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INTRODUCTION 
 
Liver cancer, characterized by discouraging  
morbidity and mortality, is one of the most frequent 
lethal gastrointestinal malignancies worldwide [1, 2]. 

Epidemiologically speaking, hepatocellular carcinoma 
constitutes roughly 90% of all incidences of primary 
liver cancer [3, 4]. Owing to the asymptomatic nature 
of early-stage such as abdominal pain, jaundice, weight 
loss, fatigue, and fever, patients diagnosed with HCC 
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ABSTRACT 
 
Background: Hepatocellular carcinoma (HCC), with discouraging morbidity and mortality, ranks as one of the 
most prevalent tumors worldwide. Pyrimidine metabolism is a critical process that regulates DNA and RNA 
synthesis in cells. It is imperative to investigate the significance of pyrimidine metabolism in liver cancer. 
Methods: Transcriptome and clinical data were downloaded from the TCGA database and the GEO database. 
The genes related to pyrimidine metabolism were sourced from the MSigDB. The pyrimidine metabolism-
related signature (PMRS) was constructed through Cox regression and Lasso regression and then verified in the 
external validation set from the ICGC database. Functional enrichment, immune infiltration analysis, drug 
sensitivity, and Immunophenoscore (IPS) were further implemented to predict the response to 
immunotherapy. The role of PMRS in the malignant phenotype of hepatocellular carcinoma was explored by 
conducting a series of in vitro experiments. 
Results: Our study developed a four-genes PMRS which demonstrates a substantial correlation with the prognosis 
of HCC patients, serving as an independent predictor in clinical practice. The result of risk-stratified analysis yielded 
evidence that low-risk patients experienced more favorable clinical outcomes. The nomogram exhibited 
remarkable prognostic predictive value. The subsequent results revealed that low-risk patients manifested a more 
promising response to immunotherapy. Moreover, the results of cell experiments demonstrated that the 
downregulation of DCK markedly inhibited the malignant phenotype of hepatocellular carcinoma. 
Conclusions: Our pyrimidine metabolism-centered prognostic signature accurately predicts overall survival, 
immune status, and treatment response in hepatocellular carcinoma (HCC) patients, offering innovative insights 
for precise diagnosis, personalized treatment, and improved prognosis. 
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are regularly diagnosed at an advanced stage, 
compromising their eligibility for curative resection 
and resulting in suboptimal outcomes [5]. Risk  
factors for developing HCC include chronic hepatitis 
B or C infection, excessive alcohol consumption, non-
alcoholic fatty liver disease, exposure to aflatoxins, 
and obesity [6]. The immune microenvironment exerts 
a vital influence on the initiation and progression of 
HCC, while distinct immune features dependent on 
various etiologies have been delineated [7, 8]. Recently, 
the usage of immunotherapy has revolutionized the 
management of HCC [9]. Targeting the programmed 
cell death and programmed cell death ligand-1 (PD-1/ 
PD-L1) axis has achieved unprecedented success in 
HCC, but it also faces great challenges, with its  
low remission rate still to be solved [10]. It is crucial 
to identify biomarkers that can accurately predict 
response to immunotherapy for obtaining improved 
prognoses in patients with HCC. 
 
Tumor metabolic reprogramming refers to the changes 
in metabolism that occur in tumor cells to facilitate 
their uncontrolled growth and proliferation [11, 12]. 
This process involves a variety of alterations in 
metabolic pathways such as glycolysis, glutaminolysis, 
lipid metabolism, oxidative phosphorylation, and 
pyrimidine metabolism.  
 
Pyrimidines are essential components of nucleic  
acids and play pivotal roles in DNA synthesis  
and cell proliferation. Pyrimidine metabolism is a 
complex process that involves de novo synthesis, 
salvage pathways, degradation, and interconversion  
of pyrimidine nucleotides [13, 14]. Aberrations in 
pyrimidine metabolism have been implicated in 
several diseases, including cancer. Recent studies have 
shown that dysregulation of pyrimidine metabolism is 
involved in the pathogenesis of malignancy. Alterations 
in key enzymes and transporters involved in pyrimidine 
metabolism have been found to be involved in tumor 
progression and resistance to chemotherapy [15–17]. 
For instance, it has been reported that the oncogenic 
protein ubiquitin-conjugating enzyme E2T (UBE2T)  
is elevated and may enhance pyrimidine metabolism 
by encouraging Akt K63-linked ubiquitination, thereby 
facilitating the progression of HCC [18]. Blocking  
the pyrimidine synthetic rate-limiting step enzyme 
CAD or the essential downstream enzyme DHODH 
suppressed the ability to survive and regenerate 
glioblastoma stem cells (GSCs) [19]. Given these 
findings, targeting pyrimidine metabolism could be an 
attractive approach for cancer treatment including 
HCC.  
 
Therefore, based on the online databases, we explored 
and established a PMRS for this investigation. 

Integrated analyses were subsequently conducted to 
evaluate the predictive ability of this signature for 
HCC patients’ survival, sensitivity to chemotherapy, 
and response to immunotherapy, in addition, the 
PMRS was validated through cell experiments. In 
general, our research may yield fresh perspectives  
into the diagnosis and medical management of  
HCC. 
 
MATERIALS AND METHODS 
 
Data acquisition 
 
We retrieved the data of expression and clinical 
information of 374 HCC cases, along with 50  
normal tissue samples from the TCGA data portal 
(https://portal.gdc.cancer.gov/projects/TCGA). The GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) provided 
the microarray dataset GSE14520 (N=425). To 
evaluate the prognostic performance of PMRS,  
an independent validation cohort was utilized, 
consisting of 223 tumorous samples and 202 normal 
tissue samples obtained from the ICGC database 
(https://dcc.icgc.org/releases/current). For the prediction 
of immunotherapeutic response, we downloaded and 
included the IMvigor210 cohort in our study. Gene 
sets related to pyrimidine metabolism were searched 
for in the Molecular Signatures Database (MSigDB) 
(https://www.gsea-msigdb.org/gsea/index.jsp), which 
were subsequently utilized in the investigation. The 
flow chart displayed the flow of this study.  
 
Identification and enrichment analysis of the 
differentially expressed PMRGs 
 
Differentially expressed pyrimidine metabolism-related 
genes between tumor and normal tissues were screened 
out with the criteria through the ‘limma’ R package 
[20]. The ‘clusterProfiler’ R package was utilized for 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses of those 
differentially expressed genes. (https://www.liebertpub. 
com/doi/10.1089/omi.2011.0118). 
 
Consensus clustering of the PMRGs  
 
Based on the differentially expressed PMRGs, the  
R package ‘ConsensusClusterPlus’ was utilized to 
execute consensus clustering and determine discrete 
clusters related to pyrimidine metabolism [21].  
To ensure the robustness and stability of our results, 
we replicated this process 1000 times. Principal 
component analysis (PCA) was employed to classify 
PMRGs into clusters. According to the pertinent R 
package, the OS possibility of PMRG clusters was 
compared.  
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Construction and validation of the PMRS 
 
We sequentially completed the Cox and Lasso 
regression to seek out the optimal independent 
predictive signature. Furthermore, we computed each 
sample’s risk score using the subsequent formula: Risk 
Score = (Coef1 * Exp1 +……+ Coefn* Expn). Patients 
were separated into two categories based on the median 
value of the anticipated risk scores, which served as  
the threshold. The Kaplan-Meier analysis was employed 
to compare the probability of survival within these  
two categories. Time-dependent ROC analysis was 
performed through the R package “timeROC”. Survival 
curves of entire GEO and ICGC cohorts were used to 
examine the capacity of PMRS to distinguish between 
groups with different risks in terms of prognosis. 
Furthermore, stratified analysis was performed to 
evaluate the prognostic significance of PMRS within 
segments distinguished through clinical features.  
 
Establishment and assessment of the pyrimidine 
metabolism-related nomogram 
 
The independent prognostic factors were determined by 
the accomplishment of Cox regression upon PMRS along 
with its related clinical parameters. The nomogram  
was subsequently devised to calculate the survival 
probabilities of HCC patients. Utilizing calibration  
and time-dependent ROC, we assessed the reliability 
and quality of the nomogram. Additionally, employing 
DCA, we contrasted the cumulative effect of the entire 
nomogram with that of this model incorporating solely 
clinical measures. 
 
Functional enrichment analysis 
 
With the annotated gene set obtained from MSigDB, the 
gene set enrichment analysis (GSEA) was carried out to 
identify the differences in linked pathways across 
various risk categories [22].  
 
Evaluation of immunotherapy efficacy and 
investigation of the immune profile 
 
The ESTIMATE algorithm is a computational method 
used to estimate the presence and proportion of 
immune and stromal cells within tumor tissue samples 
[23]. Based on the theory of linear support vector 
regression, the method known as CIBERSORT 
evaluates 22 immune cell type fractions from mass 
tumor sample data regarding expression using an  
array of reference gene expression matrices [24,  
25]. The comparison of the immune checkpoint, 
human leukocyte antigen (HLA), and immune function 
between distinct risk groups was consecutively 
conducted. The IPS is determined by four main gene 

categories that decide the degree of immunogenicity, 
and it is acquired through unbiased analysis utilizing 
machine learning techniques. In this work, we used 
IPS data to assess the prospective immunotherapy 
response. The Submap method was also used to forecast 
how various risk groups would respond to anti-PD-1 
and anti-CTLA-4 treatment [23]. Furthermore, we also 
utilized clinical and immunotherapy data derived from 
the ‘IMvigor210CoreBiologies’ to assess the PMRS’s 
susceptibility to anti-PD-1 treatment in our analysis. 
 
Identification of drug sensitivity 
 
We downloaded the “DrugPredict.tsv” file and 
estimated the sensitivity score for common drugs  
and small chemical molecules in the HCC therapy. 
Additionally, we mined the correlation between PMRS 
genes and drug sensitivity using the CellMiner database 
[26] (https://discover.nci.nih.gov/cellminer/home.do). 
 
Validation of the PMRS gene by single-cell RNA 
analysis 
 
The Tumor Immune Single-cell Hub (TISCH) database 
(http://tisch.comp-genomics.org/home/) is an open-access 
platform that focuses on the single-cell sequencing  
data of the tumor microenvironment [27]. It provides 
comprehensive and detailed information to help 
researchers better understand the immune responses  
in tumors and corresponding single-cell transcriptome 
data [28]. The establishment of this database provides 
an important resource for further exploring tumor 
immunotherapy. We exploited this collection of data  
to figure out the association between the levels of 
expression of four genes responsible for establishing the 
PMRS and the infiltration of diverse immune cell types. 
 
Cell culture and transfection 
 
Hepatocellular carcinoma cell lines MHCC-97H  
and HepG2 were obtained from the American Type 
Culture Collection (USA). These cells were cultured  
at 37° C, 5% CO2 with 10% FBS and 1% penicillin/ 
streptomycin in RPMI-1640. Lipofectamine 3000 was 
applied to transfect cells with siRNAs. The three siRNA 
sequences for DCK are as follows: (siRNA-1) 5’- 
GCCUGUCUCAGUCGAAUAATT – 3’, (siRNA-2) 5’- 
GCCUUGAAUUGGAUGGAAUTT – 3’ and (siRNA-3) 
5’- GCUCAAAGAUGCAGAGAAATT – 3’. 
 
Transfection efficiency 
 
The efficiency of siRNA transfection was evaluated  
by Western blot assay. Cellular total proteins were 
isolated with RIPA lysate buffer and quantified with 
the bicinchoninic acid assay. Thirty micrograms of 
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protein were loaded onto a polyacrylamide gel and 
separated by electrophoresis, then transferred to  
PVDF membranes. Following blocking with 5% BSA, 
the membranes were incubated overnight at 4° C  
with specific primary antibodies against DCK (1:1000, 
Proteintech, China) and GAPDH (1:1000, Proteintech). 
On the following day, the membranes were washed 
with TBST three times (10 min per time) and then 
incubated with a secondary antibody (1:3000) for 2 
hours at room temperature. Signal intensities were 
quantified by the fully automatic chemiluminescence 
image analysis system. 
 
CCK-8 assay 
 
When their siRNA transfection level exceeded 90%, 
MHCC-97H and HepG2 cells were digested followed 
by inoculation onto 96-well culture plates with 2103  
per well, and 3 duplicate wells were created for each 
group. The cells were then cultivated in a 5% CO2 
incubator at 37° C and examined using the CCK-8 kit  
at various intervals of 0h, 24h, 48h, 72h, and 96h. 
(Beyotime Biotechnology, Shanghai, China). 
 
Transwell assay 
 
The lower chamber was covered with 700 μL complete 
medium. Then, 5×104 cells of each group in 200 μL 
serum-free medium were seeded in the upper chamber, 
and then cultured in an incubator (37° C, 5% CO2)  
for 24h. Next, the cells underwent fixation with 4% 
paraformaldehyde for a period of 20 minutes, after 
which they were subjected to staining with crystal violet 
for 30 minutes. Use sterile cotton to wipe off the cells 
remaining in the upper chamber slightly. The transwells 
were dried at room temperature and photographed under 
a microscope. 
 
Wound healing assay 
 
After the siRNA-transfected cells in the 6-well plate 
grew to almost 100%, the cells were scratched in  
the plate with the 200 μL pipetting head and replaced 
with the serum-free medium to avoid cell growth 
effects. Subsequently, the image was captured with a 
microscope at 0h, 24h, and 48h after scratching. 
 
Statistical analyses 
 
All statistical analyses were performed using R software. 
Spearman analysis was used to analyze correlation 
coefficients. For normally distributed continuous data, 
we used independent sample tests, and for irregularly 
distributed continuous variables, Mann-Whitney U tests. 
The data comparison between the three groups was 
done using one-way ANOVA. For survival analysis, the 

Kaplan-Meier technique with a two-sided log-rank  
test was used. Statistical significance was defined as  
a p-value < 0.05. (*P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001). 
 
Data availability statement 
 
This article features the original research contributions 
presented by our study. For any additional inquiries, 
interested parties may contact the corresponding author 
directly. 
 
RESULTS 
 
Flow chart 
 
The flow chart displayed the flow of this study (Figure 1). 
 
Genetic and transcriptional landscape of PMRGs 
 
From the MSigDB database, we initially collected and 
cataloged 92 genes associated with pyrimidine 
metabolism. Subsequently, 54 differentially expressed 
genes were filtered out by criteria of the absolute value 
of log2(FC) > 1 and an adjusted P-value < 0.05. As 
displayed in the genetic variation analysis, missense 
mutations were the top common type among the  
100 (23.2%) mutation samples out of a total of  
431 samples (Figure 2A). RNA polymerase I subunit  
A (POLR1A), Carbamoyl-phosphate synthetase 2-
aspartate transcarbamylase-dihydroorotase (CAD), and 
RNA polymerase III subunit A (POLR3A) ranked the 
top three mutant PMRGs. According to the results of 
differential analysis, there were 53 upregulated genes 
and 1 downregulated gene (Figure 2B). Additionally, 
we explored the CNV patterns of 54 PMRGs within 
HCC. (Figure 2C). Figure 2D depicts the locations of 
the CNV variations of 54 PMRGs on 23 chromosomes. 
 
Development of consensus cluster on PMRGs 
 
We used a consensus clustering approach to categorize 
the pyrimidine metabolism-related clusters to examine 
the expression properties and probable biological 
features of 54 PMRGs in HCC. According to the 
analysis of the cumulative distribution function, k=2 
demonstrates exceptional clustering elasticity. The 
intra-cluster correlation is relatively strong while the 
inter-cluster correlation is low (Figure 3A–3C). 
 
We employed the Kaplan-Meier survival analysis  
to show a more prolonged overall survival of  
HCC patients in cluster B (Figure 3D, P <0.001). The 
PCA graphs revealed a strikingly distinct pattern 
between clusters for all PMRGs and differentiated 
PMRGs. (Figure 3E, 3F). Then, functional enrichment 
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analysis on the differentially expressed PMRGs was 
performed. As the visualization results demonstrated, 
biological processes (BPs) were predominantly enriched 
in the pyrimidine−containing compound metabolic 
process; cellular components (CCs) were significantly 
enriched in DNA and RNA polymerase complex; 
molecular functions (MFs) were mainly enriched in 
nucleotidyltransferase activity and catalytic activity. 
KEGG enrichment analysis exhibited that these genes 
were enriched in pyrimidine metabolism and nucleotide 
metabolism pathway (Figure 3G, 3H). 
 
Development and verification of the prognostic 
model related to pyrimidine metabolism 
 
We employed univariate Cox analysis to ascertain 
genes that exhibit a significant association with  
the survival of HCC patients (Figure 4A). Moreover,  
a pyrimidine metabolism-related 4-gene model was 
constructed to predict prognosis through Lasso and 
multivariate Cox regression analysis (Figure 4B, 4C). 
Risk score = (0.5961×POLR2L) + (0.3923×POLR3G) 
+(0.3057×DCK) + (0.3794×UCK2). On the basis of 
the cutoff, patients in the LIHC cohort were divided 

into two categories: high- and low-risk. To evaluate 
and validate the reliability and accuracy of the model, 
the TCGA cohort was separated into test and train 
groups. According to the survival curves, the patients 
in the high-risk group suffered from poorer prognosis 
in TCGA cohort and GSE14520 cohort (Figure 4D–
4G). The area under curve (AUC) values for the 
predicted survival rates at 1-, 3-and 5-year were 0.797, 
0.696, and 0.667 respectively in TCGA cohort; 0.901, 
0.676, and 0.688 in TCGA test group; 0.768, 0.708 
and 0.688 in TCGA train group; 0.604, 0.610, and 
0.641 in GSE14520 cohort, which demonstrate the 
extraordinary prognostic predictability of the model 
(Figure 4H–4K). Figure 4L displays the risk score, 
clinical factors, and expression of four signature  
genes between the two risk categories. Furthermore, 
we developed external validation to evaluate the 
predictive power of the model utilizing the HCC 
cohort from the ICGC database. The ICGC cohort was 
divided into high- (n=116) and low-risk (n=116) 
groups. The KM survival curve (Figure 4M, P=0.011) 
revealed that the high-risk group had inferior outcomes 
than the low-risk group. In addition, the 1-year OS 
AUC value in the ICGC cohort was 0.703 (Figure 4N). 

 

 
 

Figure 1. The flow chart of this research. 
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Figure 2. The genetic and transcriptional landscape of PMRGs. (A) The mutation profile of differentially expressed PMRGs in the 
TCGA-LIHC cohort. (B) The differential expression of PMRGs in HCC between tumor and normal tissues. (C) The CNV patterns of 54 PMRGs 
within HCC. (D) The locations of the CNV variations of 54 PMRGs on 23 chromosomes. 
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Stratified analysis and development of the 
pyrimidine metabolism-related nomogram 
 
We segregated individuals into different categories  
and calculated their overall survival for the stratified 
analysis to further validate the predictive value of the 
signature in subgroups with distinct clinical factors. 

The results of the distribution characteristics of the 
high- and low-risk categories remained comparable with 
the overall finding that the low-risk group obtained 
relatively favorable clinical results. (Figure 5A–5O). 
Subsequently, both major clinicopathological factors 
and the gene signature were analyzed employing 
univariate and multivariate Cox regression models to 

 

 
 

Figure 3. Identification of potential pyrimidine metabolism-related clusters in HCC patients. (A) The consensus clustering analysis 
of PMRGs. (B) Consensus CDF. (C) Delta area. (D) Kaplan-Meier survival analysis for different clusters. (E, F) The PCA plots of the PMRG 
clusters. (G, H) GO and KEGG enrichment analysis of differentially expressed PMRGs. 
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Figure 4. Identification and validation of the PMRS. (A) Forest plot of the univariate Cox regression. (B, C) Construction of PMRS.   
(D–G) The OS KM curves between different groups respectively in the whole TCGA cohort, test cohort, train cohort, and GSE14520. (H–K) The 
time-dependent ROC curves of the PMRS respectively in the whole TCGA cohort, test cohort, train cohort, and GSE14520. (L) The risk score 
and clinical event between the different groups in TCGA cohort. (M) The OS KM curves between high- and low-risk groups in the ICGC cohort. 
(N) The time-dependent ROC of the PMRS in the ICGC cohort. 
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Figure 5. The distribution features and the OS KM curve of various clinicopathological factors in different risk groups.  
(A–C) Age, (D–F) Gender, (G–I) Grade, (J–L) Stage, (M–O) T. 
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identify their prognostic significance. As the results 
displayed, Stage [(HR:1.661, 1.355−2.037, P < 0.001) 
in univariate Cox; (1.561, 1.264−1.928, P < 0.001) in 
multivariate Cox] and risk score [(1.318, 1.226−1.417, 
P < 0.001) in univariate Cox; (1.296, 1.198−1.401,  
P < 0.001) in multivariate Cox] were significantly 
associated with HCC prognosis and potential to be 
independent predictors (Figure 6A, 6B). We constructed 
a comprehensive nomogram with the identified 
independent prognostic factors to provide quantitative 
predictions of 1-, 3-, and 5-year overall survival (OS) 
probabilities in patients with HCC (Figure 6C). The 
AUC values were 0.802, 0.803, and 0.537 for risk, 
nomogram, and age respectively, which revealed the 
accuracy of the predictions (Figure 6D). The calibration 
curves indicated strong agreement between the actual 
and predicted overall survival (OS) rates (Figure 6E). 
 
To evaluate the clinical usefulness of the nomogram, 
we assessed its performance via decision curve 
analysis (DCA) [29]. Our results manifested that, in 
comparison to the model relying solely on clinical 
characteristics, the comprehensive nomogram could 
lead to increased net benefits and potentially improve 
the clinical management of the disease (Figure 6F). 
 
Detection of the immune landscape 
 
To further investigate the biological progress of the two 
risk groups by conducting GSEA. Our observations 
suggest that the high-risk group exhibited a significant 
enrichment of cancer-associated processes, such as  
cell cycle and ECM receptor interaction. In contrast,  
the low-risk group demonstrated significant enrichment 
of complement and coagulation cascades, which are 
known to function in the immune system (Figure 7A, 
7B). The exploration of the immune microenvironment 
was performed by ESTIMATE and CIBERSORT 
algorithms. Following the outcomes of the ESTIMATE 
analysis, the group with the low risk had a significantly 
higher stromal score. The CIBERSORT analysis 
revealed that the high-risk group owned a significantly 
higher proportion of M0 macrophages and activated 
mast cells, while a higher proportion of plasma cells in 
the low-risk group (Figure 7C, 7D). These observational 
findings imply that the tumor growth and prognosis of 
the different groups may vary in terms of immune cell 
infiltration. For example, a higher proportion of M0 
macrophages may affect antigen presentation and T  
cell activation, thereby accelerating tumor deterioration; 
and an increased number of plasma cells may indicate 
enhanced tumor immune response function, which  
can help stop the progression of tumors. Figure 7E, 7F 
displayed that 47 common immune checkpoint genes 
and 24 human leukocyte antigen (HLA) associated 
molecules were highly expressed in the high-risk group. 

B cells, mast cells, neutrophils, NK cells, type-II IFN 
response, and cytolytic activity were more stimulated in 
the low-risk group, whereas aDCs, IDCs, macrophage, 
Treg, and MHC class I were more stimulated in the 
high-risk group (Figure 7G). Tumor cells have developed 
various mechanisms to evade immune surveillance, 
including enhancing TMB, which can disguise the 
tumor cells from being recognized by the immune 
system. However, on the other hand, TMB has also 
been found to be a reliable predictor of the likelihood  
of an immunological response to the tumor, meaning 
that higher TMB levels may indicate a better likelihood 
of a successful immune attack against the tumor.  
The mutation landscape revealed that 159 (86.41%) of 
184 samples in the high-risk group had mutations, with 
TP53 and CTNNB1 occupying the top two mutation 
frequencies, while 150 (84.75%) of 177 samples in  
the low-risk group did (Figure 7H, 7I). TMB was 
consistently considerably greater in the high-risk group 
compared to the low-risk group (Figure 7J). 
 
Analysis of tumor immune dysfunction and exclusion 
(TIDE) includes the TIDE score, the Dysfunction score, 
the MSI score, and the Exclusion score. In our study, 
the TIDE score, Dysfunction score, and MSI score were 
higher in the low-risk group than in the high-risk group, 
whereas the Exclusion score was lower in the low-risk 
group than in the high-risk group, indicating the 
patient’s immune system in the low-risk group triggered 
a weaker reaction to the tumor, possibly due to the 
strong suppression of the immune cell (Figure 8A– 
8D). TIMER also investigated the relationship between 
immune cell infiltration and the expression levels of 
four model genes. Figure 8E–8H demonstrate that  
DCK and UCK2 were primarily associated with the 
infiltration of B cells, CD4+/CD8+ T cells, macrophages, 
neutrophils, and dendritic cells. In addition, we 
investigated the association between the level of 
infiltration of these immune cells and the mutational 
status of four model genes (Figure 8I–8L). 
 
Immunotherapy efficacy prediction  
 
The immunotherapeutic response exhibited by the 
cohorts categorized as high-risk and low-risk was 
assessed using a combination of the IPS, Submap 
algorithms, and an external cohort undergoing analogous 
immunotherapy treatments. The fact that the percentage 
of ‘ips_ctla4_neg_pd1_neg’ is greater in the low- 
risk group than in the high-risk group suggests that 
patients in the low-risk group have a lesser expression 
of CTLA-4 and PD-1 immune checkpoint proteins  
in their tumor microenvironment. This often leads to 
reduced effectiveness of tumor immune surveillance. 
Therefore, patients in the low-risk group may respond 
better to immunotherapy and have a better prognosis 
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Figure 6. Establishment and assessment of the nomogram. (A, B) Univariate and multivariate regression. (C) Nomogram for the 
prediction of HCC patients’ survival. (D) ROC curve of clinical factors and nomogram. (E) Calibration curves of the nomogram at 1-, 3-, and 5-
years. (F) DCA curves of clinical factors and this nomogram. 
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Figure 7. Detection of the immune profile between different groups. The GSEA results for the high-risk (A) and low-risk (B) groups. 
(C) Difference between two risk groups’ stromal, immune, and ESTIMATE scores. (D) Comparisons of the fractions of immunocyte infiltration 
between distinct groups. (E) Differential checkpoint gene expression between two groups. (F) The differential HLA gene expression between 
two groups. (G) The levels of immune function in the two at-risk categories. The mutational status of the leading 20 genes in the high-risk 
category (H). The low-risk cohort (I). (J) The TMB concentration in the various categories. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).  
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Figure 8. Further exploration of the immune landscape in PMRS. (A–D) TIDE analysis of the two risk groups. (E–H) The relation 
between the expression of four model genes and immune cell infiltration. (I–L) The relation between the mutation landscape of four model 
genes and immune cell infiltration. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).  
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compared to those in the high-risk group (Figure 9A–
9D). Submap analysis yielded results uncovering the 
therapeutic response to anti-CTLA4 and anti-PD-1 
immunotherapy among patients with HCC. The nominal 
P-value (P = 0.007) provided evidence supporting a 
greater likelihood of positive response to anti-PD-1 
immunotherapy in the low-risk cohort relative to  
the high-risk group (Figure 9E). iMvigor210 cohort  
is designed to evaluate the efficacy and safety of 
atezolizumab, an immunotherapeutic drug used for the 
treatment of metastatic urothelial carcinoma (mUC). 
DCK and UCK2 in four model genes were highly 
expressed in the response group which referred to 
potentially serve as a predictive factor related to the 

response of tumor immune therapy (Figure 9F–9I). As 
the results in Figure 9J, 9K displayed, the Riskscore 
exhibits higher values in the response group and lower 
values in the no response group, as well as higher 
values in the SD/PD group and lower values in the 
CR/PR group. This observation commonly implies that 
the Riskscore can function as a stable and dependable 
indicator, thereby enhancing its capacity to effectively 
predict patient responsiveness to immunotherapy drugs.  
 
Estimation of drug sensitivity 
 
To further examine the clinical applicability of PMRS 
for the precise treatment of HCC, we evaluated the  

 

 
 

Figure 9. Immunotherapy efficacy prediction. (A–D) IPS comparisons between the two risk categories. (E) Submap analysis between the 
different groups. (F–I) The differential expression of four model genes between response and non-response groups. (J) Comparisons of the 
risk score in different responses to anti-PD-1/L1 immunotherapy in IMvigor210 cohort. (K) Differences in risk score between the response 
and non-response groups in the IMvigor210 cohort. 
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therapeutic effectiveness of commonly prescribed 
chemotherapeutic agents in various risk categories. 
Based on the findings, low-risk individuals were more 
sensitive to Afatinib, Cediranib, Dasatinib, GNE-317, 

Gefitinib, Ipatasertib, and Osimertinib, whereas less 
responsive to Axitinib, Gemcitabine, Selumetinib, 
Sorafenib, and Oxaliplatin (Figure 10A–10L). Figure 
10M demonstrates the selection and analysis of drugs 

 

 
 

Figure 10. Drug sensitivity analysis. (A) Afatinib. (B) Axitinib. (C) Cediranib. (D) Dasatinib. (E) Gemcitabine. (F) GNE-317. (G) Gefitinib.  
(H) Ipatasertib. (I) Selumetinib. (J) Sorafenib. (K) Osimertinib. (L) Oxaliplatin. (M) The correlation between the drug sensitivity and expression 
levels of the four model genes. 
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that are sensitive to the expression of four model genes, 
which were screened through the CellMiner database. 
 
Analysis of PMRS in single cell level 
 
Tumor Immune Single Cell Hub (TISCH) is a massive 
managed database that incorporates nearly 2 million 
single-cell transcriptomic profiles. All the data were 
uniformly processed using a standardized methodology, 
which included quality control, eradication of batch 
effect, clustering, cell-type annotation, classification  
of malignant cells, variation in expression analysis,  
and functional enrichment analysis [28]. The scatter 
plots illustrated that DCK and POLR2L in the signature 
were significantly associated with tumor immune 
microenvironment through single cell analysis based on 
GSE140228, GSE98638, GSE146115, GSE146409, 
GSE166635, GSE179795 (Figure 11A–11F). 
 
The role of key gene DCK in hepatocellular 
carcinoma was verified in vitro 
 
In light of the previous findings, we conducted  
cell experiments to validate the use of PMRS.  
Firstly, the siRNAs targeting the expression of DCK 
were evaluated using Western blot assay. The  
results indicated that siRNA-3 exhibited the highest 
efficiency in downregulating DCK protein levels, and 
therefore was selected for further analysis conducted 
(Figure 12A). The activity of hepatocellular carcinoma 
cells was dramatically inhibited following DCK 
knockdown in MHCC-97H and HepG2 cell lines 
(Figure 12B, 12C). Afterward, the colony formation 
assays showed that the capacity of these two cell lines 
to generate colonies was significantly decreased after 
DCK knockdown (Figure 12D, 12E). The results of 
wound healing and transwell assays demonstrated a 
significant reduction in the migration and invasion 
capacity of hepatocellular carcinoma cells following 
DCK knockdown through transwell assay (Figure 12F, 
12G) and wound healing assay (Figure 12H, 12I). 
 
DISCUSSION 
 
Pyrimidines are a class of organic compounds  
with a heterocyclic ring structure containing two 
nitrogen atoms at opposite positions in the ring. They 
serve as key building blocks for DNA and RNA, along 
with purines. Additionally, pyrimidines are involved  
in cellular metabolism, serving as precursors for  
the biosynthesis of important biomolecules such as 
nucleotides, coenzymes, and heme. The core enzyme 
CAD, which is involved in the de novo synthesis of 
pyrimidines, is essential for maintaining proper levels 
of pyrimidine nucleotides in cells [30] and for anti-
tumor immunomodulatory effects [31, 32]. Pyrimidine 

metabolism is a complicated enzymatic network  
that involves nucleoside salvage, de novo nucleotide 
synthesis, and the breakdown of pyrimidines. In 
contrast to resting cells, cancer cells depend on the  
de novo pathway to generate a constant supply of 
deoxyribonucleoside triphosphates (dNTPs) in order  
to sustain uncontrolled tumor growth [33].  
 
Hepatocellular carcinoma (HCC) is a major contributor 
to cancer-related morbidity and mortality worldwide. 
While traditional clinicopathological factors such  
as tumor size, stage, and degree of differentiation  
are primary indicators for predicting prognosis and 
guiding treatment decisions, they may not accurately 
reflect prognosis due to the high heterogeneity of the 
malignancy. Therefore, the identification and validation 
of specific and robust liver cancer biomarkers hold 
great significance for the early detection, diagnosis, 
prognosis, and prevention of tumor progression by 
utilizing multi-omics technology to comprehensively 
research the immune microenvironment, gut microbiota, 
liquid biopsy, and individualized treatments [34]. 
Furthermore, certain molecular risk models that have not 
been extensively implemented in clinical management 
have the potential to accurately predict HCC, including 
ferroptosis phenotype-related, cuproptosis-related, and 
hypoxia-related prognostic signatures [35–37]. The 
role of pyrimidine metabolism in HCC, however, is 
not well understood. In this study, we developed a 
signature based on pyrimidine metabolism that may be 
used for risk assessment, prognosis, and treatment 
planning in patients with HCC, thereby facilitating 
effective clinical decision-making. 
 
As models based on single genes lack robustness  
and stability, we utilized machine learning methods  
to identify a 4-gene (DCK, UCK2, POLR2L, and 
POLR3G) signature related to pyrimidine metabolism. 
By incorporating clinical indicators with the signature, 
we developed a comprehensive nomogram that enables 
accurate predictions. Notably, the relevance of the risk 
score was shown by the fact that it was responsible for  
a significant amount of the overall score generated by 
the model. 
 
The tumor microenvironment (TME) comprises diverse 
types of stromal, innate, and adaptive immune cells. 
These populations of cells often engage in cooperative 
or competitive interactions that facilitate tumor growth, 
progression, metastasis, as well as evasion from the  
host immune system [38, 39]. The stromal score is 
derived from the expression levels of genes associated 
with non-cancerous stromal cells surrounding tumors 
[40]. A higher stromal score typically indicates a  
greater amount of stromal cell infiltration within the 
tumor microenvironment, which may suggest a better 
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Figure 11. (A–F) Single-cell analysis of four model genes (DCK, POLR2L, POLR3G, UCK2) via TISCH based on GSE140228, GSE98638, 
GSE146115, GSE146409, GSE166635, GSE179795 datasets. 
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Figure 12. Suppression of DCK inhibited the proliferative and migrative ability of LIHC cells. (A) Transfected efficiency of three 
siRNAs targeting DCK. (B, C) The activity of MHCC-97H and HepG2 cell lines was dramatically inhibited following DCK knockdown.  
(D, E) Colony formation assay revealed that the capacity of these two cell lines to generate colonies was significantly decreased after DCK 
knockdown. (F–I) The migrative and invasive ability of MHCC-97H and HepG2 cell lines was considerably suppressed in the transwell assay 
and wound healing experiment. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).  

5562



www.aging-us.com 19 AGING 

prognosis due to an increased presence of immune 
cells that can target cancer cells [41]. However, it is 
important to note that the interpretation of stromal 
scores must be considered in conjunction with other 
clinical factors and should not be used as the sole 
determinant for treatment decisions. In addition, the 
low-risk group infiltrated more plasma cells and fewer 
M0 macrophages. Across diverse cancer types, the 
presence of Mϕ infiltration within the tumor micro-
environment is frequently associated with advanced 
clinical stage and unfavorable prognosis [42, 43]. 
Hence, strategies to specifically target these Mϕ 
subpopulations may prove instrumental in advancing 
the field of tumor immunotherapy, and ultimately 
improving patient outcomes. M0 macrophages are  
a type of immune cell that can be found in the  
tumor microenvironment and their abundance or  
ratio with other macrophage subtypes can potentially 
impact tumor progression. An increased presence of 
M0 macrophages may suggest a pro-inflammatory 
environment within the tumor microenvironment, 
which has been associated with an increased risk of 
tumor progression [44, 45]. 
 
Researchers have discovered that cancer cells  
may escape immune monitoring via a variety of 
strategies, one of which is activating a pathway  
known as the immunological checkpoint. Immune 
checkpoint inhibitors (ICIs) function by reversing 
immunological tolerance to tumors, overcoming tumor 
cell-mediated immune suppression, restoring anti-
cancer immunity, and facilitating the clearance of 
tumor cells [46, 47]. In the majority of HCC patients, 
the PD-1/PD-L1 pathway alone may not suffice as the 
rate-limiting factor in counteracting tumor-mediated 
immune suppression. Hence, therapeutic intervention 
based solely on blocking the PD-1/PD-L1 axis may  
not be adequate for eliciting an effective anti-tumor 
immune response [48]. In this context, combination 
therapy that can act upon multiple pathways may 
present itself as a more viable strategy for enhancing 
the overall treatment efficacy. A meta-analysis revealed 
that despite an overall objective response rate that 
remained below 30%, the administration of PD-1/ 
PD-L1 inhibitors in combination with anti-angiogenic 
agents and dual immunotherapy resulted in significantly 
increased survival time when compared to Sorafenib 
[49]. Our investigation evaluated the immunotherapy 
response across distinct risk groups based on the 
pyrimidine metabolism-related signature. Patients in 
the low-risk category were shown to have a higher 
likelihood of benefiting from immunotherapy treatment. 
This finding, which highlights the strong predictive 
value of the detected signature, was discovered via the 
use of various algorithms and an independent cohort. 
In addition, a complete analysis of this gene signature 

was able to efficiently differentiate between several 
subtypes of HCC cells, which demonstrates its 
potential for use in future therapeutic approaches. 
 
It should be noted that our study carried several 
limitations. Firstly, the utilization of an existing public 
database as the foundation for our research warrants the 
need for subsequent validation through multi-centric 
prospective trials. Secondly, the existence of unknown 
interactions between gene products and genes present in 
the identified signature can have significant implications 
for both physiology and pathology. Therefore, further 
probing through complementary experiments conducted 
using in vivo models is necessary to get better insights 
into the underlying mechanisms of the gene signature in 
question. 
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