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INTRODUCTION 
 
Breast cancer is the most common cancer in women. 
The incidence and mortality rates of breast cancer  
are extremely high; about 287,850 American and 
429,150 Chinese women were diagnosed last year, 
with mortality often as high as 15% [1]. Today, breast 
cancer treatment includes radiotherapy, chemotherapy, 

endocrine therapy, and anti-human epidermal  
growth factor receptor-2 therapy. Although these 
treatments are widely available, much effort is  
still needed to reduce the incidence and mortality of 
breast cancer. 
 
Cancer biomarkers are important in cancer diagnosis, 
prognosis, epidemiological research, and therapeutic 
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ABSTRACT 
 
Objective: To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity, 
and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer. 
Methods: TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected 
from the University of California Santa Cruz database. Survival analyses were performed to explore the 
relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to 
identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman’s and 
Wilcoxon’s tests were used to investigate the relationships between S100A7 expression and immune 
characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and 
its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-
quantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay. 
Results: S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7 
was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further, 
S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in 
breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and 
chemotherapy resistance of breast cancer cells in vitro experiments. 
Conclusion: High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast 
cancer, making it a potential immune and chemotherapy resistance biomarker. 
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intervention. Biomarkers can be used to enhance the 
accuracy of targeted therapies [2]. Discovering new 
tumor biomarkers that can predict and improve the 
prognosis of breast cancer is essential. 
 
The S100 protein family, comprising 25 known 
members in humans, is one of the largest groups of 
calcium-binding proteins, all of which structurally 
belong to the EF-hand family [3]. These proteins are 
expressed in a cell- and tissue-specific manner and 
exert a wide range of intracellular and extracellular 
functions, including regulation of the cell cycle, cell 
proliferation, migration, invasion, phosphorylation, 
cytoskeletal components, and transcription factors [4]. 
They can produce these effects by interacting with 
different receptors, the most studied among which  
is the receptor for advanced glycation end products  
[5, 6]. Some members of this family, such as S100A4, 
S100A8/A9, S100P, and S100B, mediate the interaction 
between tumor and stromal cells, and thus, have  
been implicated in tumor progression, angiogenesis, and 
metastasis [7]. Naturally then, some S100 proteins have 
been proposed as novel targets for cancer therapy. 
 
S100A7, also known as psoriasin, was one of the most 
abundant proteins detected in psoriatic keratinocytes 
[8]. S100A7 was found to be closely related to  
various tumors, such as oral squamous cell carcinoma, 
breast cancer, prostate cancer, osteosarcoma, head  
and neck cancer, lung cancer, and ovarian cancer  
[5, 9, 10]. Functional studies showed that S100A7 
promoted cell proliferation, migration, invasion, 
angiogenesis, and metastasis [9, 10]. S100A7 can be 
induced by inflammatory cytokines and can also 
induce apoptosis and the expression of inflammatory 
cytokines/chemokines, suggesting that it may act as  
a stromal factor [11]. In addition, it may promote  
the growth of breast cancer by upregulating the pro-
inflammatory pathway to recruit tumor-associated 
macrophages for metastasis [10]. However, the role of 
S100A7 in regulating tumor immunity in other types 
of cancer is still unknown. 
 
As a dynamic system, cancer is characterized by  
the dysregulation of proliferation, survival, and  
growth of transformed cells. Accumulating evidence 
suggests that transformed cells within tumors are 
heterogeneous, and they undergo stochastic genetic 
and epigenetic alterations to enhance the fitness of 
subsets [12, 13]. Tumor stemness is closely related to 
tumor heterogeneity. Cancer cells acquire genetic 
mutations during tumor evolution or transformation, 
leading to the accumulation of subclonal populations 
with different phenotypes and heterogeneous features 
[14]. Besides, individual clones may serve different 
functions within populations, which points toward 

nongenetic determinants that play a crucial role in 
shaping the differences in cellular subclones or lead to 
different survival outcomes in response to treatment 
regimens [15]. The relationship among S100A7, tumor 
heterogeneity, and tumor stemness is still obscure. 
This relationship must be studied to better understand 
the factors that drive intratumoral heterogeneity and 
tumor progression. 
 
Methylation plays an important role in cancer 
progression. The expression of oncogenes increases 
when they are demethylated in their promoter region, 
leading to drug resistance. Thymosin β4, which  
was overexpressed after DNA demethylation and 
histone H3 modification in the promoter region of  
its gene, conferred cancer stem cell-like ability upon 
hepatoma cells, making them resistant to sorafenib 
[16]. RNA methylation accounts for more than 60%  
of all RNA modifications. The 5′ cap and 3′ polyA 
modifications of eukaryotic mRNAs play a crucial  
role in transcriptional regulation, whereas the internal 
modifications help maintain mRNA stability. N6-
methyladenosine (m6A), 5-methylcytosine (m5C), and 
N1-methyladenosine (m1A) are the most common 
internal mRNA modifications in eukaryotes, which 
impact mRNA splicing, transport, and translation [17]. 
The relationship between S100A7 and methylation  
is still unknown, and studying it can help define the 
factors that drive tumor progression. 
 
In this study, we first explored the pan-cancer 
differences in S100A7 expression. Next, we identified 
the relationship between S100A7 expression and  
pan-cancer prognosis. Subsequently, we analyzed the 
immune characteristics, methylation, tumor stemness, 
and heterogeneity in pan-cancer. Finally, in vitro 
experiments were performed to validate the potential 
function of S100A7 in breast cancer. 
 
METHODS 
 
Data collection 
 
The Cancer Genome Atlas-breast cancer cohort 
(TCGA-BRCA) and pan-cancer RNA-seq data were 
collected from the University of California Santa  
Cruz database (https://xenabrowser.net/) and converted 
into the transcripts per million formats. Data on the 
clinical follow-up survival and clinicopathological 
characteristics were simultaneously downloaded. To 
reduce bias in the statistical analysis, BRCA and pan-
cancer patients with missing overall survival data or  
a follow-up time <30 days and male BRCA patients 
were excluded. The tumor mutational burden (TMB) 
and mutant-allele tumor heterogeneity (MATH) scores 
were calculated. 
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Differential and survival analysis 
 
To ensure the accuracy of the following analysis, we 
deleted duplicated and missing RNA-seq data, and 
converted the remaining data into the log2(transcripts  
per million + 1) format. Differential S100A7 expression 
between normal and tumor tissues was identified using 
Wilcoxon rank-sum test, and samples were classified 
into two groups based on the median S100A7 expression. 
 
The relationship between S100A7 expression and pan-
cancer prognosis was examined using log-rank analysis. 
Cox analysis was performed to ensure the precision of  
the results, which were depicted as heatmaps and forest 
plots. The “Survminer” and “Survival” packages were 
used to perform survival analysis and plot survival curves. 
 
Enrichment analysis  
 
To clarify the impact of S100A7 expression on some 
potential pan-cancer pathways, Gene Set Enrichment 
Analysis (GSEA) was performed, and the results were 
displayed in the form of a heatmap. 
 
We also explored the impact of S100A7 expression 
specifically in breast cancer. Gene Ontology analysis 
was performed to identify the molecular functions, 
biological processes, and cellular components that were 
enriched in breast cancer. Kyoto Encyclopedia of Genes 
and Genomes enrichment analysis and GSEA could 
predict the pathways related to S100A7 alteration-
associated genes in breast cancer. The protein–protein 
interaction network was also elucidated to understand 
the interactions between proteins associated with S100A7 
alterations in breast cancer. Finally, we compared the 
scores of the common pathways between the S100A7-
high-expression and the S100A7-low-expression groups. 
 
Immunomodulatory, immune cell infiltration, immune 
checkpoint, and immune activity score analysis 
 
We assessed the correlations between S100A7 expression 
and immunomodulators, immune checkpoints, and 
immune cell infiltration. Lists of genes encoding immune 
checkpoints and immunomodulators were downloaded 
from TISIDB (http://cis.hku.hk/TISIDB/download.php). 
We also compared immunomodulatory scores between 
the S100A7-high-expression and the S100A7-low-
expression groups to further define the relationship 
between S100A7 expression and immunomodulators. 
 
The immune cell infiltration score was calculated by 
multiple methods (TIMER, EPIC, MCP-COUNTER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, 
XCELL, TIDE) and downloaded from TIMER2.0 
(http://timer.cistrome.org/). Heatmaps were used to 

illustrate the relationship between immune cell 
infiltration and S100A7 expression pan-cancer. The 
ESTIMATE method was also used to perform the 
same analysis pan-cancer as well as in breast cancer. 
 
Tracking Tumor Immunophenotype 
(http://biocc.hrbmu.edu.cn/TIP/) was used to calculate 
the immune activity score. We compared the immune 
activity scores between the S100A7-high and -low 
expression groups to establish the relationship between 
S100A7 expression and immune activity.  
 
Finally, we performed a pan-cancer correlation analysis 
between S100A7 expression and immune checkpoints. 
We also compared immune checkpoint scores between 
the S100A7-high and -low expression groups. 
 
Association with m6A, m5C, m1A, and DNA 
methylation 
 
A correlation analysis was performed between  
S100A7 expression and m6A, m5C, m1A, and DNA 
methylation. DNA methylation data were down- 
loaded from the Gene Set Cancer Analysis database 
(http://bioinfo.life.hust.edu.cn/GSCA/). The m6A, m5C, 
and m1A gene sets were downloaded from the literature 
(https://doi.org/10.3389/fimmu.2022.918140). 
 
Gene mutation, tumor stemness, and tumor 
heterogeneity analysis 
 
TMB and MATH were used to predict the efficacy of 
tumor immunotherapy and tumor heterogeneity. The 
“maftools” package was used for calculating TMB and 
MATH scores in breast cancer [18]. We also downloaded 
microsatellite instability, neoantigen, and purity scores 
from the literature to examine the relationship between 
S100A7 expression and tumor heterogeneity [19, 20]. 
 
Six tumor stemness scores—RNA expression- 
based stemness score (RNAss), epigenetically regulated  
RNA expression-based stemness score (EREG.EXPss), 
DNA methylation-based stemness score (DNAss), epi-
genetically regulated DNA methylation-based stemness 
score (EREG-METHss), differentially methylated probes-
based stemness score (DMPss), and enhancer elements/ 
DNA methylation-based stemness score (ENHss)—were 
downloaded from the literature [21]. The relationship 
between S100A7 expression and tumor stemness was 
analyzed using Spearman’s method. 
 
We downloaded the level 4 single nucleotide variation 
dataset for TCGA samples processed using Mutect2 
[22] and the level 4 copy number variation dataset  
for all TCGA samples processed using GISTIC [23]. 
Samples with synonymous mutations were filtered, and 
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log2(× + 0.001) transformation was applied to each 
expression value. Finally, tumors with less than three 
samples in a single cancer were excluded. The data so 
processed were used to study the relationship among 
single nucleotide variation, copy number variation, and 
S100A7 expression.  
 
We also evaluated the relationship between gene 
mutation and S100A7 expression. The “maftools” 
package was used to analyze mutation-related data  
and to visualize this relationship in breast cancer. All 
these results were visualized using the “ggplot2” and 
“ggpubr” packages. 
 
Experimental material 
 
Cell Counting Kit-8 (CCK8) was purchased from 
MedChemExpress (Monmouth Junction, NJ, USA). 
CellTiter 96® Aqueous One Solution Reagent Kit for 
measuring the cell viability was obtained from Promega 
Co. (Madison, WI, USA). Lipofectamine 3000 was 
bought from Invitrogen Co. (Carlsbad, CA, USA). The 
S100A7 expression plasmid with the green fluorescent 
protein tag (pGensil-1-S100A7) was designed by Sangon 
Biotech Co. (Shanghai, China). 
 
Cell culture 
 
MCF7 and MDA-MB-231 cells were purchased from 
the Cell Resource Center, Institute of Basic Medicine, 
Chinese Academy of Medical Sciences and Peking 
Union Medical College. They were cultured in DMEM 
(containing 4.5 g of glucose; Gibco, Waltham, MA, 
USA) containing 10% fetal bovine serum (FBS; Gibco) 
and 1% penicillin/streptomycin (Gibco) at 37°C in a 
humidified incubator having 5% CO2. 
 
Cell transfection 
 
MCF7 and MDA-MB-231 cells were seeded in 6-well 
plates and transfected at 90% confluence with the 
indicated plasmid using Lipofectamine 3000, according 
to the manufacturer’s instructions. Briefly, 2.5 μg of the 
plasmid was mixed with 5 μL of P3000 in 125 μL of 
serum-free DMEM. Separately, 5 μL of Lipofectamine 
3000 was mixed in 125 μL of serum-free DMEM. 
These two mixtures were complexed for 15 min at room 
temperature before they were added to the cells. The 
transfection efficiency was evaluated 48 h later under an 
inverted fluorescence microscope. 
 
Reverse transcription-quantitative PCR 
 
Total RNA was extracted from MCF7 and MDA- 
MB-231 cells using TRIzol reagent (Takara, Dalian, 
China), and cDNA was synthesized according to the 

instructions of the Reverse Transcription Kit (Takara). 
Based on the Ct value, the expression of the target gene 
was calculated by the 2−ΔΔCt method. 
 
CCK8 assay 
 
MCF7 or MDA-MB-231 cells in their growth phase were 
seeded in 96-well cell culture plates at a density of 5000 
cells/100 µL of medium and cultured for 24 h at 37°C. The 
drug concentrations tested on MDA-MB-231 cells were  
0, 1, 2, 4, 5, and 8 mg/L, whereas those tested on MCF7 
cells were 0, 0.1, 0.2, 0.25, 0.4, and 0.5 mg/L. After 48 h 
of culture, the cells were incubated with 10 µL of CCK8 
reagent for 2 h, following which the absorbance was 
measured at 450 nm. The inhibition rate was calculated 
according to the following formula: inhibition rate =  
(1-experimental group/control group). Finally, the half-
maximal inhibitory concentration (IC50) was calculated. 
 
We also used the CCK8 assay to evaluate cell 
proliferation. MCF7 and MDA-MB-231 cells were 
seeded in 96-well cell culture plates as described  
above. The absorbance was measured at 450 nm at 0 h, 
24 h, 48 h, and 72 h to evaluate the susceptibility of 
S100A7 expression to breast cancer cell proliferation 
and chemosensitivity. We calculated the percentage of 
cell viability. Cell viability was calculated as follows: 
 

( ) 450( ) 450( ) 100% 
450( ) 450( )
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Treatment group: Containing cells and different 
concentrations of drugs (include 0) in knockdown or 
control groups. 
 
Control group: Only containing cells in knockdown or 
control groups. 
 
Blank: Both cells and drugs were not contained in 
knockdown or control groups. 
 
Transwell assay 
 
To test the migration ability of breast cancer cells, 
suspensions of MCF7 and MDA-MB-231 cells were 
prepared in DMEM without FBS at a density of 2 × 104 

cells/mL. The upper chamber of the Transwell was filled 
with 100 μL of this suspension, while the lower chamber 
was filled with 500 μL of DMEM containing FBS. The 
excess cells were retrieved with a sterile cotton swab, 
fixed in 4% formaldehyde, and stained with 0.1% crystal 
violet to count the number of migrating cells. 
 
To investigate the invasiveness of MCF7 and MDA-MB-
231 cells, the stroma was diluted in DMEM without  
FBS at a ratio of 1:7 (Beyotime, Guangzhou, China).  
An aliquot of 50 μL was aspirated into the upper chamber 
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and allowed to rest for 3–4 h. The rest of the procedure 
was the same as that described for the migration assay. 
 
Wound healing assay 
 
For this experiment, 1 × 106 cells per well were seeded 
in 6-well plates. After cell transfection and overnight 
incubation, the cells were scratched using a 10-µL pipette 
tip and photographed using a powered microscope with 
a 4× magnification at 0 h and 24 h. 
 
Statistical analysis 
 
T-test was used to compare two groups of measurement 
data. The Wilcoxon rank-sum and Kruskal tests were 
employed to identify the differences in three clusters. 
Univariate Cox regression was used to assess the 
differences between counting data. Log-rank test was 
used to evaluate the prognosis of cancer. P < 0.05 was 
considered statistically significant. 
 
Availability of data and materials 
 
The data can be downloaded from TCGA 
(https://portal.gdc.cancer.gov/). The codes used during 
the current study are available from the corresponding 
author on reasonable request. 

RESULTS 
 
S100A7 was highly expressed and associated with 
poor prognosis in pan-cancer 
 
We found that S100A7 was expressed at a significantly 
higher level pan-cancer (in glioblastoma multiforme, 
glioma, brain lower grade glioma, uterine corpus endo-
metrial carcinoma, breast invasive carcinoma, esophageal 
carcinoma, stomach and esophageal carcinoma, colon 
adenocarcinoma, prostate adenocarcinoma, stomach 
adenocarcinoma, lung squamous cell carcinoma, thyroid 
carcinoma, rectum adenocarcinoma, ovarian serous 
cystadenocarcinoma, testicular germ cell tumors, all, 
kidney chromophobe; Figure 1A). S100A7 was highly 
expressed in breast cancer as well (Figure 1B–1D). 
 
We also explored the relationship between S100A7 
expression and pan-cancer prognosis. Log-rank test and 
univariate Cox regression were used to conduct survival 
analysis. We found that S100A7 was related to the 
prognosis of multiple types of cancer (Figure 2A). 
S100A7 expression was closely related to the overall 
survival of patients with skin cutaneous melanoma 
(Figure 2B), kidney renal clear cell carcinoma (Figure 
2C), liver hepatocellular carcinoma (Figure 2D), and 
the disease-specific survival of patients with kidney 

 

 
 
Figure 1. The pan-cancer expression of S100A7. (A) S100A7 expression from TCGA + GTEx microarray data. (B) S100A7 expression 
from GSE15852 data. (C) S100A7 expression in breast cancer and normal breast tissues from GSE10797 data. (D) S100A7 expression in 
breast cancer and normal breast tissues from TCGA-BRCA data. Abbreviations: TCGA: The Cancer Genome Atlas; GTEx: Genotype-Tissue 
Expression. 
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renal clear cell carcinoma (Figure 2E) and skin 
cutaneous melanoma (Figure 2F). What’s more, 
S100A7 expression was closely related to the overall 
survival of patients with bladder urothelial carcinoma 
(Figure 2G). 

Enrichment analysis revealed that S100A7 was 
related to multiple cancer development pathways 
 
We performed enrichment analyses to investigate the 
potential pathways affected by S100A7 pan-cancer and 

 

 
 
Figure 2. Relationship between S100A7 expression and the prognostic value of S100A7 pan-cancer. (A) The pan-cancer 
prognostic value of S100A7 (univariate Cox and log-rank analysis). Prognostic value of S100A7 expression in terms of OS in (B) SKCM, 
(C) KIRC, (D) LIHC, and DSS in (E) SKCM and (F) KIRC. It also reflected the prognostic value of S100A7 expression in terms of OS in (G) BLCA. 
Abbreviations: OS: overall survival; DSS: disease-specific survival; SKCM: skin cutaneous melanoma; KIRC: kidney renal clear cell carcinoma; 
LIHC: liver hepatocellular carcinoma; BLCA: bladder urothelial carcinoma. 
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in breast cancer. GSEA showed that S100A7 was 
related to multiple cancer development pathways,  
such as Notch signaling (Figure 3A). The same 
analysis was performed in breast cancer, and all 
potential pathways as well as those with the most 
significant changes were displayed (Figure 3B, 3C). 

We also compared the differences in potential 
pathways between the S100A7-high and -low 
expression groups. Overall, we discovered that S100A7 
was closely related to various biological activities, such 
as the cell cycle, metabolism of various substances, 
and cancer development (Figure 3D). 

 

 
 
Figure 3. GSEA of DEGs between S100A7-high and -low expression groups pan-cancer. (A) Pan-cancer GSEA. (B) The GSEA results 
in breast cancer were shown using a word cloud map. (C) Top three potential pathways according to GSEA results in breast cancer. 
(D) Pathway score in the S100A7-high and -low expression groups in breast cancer. Abbreviations: GSEA: Gene Set Enrichment Analysis; 
DEGs: differentially expressed genes. 
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Gene Ontology and Kyoto Encyclopedia of Genes  
and Genomes enrichment analyses showed that the 
upregulated genes were closely related to system 

development, the extracellular region, regulation of 
molecular function, and the interleukin-17 pathway 
(Figure 4A, 4B), whereas the downregulated genes were 

 

 
 
Figure 4. GO and KEGG pathway enrichment analyses of upregulated and downregulated genes in the two groups based on 
the median S100A7 expression in breast cancer. (A) GO functional enrichment analysis of upregulated genes based on the S100A7 
median expression grouping. (B) KEGG pathway enrichment analysis of upregulated genes based on the S100A7 median expression 
grouping. (C) GO functional enrichment analysis of downregulated genes based on the S100A7 median expression grouping. (D) KEGG 
pathway enrichment analysis of downregulated genes based on the S100A7 median expression grouping. (E) PPI network of the DEGs 
between S100A7-high and -low expression groups pan-cancer. Abbreviations: GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; PPI: protein–protein interaction. 
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closely related to RNA processing, the nucleolus, 
signaling receptor activity, and the nicotine addiction 
pathway (Figure 4C, 4D). The protein–protein interaction 
network of all differentially expressed genes was charted 
to understand the interaction among them (Figure 4E). 
 
S100A7 affects immunomodulators, immune cell 
infiltration, immune activity score, and immune 
checkpoints 
 
We examined the relationship between S100A7 and 
tumor immunity. Spearman’s correlation analysis showed 
that S100A7 was closely related to immunomodulators 
pan-cancer (Figure 5A). In breast cancer, S100A7  
was associated with immunomodulators (Figure 5B),  

the major histocompatibility complex (Figure 5C), 
chemokines (Figure 5D), and receptors (Figure 5E). 
 
Multiple methods were used to assess the correlation 
between immune cell infiltration and S100A7 expression 
pan-cancer. S100A7 was associated with B cells, CD4+  
T cells, CD8+ T cells, cancer-associated fibroblasts, 
macrophages, neutrophils, and mast cells (Figure 6).  
The immune, stromal, and ESTIMATE scores were also 
related to S100A7 expression pan-cancer (Figure 7A)  
as well as in breast cancer (Figure 7B–7D). 
 
Further, the immune activity score was higher in the 
S100A7-high than in the S100A7-low expression group 
(Figure 7E). 

 

 
 
Figure 5. Correlation between S100A7 expression and immunomodulators in pan-cancer. (A) Correlation between S100A7 
expression and immunomodulators in pan-cancer. The expression of genes related to immunomodulators (B), MHC (C), chemokines (D), 
and receptors (E) in the two groups based on the median S100A7 expression in breast cancer. “ns” represents not significant. *P < 0.05; **P 
< 0.01; ***P < 0.001. Abbreviation: MHC: major histocompatibility complex. 
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Finally, correlation analysis showed that S100A7 was 
related to immune checkpoints pan-cancer (Figure 7F). 
A comparison of the expression of immune checkpoints 

between the S100A7-high and -low expression groups 
further verified the close association between S100A7 
expression and immune checkpoints (Figure 7G, 7H). 

 

 
 
Figure 6. Correlation between S100A7 expression and immune cell infiltration pan-cancer. “×” represents P > 0.05, which was 
not statistically significant. 
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S100A7 is associated with methylation, gene mutation, 
tumor heterogeneity, and stemness 
 
We also studied the relationship between methylation 
and S100A7 expression in cancer. S100A7 expression 
was closely correlated with the m6A, m5C, and m1A 
modifications (Figure 8A). It was also associated with 
the DNA methylation sites cg00325910, cg02892624, 
and cg17421062 pan-cancer (Figure 8B). Moreover, the 
expression of m6A-, m5C-, and m1A-related genes 
differed between the S100A7-high and -low expression 
groups (Figure 8C). 
 
Next, we analyzed the differences in the gene mutation 
landscape of S100A7 between the S100A7-high and  

-low expression groups (Figure 9A). Copy number 
variation was similar between the two groups pan-
cancer (Figure 9B), but single nucleotide variation  
was associated with S100A7 expression (Figure 9C).  
In the S100A7-high expression group, the genes most 
susceptible to mutation were TP53, PIL3CA, TTN, 
GATA3, and CDH1 (Figure 9D). 
 
Finally, we explored the relationship between S100A7 
expression and tumor stemness and heterogeneity. 
S100A7 expression was associated with tumor 
heterogeneity (TMB, MATH, microsatellite instability, 
neoantigen, purity, ploidy, homologous recombination 
deficiency (HRD), and loss of heterozygosity (LOH) 
scores; Figure 10A). In breast cancer, the tumor

 

 
 
Figure 7. Correlation between S100A7 expression and immune infiltration as well as immune checkpoints pan-cancer, and 
the relationship between S100A7 expression and immune activity scores in breast cancer. (A) Correlation between S100A7 
expression and immune infiltration pan-cancer. Correlation between S100A7 expression and the ESTIMATE score (B), immune score (C), 
and stromal score (D) in breast cancer. (E) Relationship between S100A7 expression and immune activity score in breast cancer. STEP1: 
Release of cancer cell antigens; STEP2: Cancer antigen presentation; STEP3: Priming and activation; STEP4: Trafficking of cells to tumors; 
STEP5: Infiltration of immune cells into tumors; STEP6: Recognition of cancer cells by T cells; STEP7: Killing of cancer cells. (F) Correlation 
between S100A7 expression and immune checkpoints pan-cancer. The expression of genes related to inhibitors (G) and stimulators (H) of 
immune checkpoints in the two groups based on the median S100A7 expression in breast cancer. “ns” represents not significant. *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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heterogeneity indicators that most correlated with 
S100A7 expression were HRD, TMB, and LOH (Figure 
10A). The tumor stemness indicators RNAss, ENHss, 
DMPss, DNAss, EREG-METHss, and EREG-EXPss 
were also associated with S100A7 expression (Figure 
10B). In breast cancer, DMPss and EREG-EXPss were 
associated with S100A7 expression (Figure 10C). 

S100A7 promotes breast cancer cell proliferation, 
invasion, migration, and chemoresistance in vitro 
 
We performed in vitro experiments to verify the 
functions of S100A7 in cancer. The CCK8 proliferation 
assay showed that S100A7 knockdown inhibited  
the proliferation of MCF7 and MDA-MB-231 cells 

 

 
 
Figure 8. Correlation between methylation and S100A7 expression pan-cancer. (A) Correlation between S100A7 expression and 
m6A, m5C, and m1A pan-cancer. (B) Correlation between DNA methylation and S100A7 expression pan-cancer. (C) The expression of genes 
related to m6A, m5C, and m1A in the two groups based on the median S100A7 expression in breast cancer. “ns” represents not significant. 
*P < 0.05; **P < 0.01; ***P < 0.001. Abbreviations: m6A: N6-methyladenosine; m1A: N1-methyladenosine; m5C: 5-methylcytosine. 
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(Figure 11A), which was accompanied by a 
downregulation of the proliferation biomarkers Ki67 
and proliferating cell nuclear antigen (Figure 11B). 
 
The Transwell assay demonstrated that S100A7 was 
associated with the invasion and migration of breast 
cancer cells (Figure 11C). The migration biomarkers 
matrix metalloproteinases-2 and -9 were also down-
regulated after S100A7 was knocked down (Figure 
11D). The wound healing assay showed that S100A7 
knockdown inhibited the migration of MCF7 and 
MDA-MB-231 cells (Figure 11E). 
 
We also used Taxol to explore the relationship between 
S100A7 expression and sensitivity to chemotherapy. 

The CCK8 assay showed that the IC50 of breast cancer 
cells to Taxol diminished when S100A7 was knocked 
down (Figure 12A). The wound healing assay further 
showed that S100A7 knockdown inhibited the migration 
of breast cancer cells after Taxol treatment, indicating 
that S100A7 contributed to chemotherapy resistance in 
breast cancer (Figure 12B, 12C). 
 
DISCUSSION 
 
In this study, we first established the level of  
S100A7 expression pan-cancer and its relationship  
with patient prognosis. Subsequently, we explored the 
relationship between S100A7 expression and immune 
characteristics, methylation, tumor heterogeneity, tumor

 

 
 
Figure 9. Relationship between gene mutation and S100A7 expression. (A) The pan-cancer gene mutation landscape of S100A7. 
The relationship between S100A7 expression and CNV (B) and SNV (C) pan-cancer. (D) The gene mutation landscape in the two groups 
based on the median S100A7 expression in breast cancer. “ns” represents not significant. *P < 0.05; **P < 0.01; ***P < 0.001. Abbreviations: 
CNV: copy number variation; SNV: single nucleotide variation. 
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stemness, and gene mutations. Finally, we confirmed 
the potential functions of S100A7 and examined its 
influence on chemosensitivity using an in vitro breast 
cancer cell model. 
 
S100A7 is related to the progression of multiple types 
of cancer. It promoted the progression of non-small cell 
lung cancer by interacting with c-Jun activation domain-
binding protein-1 [24]. S100A7 was associated with 
poor prognosis in ovarian cancer [25]. Overexpressing 
S100A7 in cervical cancer cells promoted their migration 
and invasion without affecting their proliferation [5].  
In this study, we showed that S100A7 promoted the 
proliferation, migration, and invasion of breast cancer 
cells, which is consistent with the results reported in 
other types of cancer. Therefore, S100A7 seems to play 
an important role in the progression of multiple types of 
cancer. 
 
The niche surrounding the tumor, called the  
"tumor microenvironment” (TME), originates from the 
nearby mesenchymal stroma and consists of complex 
tissues forming discrete cell types that maintain a 
favorable environment around the tumor [26]. The  
TME is an important factor affecting tumor progression. 
The mesenchymal ecosystem is constituted by the 
mesenchyme, infiltrating immune cells, inflammatory 
cells, endothelial cells, adipocytes, and fibroblasts,  
all of which are important parts of the TME. Cancer 

cells communicate and interact with each other to 
promote and maintain cancer characteristics. The TME 
promotes cancer progression by releasing signals and 
transforming them into pathological entities [27]. 
 
Immune checkpoints play an important role in the  
TME. Physiologically, they maintain self-tolerance and 
regulate the degree and duration of inflammation. 
However, tumors exploit these pathways to escape 
being killed by immune cells [28, 29]. Immune 
checkpoint molecules are mainly expressed on immune 
cells and can maintain immune homeostasis. Immune 
checkpoint inhibition depends on pre-existing factors in 
the TME, such as the abundance and activation status of 
CD8+ T cells, the presence of other immune cells, and 
local cytokine signaling. Immune checkpoint inhibition 
therapy can directly affect and alter the TME [30].  
To explore the relationship between S100A7 and the 
TME, we performed a pan-cancer immune checkpoint 
analysis. S100A7 was related to the expression of 
programmed cell death-ligand-1 in multiple types of 
cancer. S100A7 was also correlated with other immune 
checkpoints, suggesting that it may affect their potential 
function. 
 
Immunomodulators are an important part of the TME. 
The immune system is a complex network dedicated  
to protecting an organism from harmful substances, 
eliminating invading pathogens or malignant cells,  

 

 
 
Figure 10. Correlation between S100A7 expression and the tumor stemness and heterogeneity pan-cancer. (A) Correlation 
between S100A7 expression and tumor heterogeneity pan-cancer and in breast cancer. (B) Correlation between S100A7 expression and the 
tumor stemness score pan-cancer. (C) Tumor stemness score in the two groups based on the median S100A7 expression in breast cancer. 
“×” represents P > 0.05, which was not statistically significant. “ns” represents not significant. *P < 0.05; **P < 0.01; ***P < 0.001. 
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maintaining specific memory lymphocytes, and 
eliminating autoreactive immune cells to develop self-
tolerance. The homeostasis of the immune system 

depends on its two major branches: the innate and the 
adaptive immune system, each of which is equipped 
with unique cells and molecules to perform its specific 

 

 
 
Figure 11. S100A7 promotes the proliferation, migration, and invasion of breast cancer cells in vitro. (A) The CCK-8 assay 
showed that knockdown S100A7 reduced the proliferation of MCF7 and MDA-MB-231 cells. (B) RT-qPCR showed that knockdown of S100A7 
reduced the expression of the proliferation biomarkers Ki67 and PCNA. (C) The Transwell assay showed that knockdown of S100A7 
attenuated the migration and invasion of MCF7 and MDA-MB-231 cells. (D) RT-qPCR showed that knockdown of S100A7 reduced the 
expression of the migration biomarkers MMP2 and MMP9. (E) The wound healing assay showed that knockdown of S100A7 decreased the 
migration of MCF7 and MDA-MB-231 cells. *P < 0.05; **P < 0.01; ***P < 0.001. All experiments were repeated thrice. Abbreviations: CCK-8: Cell 
Counting Kit-8; RT-qPCR: reverse transcription-quantitative PCR; PCNA: proliferating cell nuclear antigen; MMP: matrix metalloproteinase. 
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function. These two types of immune responses are 
regulated by a series of cytokines, also known as 
immunomodulators, that are released upon receiving 
certain stimuli [31, 32]. In this study, we found that 

S100A7 expression was negatively correlated with 
immunomodulators in head and neck squamous cell 
carcinoma, while was positively correlated in breast 
invasive carcinoma, liver hepatocellular carcinoma,  

 

 
 
Figure 12. S100A7 reduced the chemosensitivity of breast cancer cells in vitro. (A) The CCK-8 assay showed that knockdown of 
S100A7 reduced the IC50 of MCF7 and MDA-MB-231 cells towards Taxol. The wound healing assay showed that knockdown of S100A7 
inhibited the migration of (B) MCF7 and (C) MDA-MB-231 cells after Taxol treatment (MCF7: 0.05 mg/L, MDA-MB-231: 1 mg/L). *P < 0.05; 
**P < 0.01; ***P < 0.001. All experiments were repeated thrice. IC50, half-maximal inhibitory concentration. 
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prostate adenocarcinoma and thyroid carcinoma. S100A7 
was also correlated with the expression of programmed 
cell death-ligand-1 in multiple types of cancer. Due  
to tumor heterogeneity, the effect of S100A7 on 
immunomodulators, immune activity and infiltration 
varies across in different tumor types. What`s more, the 
regulatory effects of S100A7 on immunomodulators, 
immune activity, and infiltration could vary across 
different types of cancer. Previous studies had 
confirmed that S100A7 expression could facilitate the 
infiltration of tumor-associated macrophages through 
multiple mechanisms in breast cancer, for example, it 
facilitated the infiltration of CD163-positive tumor-
associated macrophages through activation of cPLA2 
[33]. Furthermore, S100A7 could facilitate the secretion 
of immunomodulators, including IL-6, in tumors and 
tumor-associated immune cells, thereby enhancing 
tumor infiltration [34]. Additionally, Previous evidence 
had shown thatS100A7 could interact with advanced 
glycosylation end product receptor (RAGE) and Toll-
like receptor 4 (TLR4), thereby exerting paracrine 
effects and promoting the infiltration of macrophage in 
breast cancer [35]. However, accumulating evidence 
suggested that S100A7 was negatively correlated with 
immune infiltration and immunomodulators in the lung 
cancer, for instance, expression of S100A7 could inhibit 
PD-L1, leading to down-regulating CD68+ macrophage 
infiltration [36]. These results highlight the important 
role played by S100A7 through its interaction with 
immunomodulators. 
 
Methylation affects the development of cancer.  
DNA methylation refers to the transfer of active 
methyl groups to specific bases in a DNA chain. S-
adenosylmethionine serves as the methyl donor, and 
the process is catalyzed by DNA methyltransferase 
[37]. Aberrant DNA methylation is closely related to 
the occurrence and development of tumors. The 
methylation of tumor suppressor genes and DNA 
repair genes leads to their silencing, which eventually 
results in increased gene damage. On the other hand, a 
reduction in the overall methylation of the genome 
activates proto-oncogenes and retrotransposons and 
reduces chromosome stability [38]. RNA methylation 
involves the methylation of adenine (A), guanine (G), 
or cytosine (C) on an RNA molecule. The most 
common RNA methylations are m6A, m1A, and m5C 
[39]. m6A, which involves the addition of a methyl 
group to the N atom at position 6 of adenosine, is  
the most abundant chemical modification of RNA 
transcripts. The main function of the m6A modification 
is to affect the translation and stability of the RNA. 
The methylation happens at the N1 site of adenosine in 
m1A, while it happens on the fifth C atom of cytosine 
in m5C [37–39]. RNA methylation plays an important 
role in regulating biological processes like tumor cell 

proliferation and apoptosis. Besides, it can affect 
tumor progression and prognosis by affecting the 
function of tumor immune cells and the TME. This 
study showed that S100A7 was closely related to 
methylation in multiple types of cancer, suggesting 
that it may play an important role in executing this 
modification. 
 
Tumor stemness and heterogeneity are important 
factors affecting the development and treatment  
of cancer. Stemness is defined as the potential of  
the cells of origin to self-renew and differentiate. 
Cancer stem cells are cancer cells with characteristics 
associated with normal stem cells, in particular the 
ability to give rise to all tumor cell types. Cancer stem 
cells are thought to be responsible for tumor growth 
and maintenance because they are usually resistant  
to conventional chemotherapy and radiotherapy and 
are involved in tumor metastasis and recurrence  
[40]. A single clone may show functional variation in 
the population [16], reflecting tumor heterogeneity, 
which crucially impacts the potential function and 
behavior of tumor cells and ultimately affects cancer 
progression and its response to treatment. We 
demonstrated that S100A7 was closely associated with 
the indicators of tumor heterogeneity (TMB, MATH, 
purity, HRD, and LOH) as well as those of tumor 
stemness (RNAss, DNAss, and EREG.EXPss) in 
multiple types of cancer, implying that S100A7 could 
play an important role in influencing these two 
features of tumors. 
 
Chemotherapy can effectively kill rapidly growing 
tumor cells and is widely used in cancer treatment. 
However, some patients still face poor prognosis, and 
about 90% of treatment failure cases are related to 
chemotherapy resistance. Several factors underlie the 
development of chemotherapy resistance, including 
methylation, the TME, tumor heterogeneity, and tumor 
stemness [27, 41]. Since S100A7 was closely associated 
with all these factors, we hypothesized that it might be 
involved in the development of chemotherapy resistance 
in breast cancer. Through in vitro experiments, we 
found that the IC50 of breast cancer cells to Taxol 
decreased when S100A7 was knocked down, indicating 
that S100A7 was indeed closely related to chemotherapy 
resistance in breast cancer. 
 
CONCLUSION 
 
This study elucidated the relationship between S100A7 
expression and tumor stemness, tumor heterogeneity, 
methylation, and chemotherapy sensitivity. These results 
provide a reference for exploring novel mechanisms of 
S100A7 pan-cancer as well as in breast cancer, and they 
can help inform regimens of personalized treatment. 
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