE2 [26]. 
 
Cytokine storm occurred in the majority of severe 
COVID-19 cases, which featured as increased serum 
cytokine and chemokine levels (e.g., IFN-γ, and TNF-α, 
CCL2, CXCL10, IL-1, IL-6) [27]. The cytokine storm is 
followed by acute respiratory distress syndrome (ARDS) 
and multiple organ failure (MOF), which leads to death 

in severe COVID-19 patients [28]. BSG was reported to 
participate in the cytokine storm via modulation of CyPA 
expression, and anti-BSG antibody potently reduce the 
infection and cytokine storm of SARS-CoV-2 [29]. 
 
Patients with malignancies are more vulnerable to 
SARS-CoV-2 infection [30], more importantly, 
definitively susceptible to develop severe complications 
[31]. The mortality rate in patients with malignancies 
has been reported to be 25–30% [32]. In the present 
study, we conducted a comprehensive analysis on 
expression level of a novel SARS-CoV-2 receptor BSG 
in healthy tissues and pan-cancers. This might reveal 
the underlying implications of BSG in terms of SARS-
CoV-2 infection. 
 
MATERIALS AND METHODS 
 
Expression analysis of BSG 
 
The mRNA and protein expression of BSG in normal and 
tumor tissues were analyzed using the Human Protein 
Atlas (HPA) database (https://www.proteinatlas.org/), 
which composes of six modules: tissue atlas, brain  
atlas, metabolic atlas, blood atlas, pathology atlas,  
and cell atlas [33–35]. The mRNA expression of BSG 
for multiple immune cells and distinct cell lines, the 
immunohistochemistry data of BSG in lung cancer and 
normal lung tissues were analyzed by this database. The 
transcript data of BSG across pan-cancers and adjacent 
tissues were obtained from GEPIA2 database, which  
is publicly accessible at http://gepia2.cancer-pku.cn/, 
including data from The Cancer Genome Atlas (TCGA) 
and Genotype Tissue Expression (GTEx) projects [36]. 
Data were accessed on May 2022. 
 
Isoform usage profiling and isoform structure of BSG 
 
GEPIA2 generated violin plots to visualize the 
expression level (log2(TPM + 1)) of each isoform for 
BSG, and bar plots to show the isoform usage (from 0% 
to 100%) distribution across multiple cancer types. 
Meanwhile, GEPIA2 provided isoform protein domain 
map, which is used to show the structural differences 
among different isoforms. Data were accessed on May 
2022. 
 
Mutation and homology analysis of BSG 
 
“Mutation module” of TIMER2.0 
(http://timer.cistrome.org/) was used to analyze the 
mutation frequency of BSG for pan-cancers. The  
results were visualized by a bar plot. Homology 
analysis of BSG was performed by the NCBI program 
(https://www.ncbi.nlm.nih.gov/homologene/1308) [37]. 
Data were accessed on May 2022. 
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Table 1. Sequences of primers used for qPCR. 

Gene Forward or reverse Sequences 

GAPDH 
Forward ACCCAGAAGACTGTGGATGG 
Reverse TTCAGCTCAGGGATGACCTT 

BSG 
Forward CAGAGTGAAGGCTGTGAAGTCG 

Reverse TGCGAGGAACTCACGAAGAA 
 
Survival analysis of BSG 
 
GEPIA2 generated a survival heat map to present the 
prognostic impacts of BSG expression, with the hazard 
ratios in logarithmic scale (log10) for multiple cancer 
types. According to median expression of BSG, samples 
were divided into two groups, high BSG group and low 
BSG group. Then, GEPIA2 performed survival analyses 
based on Kaplan-Meier curves with log-rank test for  
OS and disease-free survival (DFS) [38]. Data were 
accessed on May 2022. 
 
Functional enrichment analysis 
 
The top 100 co-expressed genes with BSG were 
identified using GEPIA2. Then, the Enrichr database 
(http://amp.pharm.mssm.edu/Enrichr/) was subjected  
to GO functional annotation and KEGG pathway 
enrichment analysis based on these co-expressed genes 
[39]. GO contains three categories: molecular function 
(MF); biological process (BP); and cellular component 
(CC). In addition, pathway enrichment analysis was 
also performed for COVID-19-related gene sets and 
virus perturbations from the Gene Expression Omnibus 
(GEO) [40, 41].  
 
Cell culture and reagents 
 
A normal human lung epithelial cell line (BEAS-2B) 
and four lung cancer cell lines (H1299, PC-9, H1975, 
A549) were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA, USA), and cultured 
in RPMI-1640 (HyClone, Logan, UT, USA) containing 
10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, 
USA). 
 
Clinical specimen collection 
 
A total of five cases of human lung cancer tissues and the 
paired adjacent non-cancerous tissues were collected from 
Wuhan Tongji Hospital, approved by The Medical Ethics 
Committee of Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology. 
 
Immunohistochemistry (IHC) 
 
Immunohistochemistry was conducted following the 
guidelines provided by the manufacturer. In brief,  

slides were deparaffinized, rehydrated, subjected to 
staining using the primary antibodies against BSG 
(1:100, A22443, Abclonal, USA).  
 
RNA extraction and qPCR 
 
Total RNA was extracted using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s protocol. cDNA was synthesized using 
HiScript II Q RT SuperMix (Vazyme Biotech, Nanjing, 
China) and used for quantitative polymerase chain 
reaction detection using ChamQ Universal SYBR qPCR 
Master Mix (Vazyme Biotech, Nanjing, China). The 
sequences of primers used are shown in Table 1. 
 
Statistical analysis 
 
The data of qPCR between two groups or multiple 
groups were analyzed with Student’s t test or ANOVA. 
The Kaplan-Meier (K-M) analysis was used to plot 
survival curves via the log-rank test. P-values < 0.05 
were considered statistically significant. 
 
RESULTS 
 
The expression of BSG varies in different tissues or 
organs 
 
BSG is an essential entry receptor for SARS-CoV-2; 
Thus, we first analyzed the expression profile of  
BSG in normal tissues. The expression profile of 
BSG at the mRNA and protein level in different 
tissues were obtained from the HPA database. As 
shown in Figure 1A, BSG at mRNA expression is 
higher in muscle and brain tissues compared to that  
in other normal tissues. Eye and liver and gallbladder 
express the lowest BSG levels. Whereas, BSG at 
protein expression was different from its mRNA. 
BSG was expressed most highly in gastrointestinal 
tract, kidney and urinary bladder, generative organ 
and bone marrow and lymphoid tissues, with very 
little expression seen in eye, respiratory system  
and connective and soft tissue. Intriguingly, BSG 
exhibited a relatively low expression level in lung 
especially at the protein level, which was analogues 
to ACE2 expression pattern in lung [42]. We further 
validated the mRNA expression level of BSG in 
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Consensus dataset and Fantom5 dataset. The heart 
muscle had the highest expression of BSG in both 
datasets. Cerebral cortex, choroid plexus and retina 
were reported to have the relative higher expression 
of BSG compared to other tissues (Figure 1B). The 
protein level of BSG was evaluated based on four 
score levels, high, medium, low, and not detected. 
There are nine organs at high score level (stomach, 
duodenum, small intestine, colon, kidney, testis, 
epididymis, placenta and appendix), nine organs at 
medium score level and six organs at low score level 
(parathyroid gland, adrenal gland, pancreas, vagina, 
cervix and tonsil). While, twenty-one tissues were not 
detected BSG protein (Figure 1C). 

Expression profile of BSG in plasma and blood cells 
 
High concentrations of cytokines were observed  
in the plasma of patients with severe COVID-19 [43]. 
The HPA database was used to quantify BSG protein 
concentrations in plasma using mass spectrometry and 
estimating from spectral counts. The results indicated 
that BSG at protein level was about 340 ng/l in plasma 
(Figure 2A). Previous studies have reported different 
susceptibility to COVID-19 between men and women 
[44]. Therefore, plasma protein was further measured 
using the proximity extension assay (PEA), with high 
specificity and sensitivity [45]. Surprisingly, plasma 
BSG protein was slightly higher in men than in women

 

 
 
Figure 1. Pattern of BSG expression in normal tissues. (A) mRNA and protein expression profiles of BSG in different normal human 
tissues. (B) BSG mRNA expression in various tissues or organs from Consensus dataset and Fantom5 dataset. (C) BSG protein expression in 
various tissues or organs based on immunohistochemistry scores. 
 

 
 
Figure 2. The concentration of BSG in plasma. (A) BSG protein concentration in plasma. Note: The red dots indicated BSG protein was 
detected in plasma with about 340 ng/L. (B) Differences between male and female in BSG protein concentration. 
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(Figure 2B). In addition, we investigated the BSG 
expression in immune cells based on 3 datasets, 
including HPA dataset, Monaco dataset and Schmiedel 
dataset. The results showed that BSG was enriched  
in Neutrophil and NK cells (Figure 3A–3C). 
 
Expression profile of BSG in malignancies  
 
Patients with cancer are more vulnerable to infect 
COVID-19 due to poor health conditions and 

immunosuppressive status induced by both the  
cancer and antitumor therapies [46, 47]. Expression 
profile of BSG at mRNA and protein level varied 
widely in different malignancies. The highest level  
of BSG mRNA was detected in testis cancer. While, 
the lowest level was observed in liver cancer (Figure 
4A). At protein expression level, BSG was also  
the highest in testis cancer, which was consist with 
mRNA expression level. And BSG protein was hardly 
expressed in carcinoid (Figure 4B). 

 

 
 
Figure 3. Pattern of BSG expression in human blood cells. (A) HPA dataset. (B) Monaco dataset. (C) Schmiedel dataset. X: blood cell 
types, Y: BSG expression value in transcripts per million (TPM). 
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Then we compared the ACE2 mRNA and BSG mRNA 
expression in normal lung tissues and lung cancer 
tissues based on 994 samples from TCGA dataset. In 
terms of normal lung tissues, relative mRNA of ACE2 
was 0.8 TPM and that of BSG was 255.8 TPM. And 
BSG mRNA expression level was 319.8 folds higher 
than ACE2 (Figure 4C). In terms of lung cancer tissues, 
relative mRNA of ACE2 was 0.9 FPKM and that of 
BSG was 136 FPKM. And BSG protein expression 
level was 151.1 folds higher than ACE2 (Figure 4D).  
In cancer cell lines, BSG mRNA expression was up-
regulated when compared to normal cells (Figure  
4E). These results indicated that BSG might be essential 
for the invasion of SARS-CoV-2 and COVID-19 
pathogenesis in normal individuals and cancer patients. 
 
BSG isoform profile and mutation in pan-cancers 
 
Differential expression of ACE2 isoforms in 
respiratory epithelial cells has been reported due to 
distinct host susceptibility to SARS-CoV-2 infection 
[48]. Therefore, isoforms of other entry receptor  
for SARS‐CoV‐2 might exerted similar effects. As 
shown in Figure 5A, 5B, we observed 16 isoforms  
for BSG. And each isoform of BSG has distinct 

expression levels in different cancer types.  
BSG-003 (ENST00000353555.8) present the highest 
isoform usage distribution, followed by BSG−017 
(ENST00000618112.2). Then we analyzed isoform 
structures of BSG.  Six isoforms’ information was 
missing. They were BSG−005 (ENST00000571735.2), 
BSG−012 (ENST00000572899.5), BSG−009 (ENST 
00000574970.2), BSG−011 (ENST00000576925.3), 
BSG−013 (ENST00000590218.4), ENST00000618112.2 
(BSG−017). Isoform BSG-001 contains two lg_3 
domains. While isoforms BSG-002, BSG-003, BSG-
004, BSG-006, BSG-008, and BSG-014 contain one 
lg_3 domain (Figure 5C). To sum up, isoform BSG-
003 (ENST00000353555.8) might be essential for 
SARS-CoV-2 entry and tumor progression. 
 
Tumors are often accompanied by multiple gene 
mutations, which leads to progression and relapse from 
therapy. Moreover, the mutation status of BSG in 
cancers may affect or correlate the expression of other 
entry receptors [49, 50]. Therefore, we conducted 
mutation analysis of the BSG gene in pan-cancers. The 
horizontal bar graph shows the BSG mutation frequency 
in Figure 5D. The highest BSG mutation frequency  
was observed in SKCM (11/468,2.35%), followed by 

 

 
 

Figure 4. Expression of BSG in tumor tissues and cancer cells. (A) mRNA expression levels of BSG (TCGA) across multiple cancer 
types. (B) Protein expression levels of BSG (CAB002427) across multiple cancer types. (C) Relative mRNA expression levels of ACE2 and BSG 
in normal lung tissues. (D) Relative mRNA expression levels of ACE2 and BSG in lung cancer tissues. (E) mRNA expression levels of BSG in 
the multiple cancer and normal cells. The cancer types were color-coded according to which type of normal organ the cancer originates 
from. The cell lines were classified into 16 color-coded groups according to their organ to which it is from. Abbreviations: TPM: transcripts 
per million; FPKM, number of fragments per kilobase of exon per million reads. 
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CESC (5/291,1.71%), KICH (1/66,1.51%), UCEC 
(8/531,1.51%) and STAD (6/439,1.37%). The lowest 
BSG mutation frequency was observed in BRCA 
(1/1026, 0.10%). 

Pan-cancer analysis of BSG mRNA expression 
 
To analyze the expression of BSG in pan-cancers,  
we used a web-based data mining approach based on 

 

 
 
Figure 5. Isoform usage and structures of BSG across multiple cancer types. (A) Expression patterns of the BSG isoforms in 
different cancer types. X: cancer types, Y: isoforms of BSG. (B) The isoform usage of BSG in different cancer types. X: cancer types, Y: 
isoforms of BSG. (C) The structures of multiple BSG isoforms. Multiple isoforms and their protein domain structures are displayed in an 
interactive plot. (D) The mutant frequency of BSG in different cancer types. 
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GEPIA2. The results revealed that BSG mRNA 
expression in 33 types of tumor tissues and normal 
tissues was visible in Figure 6A, 6B. BSG mRNA 
expression level was significantly upregulated in seven 
cancer types, including ACC, ESCA, KICH, LIHC, 
PAAD, SKCM and THYM, when compared with 
corresponding normal tissues (Figure 6C). In addition, 
BSG expression was significantly downregulated in 
LAML (Figure 6D). The cutoff of the above analysis 
was set |Log2FC| as 1 and p-value 0.05. 

Immunohistochemical of BSG in lung cancer and 
normal lung tissues 
 
To further explore the protein expression of BSG in 
lung cancer tissues, we achieved immunohistochemical 
data from the HPA database. The results indicated  
that BSG was barely stained in lung normal tissue,  
but medium-stained in lung squamous cell carcinoma 
tissue and high-stained in lung adenocarcinoma tissue 
(Supplementary Figure 1A–1C). To further validate the 

 

 
 
Figure 6. BSG expressions across all tumor samples and paired normal tissues. (A) BSG expression patterns in cancer tissues and 
normal tissues (TCGA normal + GTEx normal) by dot plots and (B) bar plots. (C) BSG expression was upregulated among the seven types of 
cancer. (D) BSG expression was downregulated in one cancer type of LAML. The tumor tissue was colored red, whereas the normal tissue 
was colored dark gray. Right panel displayed the full name of cancer types. The |log2 (fold change)| cutoff was 1; adjusted p-value cutoff 
was 0.05. *p < 0.05. 
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differential expression of BSG, immunohistochemical 
was conducted in 5 paired lung cancer tissues and 
peritumoral lung tissues collected at our institute. The 
results showed that BSG was highly expressed in lung 
cancer tissue (Figure 7A). 

Validation of the mRNA expression of BSG in lung 
cancer tissues and cell lines 
 
We then used real-time PCR to validate the expression 
of BSG in lung cancer tissues and cell lines. As shown 

 

 
 
Figure 7. Immunohistochemical and RT-qPCR analysis of BSG expression. (A) IHC to validate the expression of BSG in five pairs 
lung cancer tissues. (B) qPCR to validate the expression of BSG in lung cancer cell lines. (C) qPCR to validate the expression of BSG in five 
pairs lung cancer tissues. ***p < 0.001. 
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in Figure 7B, compared to normal human lung epithelial 
cell line (BEAS-2B), BSG was upregulated in most lung 
cancer cell lines (H1299, PC-9, A-549). Moreover, in five 
cases of paired cancer and adjacent tissues, the expression 
of BSG in cancer tissues was significantly higher 
compared with that in adjacent tissues (Figure 7C). 

Prognostic analysis of BSG in pan-cancers  
 
We conducted Kaplan-Meier analysis to evaluate  
the association between BSG expression and cancer 
patients’ prognoses. As shown in Figure 8A–8E, high 
expression of BSG indicated shorter OS in LGG, LIHC, 

 

 
 
Figure 8. The prognostic value of BSG across multiple cancer types. (A) Survival heat maps of OS for BSG in 33 TCGA tumor types 
(the red and blue blocks indicate higher risk and lower risks; the rectangles with frames represent p < 0.05). (B–E) Kaplan–Meier curves of 
OS for BSG in KIRP, LGG, LIHC and LUAD. (F) Survival heat maps of DFS for BSG in 33 TCGA tumor types (the red and blue blocks indicate 
higher and lower risks; the rectangles with frames represent p < 0.05). (G–L) Kaplan–Meier curves of DFS for BSG in BRCA, HNSC, LGG, LIHC, 
LUAD and UCS. Abbreviations: OS: overall survival; DFS: disease‐free survival. Full names of cancer types were shown in Figure 6. 

5421



www.aging-us.com 11 AGING 

and LUAD, and longer OS in KIRP. As shown in 
Figure 8F–8L, high expression of BSG indicated 
shorter DFS in BRCA, HNSC, LGG, LIHC, LUAD, 
and UCS. It has been reported that lung cancer patients 
consistently suffer an increased risk of death from 
SARS-CoV-2 infection compared to other cancers 
[51]. Our results showed that in LUAD, BSG was 
associated with both OS and DFS. 
 
Comparisons of ACE2, HSPA5, BSG expression 
levels in pan-cancers and conservation of BSG 
across species 
 
It is well known that ACE2, HSP5 and BSG are 
important entry receptors for SARS-CoV-2 infection 
[52–54]. Therefore, we compared the expression level 

of ACE2, HSPA5, BSG in pan-cancers based on TCGA 
datasets. As shown in Figure 9A, mRNA expression 
level of BSG was the highest, followed by HSPA5 in 
most tumor and normal tissues. While, the expression of 
ACE2 was the lowest. The above results exhibited that 
BSG might exert important functions for SARS-CoV-2 
entry and tumor progression in most of cancer types. 
The homology and conservation analysis of BSG 
revealed that BSG is highly conserved in different 
species, indicating it may also play a role in SARS-
CoV-2 entry in other species (Figure 9B). 
 
Function analysis for co-expressed genes with BSG 
 
Co-expression analysis was performed using GEPIA2 
and the top 100 genes similar to BSG were identified 

 

 
 
Figure 9. Comparisons of ACE2, HSPA5 and BSG expression in 31 tumors and their matched normal tissues. (A) In this panel, 
“T” designates tumor tissues and “N” designates normal tissues. The cancer types were displayed on the top. The density of color in each 
block represents the median expression value of BSG in tissues, and normalized by the maximum median expression value. (B) Homologs 
and conservations of BSG protein are presented in different species. 
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(Supplementary Table 1). GO terms and KEGG 
pathways analyses were performed using the Enrichr 
database. The GO terms contain biological process 
(BP), molecular function (MF), and cellular component 
(CC). In BP terms, it was found that the co- 
expressed genes of BSG significantly participated in 
mitochondrial electron transport, NADH to ubiquinone 
(GO: 0006120), aerobic electron transport chain  
(GO: 0019646), mitochondrial ATP synthesis coupled 

electron transport (GO: 0042775) (Figure 10A). In MF 
terms, the co-expressed genes of BSG enriched in 
oxidoreduction-driven active transmembrane transporter 
activity (GO: 0015453) and NADH dehydrogenase 
(quinone) activity (GO: 0050136) (Figure 10B). In  
CC terms, the co-expressed genes of BSG enriched in 
mitochondrial inner membrane (GO: 0005743) (Figure 
10C). From the KEGG pathway enrichment analysis, 
the co-expressed genes of BSG enriched in oxidative 

 

 
 
Figure 10. GO enrichment analysis and KEGG signaling pathway analysis. (A) Biological processes, (B) molecular functions, (C) 
cellular components, (D) KEGG analysis, (E) COVID-19 related gene sets 2021, (F) virus perturbations from GEO up, (G) virus perturbations 
from GEO down. Abbreviations: GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes. 
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phosphorylation and non-alcoholic fatty liver disease 
(Figure 10D). Diseases/drugs enrichment analysis found 
COVID-19 related gene sets, including 500 genes 
down-regulated by SARS-CoV-2 in human Calu3 cells 
at 4 h from GSE148729 mock polyA (Figure 10E).  
In the virus perturbations from GEO analysis, the  
co-expressed genes of BSG enriched in RSV 4Hour 
GSE3397, SARS-dORF6 72Hour GSE47960 and 
SARS-CoV 84Hour GSE47960 (Figure 10F, 10G). 
The above results revealed that BSG was mainly 
enriched in metabolic processes and virus infection. 
 
DISCUSSION 
 
The COVID-19 epidemic poses an unprecedented 
challenge to community health and economy. Therefore, 
it’s significant to explore factors that determine the 
individual susceptibility and severity to COVID-19. 
Recently, it has been reported that patients with 
malignancies were more susceptible to COVID-19 
infection and an adverse clinical outcome due to the 
expression of ACE2, the SARS-CoV-2 receptor [30, 
55]. COVID-19 severity varies in different caner types. 
COVID-19 patients with hematologic cancer are at 
higher risk of severe outcomes. The reason for this was 
attributed to decreased myeloid and lymphoid cells, 
which can cause increased susceptibility to cytokine-
mediated inflammation [56–58]. Other COVID-19 
patients with lung cancer, melanoma, uterine, and 
kidney cancer are associated with greater risks [59–64]. 
Therefore, it’s significant to study the expression level 
of entry receptors and proteins for the SARS-CoV-2 in 
various tumor tissues, as the molecular features may 
influence the susceptibility to SARS-CoV-2 infection. 
However, ACE2 expression level is very low, especially 
in lung. Thus, understanding other potential SARS-CoV-
2 receptors may provide novel insights and potential 
therapeutic targets to treat SARS-CoV-2 infection. Our 
present work emphasized the value of targeting BSG  
in the treatment of COVID-19 and cancer, and also 
provided several novel insights for understanding the 
SARS-CoV-2 pandemic. 
 
At the end of 2020, the interaction of the SARS-CoV-2 
spike protein with the host cell receptor BSG was 
reported for the first time, suggesting that regulation of 
receptor levels influence the ability of the virus to infect 
target cells [26]. BSG was related to SARS-CoV-2 
infection of immune cells, which do not express ACE2, 
and served as a novel entry route into human cells [55]. 
BSG is involved in an indirect interaction between 
cyclophilin A and viral S proteins. BSG binds directly 
to the viral S protein, with a remarkable high affinity, 
followed by dissemination of the virus. [65] Pulmonary 
edema and vascular permeability in lung disorders are 
increased by BSG and ACE2, which activates the renin-

angiotensin-aldosterone system (RAAS) and contributes 
to lung destruction [66]. BSG contributes to the 
COVID-19 symptoms on account of its expression  
in the inflammatory, infected and tumor cells, and  
thus forming the basis of the possible COVID-19 
therapy [23]. Importantly, an open-label clinical trial  
of Meplazumab, a humanized therapeutic monoclonal 
antibody against BSG, which showed significant 
improvements in patients with COVID-19. Meplazumab 
blocked BSG interaction with S protein and inhibited 
host cell infection in a dose-dependent manner [67]. 
Interestingly, several studies have challenged this 
concept, and reported no interaction between host cell 
BSG and recombinant forms of the SARS-CoV-2 spike 
as well as no changes in the susceptibility to infection of 
the virus upon knock-out of BSG in lung epithelial cells 
[65, 68]. Therefore, the role of BSG in SARS-CoV-2 
infection remains controversial. Further researches were 
still needed. 
 
Previous studies showed that BSG played significant 
roles in tumor progression and may be a biomarker  
for prognosis. Moreover, BSG is overexpressed in  
both COVID-19 patients and cancer patients [69,  
70]. However, the effects of BSG on SARS-CoV-2 
susceptibility and characteristics of patients with 
malignant tumors in COVID-19 outbreaks are still 
unclear. It is important to understand the expression of 
BSG in different normal tissues and malignant tumors. 
 
In this study, using bioinformatic analysis based on 
online databases, we revealed that BSG was highly 
conserved in different species and was highly expressed 
and distributed in gastrointestinal tract, kidney and 
urinary bladder, and male tissues, which was consistent 
with ACE2 expression pattern [55]. This co-expression 
pattern further confirmed that the entry process of 
SARS-CoV-2 required the cell-surface receptors ACE2 
and BSG [71]. High expression of BSG in the digestive 
system might contribute to the fecal-oral route 
transmission of SARS-CoV-2. Of note, most patients 
infected with SARS-CoV-2 also suffer from renal 
dysfunction [5], which may be due to the high 
expression of BSG in the kidney and urinary system.  
Unlike other viruses, the rapid overreaction of the 
immune system is an important cause of death for  
the COVID-19 [72]. This difference may suggest the 
possible involvement of host immune response in the 
development and maintenance of the pathological 
changes of COVID-19. What is more, BSG at mRNA 
expression level was 319.8 folds higher than ACE2  
in normal lung tissues, and 151.1 folds in lung cancer 
tissues. Moreover, the binding affinity of S protein  
to BSG is 12 folds than that of ACE2 [23]. These 
evidences indicated an essential role of BSG for  
SARS-CoV-2 entry in cancer patients through the lungs. 
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And we also observed BSG protein was slightly higher 
in men than in women. Systematic review analyses  
of COVID-19 patients with malignancies partially 
supported these results, that men and patients with lung 
cancer were more vulnerable to COVID-19 infection 
[73]. Further comparisons of BSG, HSPA5 and ACE2, 
all of which are SARS-CoV-2 receptors and cofactors 
[74–77], we found the expression of BSG to be the 
highest across almost all kinds of cancer types and 
normal tissues. All these results suggested an underlying 
role of BSG in COVID-19 pathogenesis both in normal 
and cancer tissues. We further analyzed BSG isoform 
profile and found that the expression level of BSG-003 
isoform containing an Ig_3 domain reached the highest 
level across pan-cancers, suggesting it may be linked 
with tumor progression and SARS-CoV-2 infection. 
 
To gain more insights into BSG in multiple human 
cancers, we explored the expression level of BSG  
and prognostic value across pan-cancers. Differential 
BSG expression was observed in multiple cancers.  
BSG mRNA level was significantly upregulated in  
7 cancer types, including ACC, ESCA, KICH, LIHC, 
PAAD, SKCM and THYM, however, was significantly 
downregulated in LAML. We then used real-time PCR 
to validate the expression of BSG in lung cancer tissues 
and cell lines. And we found BSG was upregulated  
in most lung cancer cell lines (H1299, PC-9, A549). 
Moreover, in four cases of paired cancer and adjacent 
tissues, the expression rate of BSG in cancer tissues was 
significantly higher compared with that in adjacent 
tissues. The experimental results agree well with 
bioinformatic analyses. BSG was not only expressed 
differently in most tumors, but also represented different 
clinical outcomes in some tumors. High expression of 
BSG indicated shorter OS in LGG, LIHC, and LUAD, 
and longer OS in KIRP. Moreover, high expression of 
BSG indicated shorter DFS in BRCA, HNSC, LGG, 
LIHC, LUAD and UCS. Our results showed that only  
in LUAD, BSG was associated with both OS and  
DFS. These results are similar to previous studies [69, 
78–81]. Thus, BSG has the potential to be served as  
an exciting target for cancer therapy, especially for lung 
cancer. 
 
Furthermore, our data also demonstrated that in blood 
cells the BSG was mainly expressed in neutrophils  
and NK-cells. Previous studies reported that BSG was 
expressed on various types of proinflammatory cells, 
such as Th17 cells, neutrophils, NK cells [52, 82], while 
the key spike protein priming protease, ACE2, is barely 
expressed [83], which consist with our results. BSG has 
been shown as a pivotal molecule that mediated host 
inflammatory and immune responses [20]. Cytokine 
storm syndrome is the leading cause of mortality in 
patients with COVID-19. IL-17 is mainly responsible 

for cytokine storm in SARS-CoV-2, which leads to 
tissue damage and respiratory failure [84]. SARS-CoV-
2 infects the host by binding to BSG and induces Th17 
immune response, revealing a critical role of BSG in 
cytokine storm. Moreover, Meplazumab (BSG antibody) 
can suppress SARS-COV-2 infection and cytokine storm 
via preventing direct interactions between BSG and 
spike protein [29]. 
 
The GO and KEGG pathway analyses indicated that 
BSG was mostly enriched in genes for mitochondria 
electron transport (GO: 0006120), oxidoreduction-
driven active transmembrane transporter activity (GO: 
0015453), mitochondrial inner membrane (GO: 0005743) 
and oxidative phosphorylation. All these pathways  
are related to cellular metabolism. Previous study 
confirmed the existence of BSG in human melanoma 
cell mitochondria. And BSG participated in regulating 
complex I activities and apoptosis in melanoma via 
interacting with mitochondrial NDUFS6 [85]. 
 
Growing evidence showed that mitochondrial 
dysfunction was a contributing factor to acute  
SARS-CoV-2 infection [86]. Moreover, mitochondrial 
dysfunction was reported to be concerned with the 
upregulation of ACE2. Since ACE2 is a high affinity 
binding receptor for SARS-CoV-2, its regulation in 
correlation with mitochondrial function may have 
significant clinical implications [87]. Viral infection 
triggers the release of mitochondrial DNA in host  
cells and affects mitochondrial dynamics. And the 
released mitochondrial DNA appears to be involved  
in regulating the immune reactions and inflammatory 
response against SARS-CoV-2 infection [88]. 
 
However, there are some limitations in our study. 
Firstly, we are unable to retrieve samples from  
patients diagnosed with both cancer and COVID-19. 
Therefore, we are unable to directly determine a 
significant prognostic effect of BSG expression in  
these patients. Secondly, the underlying mechanisms of 
BSG in various cancers need to further experimental 
exploration. 
 
CONCLUSIONS 
 
In general, our study analyzed the distribution and 
expression of a novel SARS-CoV-2 entry BSG in 
various tissues. We found BSG was expressed in normal 
tissues and significantly elevated in certain tumor  
types, suggesting cancer patients are more susceptible  
to SARS-CoV-2 infection and more likely to develop 
severe symptoms. Moreover, BSG at mRNA expression 
level was remarkably higher than ACE2 in normal lung 
tissues and lung cancer tissues, BSG might be essential 
for the invasion of SARS-CoV-2 in normal individuals 
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and cancer patients. Overexpression of BSG correlates 
with poor prognosis in malignant tumors, which suggest 
that BSG may promote coronavirus infection in patients 
with malignancies. Our present work emphasized the 
value of targeting BSG in the treatment of COVID-19 
and cancer, and also provided several novel insights for 
understanding the SARS-CoV-2 pandemic. And future 
studies are warranted to define the detailed mechanisms. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 
Supplementary Figure 1. Immunohistochemical analysis of BSG in HPA database. Representative staining for BSG in normal lung 
tissues (A), lung squamous cell tissue (B) and lung adenocarcinoma tissue (C). 
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Supplementary Table 
 
Supplementary Table 1. 100 associated genes for BSG in 33 cancers. 

Gene symbol Gene ID PCC 
NDUFS7 ENSG00000115286.19 0.54 
COX4I1 ENSG00000131143.8 0.49 
C19orf70 ENSG00000174917.8 0.48 
CD320 ENSG00000167775.10 0.48 
TEX264 ENSG00000164081.12 0.47 
ATP6V1F ENSG00000128524.4 0.47 
NDUFA13 ENSG00000186010.18 0.47 
EMC10 ENSG00000161671.16 0.46 
NDUFA8 ENSG00000119421.6 0.46 
G6PC3 ENSG00000141349.8 0.46 
TMEM208 ENSG00000168701.18 0.44 
C19orf24 ENSG00000228300.13 0.44 
PPP2R1A ENSG00000105568.17 0.44 
MAP2K2 ENSG00000126934.13 0.44 
COX7C ENSG00000127184.10 0.44 
RNASEK ENSG00000219200.10 0.44 
LA16c-390E6.5 ENSG00000261641.2 0.43 
CD63 ENSG00000135404.11 0.43 
C12orf10 ENSG00000139637.13 0.43 
NDUFA7 ENSG00000267855.5 0.43 
ATP5D ENSG00000099624.7 0.43 
NDUFB10 ENSG00000140990.14 0.43 
CTB-25B13.12 ENSG00000267317.2 0.43 
TRAPPC2L ENSG00000167515.10 0.43 
POLR2E ENSG00000099817.11 0.42 
ARL2 ENSG00000213465.7 0.42 
COX6A1 ENSG00000111775.2 0.42 
TUFM ENSG00000178952.8 0.42 
NDUFB2 ENSG00000090266.12 0.42 
ILVBL ENSG00000105135.15 0.41 
COX8A ENSG00000176340.3 0.41 
NDUFS3 ENSG00000213619.9 0.41 
EIF3C ENSG00000184110.14 0.41 
TRAPPC5 ENSG00000181029.8 0.41 
VPS18 ENSG00000104142.10 0.41 
NDUFB8 ENSG00000166136.15 0.41 
TMED1 ENSG00000099203.6 0.41 
CHID1 ENSG00000177830.17 0.41 
MRPL28 ENSG00000086504.15 0.41 
UQCRC1 ENSG00000010256.10 0.41 
SGTA ENSG00000104969.9 0.4 
COMMD4 ENSG00000140365.15 0.4 
VEGFB ENSG00000173511.9 0.4 
LRPAP1 ENSG00000163956.10 0.4 
HEXA ENSG00000213614.9 0.4 
NDUFA11 ENSG00000174886.12 0.4 
C19orf25 ENSG00000119559.15 0.4 
VAC14 ENSG00000103043.14 0.4 
COQ9 ENSG00000088682.13 0.4 
TIMM13 ENSG00000099800.7 0.4 
GNPTG ENSG00000090581.9 0.4 
LONP1 ENSG00000196365.11 0.39 
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CLPP ENSG00000125656.8 0.39 
NDUFA3 ENSG00000170906.15 0.39 
WBSCR22 ENSG00000071462.11 0.39 
CLN6 ENSG00000128973.11 0.39 
ATP5G2 ENSG00000135390.17 0.39 
APOO ENSG00000184831.13 0.39 
NDUFA1 ENSG00000125356.6 0.39 
PHPT1 ENSG00000054148.17 0.39 
VAT1 ENSG00000108828.15 0.39 
NDUFC1 ENSG00000109390.11 0.39 
HIGD2A ENSG00000146066.2 0.39 
FAM96B ENSG00000166595.11 0.38 
ATP5B ENSG00000110955.8 0.38 
ITFG3 ENSG00000167930.15 0.38 
TBL3 ENSG00000183751.14 0.38 
WBSCR16 ENSG00000274523.4 0.38 
TCEB2 ENSG00000103363.14 0.38 
TMEM147 ENSG00000105677.11 0.38 
CDC34 ENSG00000099804.8 0.38 
PLOD3 ENSG00000106397.11 0.38 
MRPL54 ENSG00000183617.4 0.38 
GADD45GIP1 ENSG00000179271.2 0.38 
SCYL1 ENSG00000142186.16 0.38 
FKBP2 ENSG00000173486.12 0.38 
COPE ENSG00000105669.12 0.38 
MRPL34 ENSG00000130312.6 0.38 
PRKCSH ENSG00000130175.9 0.37 
UQCR11 ENSG00000127540.11 0.37 
CUTA ENSG00000112514.15 0.37 
FAM195A ENSG00000172366.19 0.37 
NDUFA2 ENSG00000131495.8 0.37 
POLRMT ENSG00000099821.13 0.37 
HAGHL ENSG00000103253.17 0.37 
SLC4A2 ENSG00000164889.12 0.37 
IDH3G ENSG00000067829.18 0.37 
RENBP ENSG00000102032.12 0.37 
MRPS24 ENSG00000062582.13 0.37 
STUB1 ENSG00000103266.10 0.37 
RPUSD2 ENSG00000166133.17 0.37 
ATP6V0C ENSG00000185883.10 0.37 
SLC25A11 ENSG00000108528.13 0.37 
NDUFB7 ENSG00000099795.6 0.37 
NDUFS8 ENSG00000110717.10 0.37 
TIMM22 ENSG00000177370.4 0.37 
TSR3 ENSG00000007520.3 0.37 
MRPL17 ENSG00000158042.8 0.36 
SLC25A3 ENSG00000075415.12 0.36 
POLR2J ENSG00000005075.15 0.36 
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