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ABSTRACT

Objective: To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity,
and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer.
Methods: TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected
from the University of California Santa Cruz database. Survival analyses were performed to explore the
relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to
identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman’s and
Wilcoxon’s tests were used to investigate the relationships between S100A7 expression and immune
characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and
its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-
guantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay.

Results: S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7
was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further,
S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in
breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and
chemotherapy resistance of breast cancer cells in vitro experiments.

Conclusion: High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast
cancer, making it a potential immune and chemotherapy resistance biomarker.

INTRODUCTION endocrine therapy, and anti-human epidermal
growth factor receptor-2 therapy. Although these

Breast cancer is the most common cancer in women. treatments are widely available, much effort is

The incidence and mortality rates of breast cancer still needed to reduce the incidence and mortality of

are extremely high; about 287,850 American and breast cancer.

429,150 Chinese women were diagnosed last year,

with mortality often as high as 15% [1]. Today, breast Cancer biomarkers are important in cancer diagnosis,

cancer treatment includes radiotherapy, chemotherapy, prognosis, epidemiological research, and therapeutic
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intervention. Biomarkers can be used to enhance the
accuracy of targeted therapies [2]. Discovering new
tumor biomarkers that can predict and improve the
prognosis of breast cancer is essential.

The S100 protein family, comprising 25 known
members in humans, is one of the largest groups of
calcium-binding proteins, all of which structurally
belong to the EF-hand family [3]. These proteins are
expressed in a cell- and tissue-specific manner and
exert a wide range of intracellular and extracellular
functions, including regulation of the cell cycle, cell
proliferation, migration, invasion, phosphorylation,
cytoskeletal components, and transcription factors [4].
They can produce these effects by interacting with
different receptors, the most studied among which
is the receptor for advanced glycation end products
[5, 6]. Some members of this family, such as S100A4,
S100A8/A9, S100P, and S100B, mediate the interaction
between tumor and stromal cells, and thus, have
been implicated in tumor progression, angiogenesis, and
metastasis [7]. Naturally then, some S100 proteins have
been proposed as novel targets for cancer therapy.

S100A7, also known as psoriasin, was one of the most
abundant proteins detected in psoriatic keratinocytes
[8]. S100A7 was found to be closely related to
various tumors, such as oral squamous cell carcinoma,
breast cancer, prostate cancer, osteosarcoma, head
and neck cancer, lung cancer, and ovarian cancer
[5, 9, 10]. Functional studies showed that S100A7
promoted cell proliferation, migration, invasion,
angiogenesis, and metastasis [9, 10]. SI00A7 can be
induced by inflammatory cytokines and can also
induce apoptosis and the expression of inflammatory
cytokines/chemokines, suggesting that it may act as
a stromal factor [11]. In addition, it may promote
the growth of breast cancer by upregulating the pro-
inflammatory pathway to recruit tumor-associated
macrophages for metastasis [10]. However, the role of
S100A7 in regulating tumor immunity in other types
of cancer is still unknown.

As a dynamic system, cancer is characterized by
the dysregulation of proliferation, survival, and
growth of transformed cells. Accumulating evidence
suggests that transformed cells within tumors are
heterogeneous, and they undergo stochastic genetic
and epigenetic alterations to enhance the fitness of
subsets [12, 13]. Tumor stemness is closely related to
tumor heterogeneity. Cancer cells acquire genetic
mutations during tumor evolution or transformation,
leading to the accumulation of subclonal populations
with different phenotypes and heterogeneous features
[14]. Besides, individual clones may serve different
functions within populations, which points toward

nongenetic determinants that play a crucial role in
shaping the differences in cellular subclones or lead to
different survival outcomes in response to treatment
regimens [15]. The relationship among S100A7, tumor
heterogeneity, and tumor stemness is still obscure.
This relationship must be studied to better understand
the factors that drive intratumoral heterogeneity and
tumor progression.

Methylation plays an important role in cancer
progression. The expression of oncogenes increases
when they are demethylated in their promoter region,
leading to drug resistance. Thymosin (4, which
was overexpressed after DNA demethylation and
histone H3 modification in the promoter region of
its gene, conferred cancer stem cell-like ability upon
hepatoma cells, making them resistant to sorafenib
[16]. RNA methylation accounts for more than 60%
of all RNA modifications. The 5’ cap and 3’ polyA
modifications of eukaryotic mRNAs play a crucial
role in transcriptional regulation, whereas the internal
modifications help maintain mRNA stability. N°-
methyladenosine (m°A), 5-methylcytosine (m°C), and
N'l-methyladenosine (m'A) are the most common
internal mRNA modifications in eukaryotes, which
impact mRNA splicing, transport, and translation [17].
The relationship between S100A7 and methylation
is still unknown, and studying it can help define the
factors that drive tumor progression.

In this study, we first explored the pan-cancer
differences in SI00A7 expression. Next, we identified
the relationship between S100A7 expression and
pan-cancer prognosis. Subsequently, we analyzed the
immune characteristics, methylation, tumor stemness,
and heterogeneity in pan-cancer. Finally, in vitro
experiments were performed to validate the potential
function of SI00A7 in breast cancer.

METHODS
Data collection

The Cancer Genome Atlas-breast cancer cohort
(TCGA-BRCA) and pan-cancer RNA-seq data were
collected from the University of California Santa
Cruz database (https://xenabrowser.net/) and converted
into the transcripts per million formats. Data on the
clinical follow-up survival and clinicopathological
characteristics were simultancously downloaded. To
reduce bias in the statistical analysis, BRCA and pan-
cancer patients with missing overall survival data or
a follow-up time <30 days and male BRCA patients
were excluded. The tumor mutational burden (TMB)
and mutant-allele tumor heterogeneity (MATH) scores
were calculated.
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Differential and survival analysis

To ensure the accuracy of the following analysis, we
deleted duplicated and missing RNA-seq data, and
converted the remaining data into the logx(transcripts
per million + 1) format. Differential S/0047 expression
between normal and tumor tissues was identified using
Wilcoxon rank-sum test, and samples were classified
into two groups based on the median S70047 expression.

The relationship between SI00A47 expression and pan-
cancer prognosis was examined using log-rank analysis.
Cox analysis was performed to ensure the precision of
the results, which were depicted as heatmaps and forest
plots. The “Survminer” and “Survival” packages were
used to perform survival analysis and plot survival curves.

Enrichment analysis

To clarify the impact of S/00A7 expression on some
potential pan-cancer pathways, Gene Set Enrichment
Analysis (GSEA) was performed, and the results were
displayed in the form of a heatmap.

We also explored the impact of S100A7 expression
specifically in breast cancer. Gene Ontology analysis
was performed to identify the molecular functions,
biological processes, and cellular components that were
enriched in breast cancer. Kyoto Encyclopedia of Genes
and Genomes enrichment analysis and GSEA could
predict the pathways related to SI0047 alteration-
associated genes in breast cancer. The protein—protein
interaction network was also elucidated to understand
the interactions between proteins associated with S70047
alterations in breast cancer. Finally, we compared the
scores of the common pathways between the S700A47-
high-expression and the S700A4 7-low-expression groups.

Immunomodulatory, immune cell infiltration, immune
checkpoint, and immune activity score analysis

We assessed the correlations between S10047 expression
and immunomodulators, immune checkpoints, and
immune cell infiltration. Lists of genes encoding immune
checkpoints and immunomodulators were downloaded
from TISIDB (http://cis.hku.hk/TISIDB/download.php).
We also compared immunomodulatory scores between
the S70047-high-expression and the S/00A47-low-
expression groups to further define the relationship
between S100A47 expression and immunomodulators.

The immune cell infiltration score was calculated by
multiple methods (TIMER, EPIC, MCP-COUNTER,
CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
XCELL, TIDE) and downloaded from TIMER2.0
(http://timer.cistrome.org/). Heatmaps were used to

illustrate the relationship between immune cell
infiltration and S7/0047 expression pan-cancer. The
ESTIMATE method was also used to perform the
same analysis pan-cancer as well as in breast cancer.

Tracking Tumor Immunophenotype
(http://biocc.hrbmu.edu.cn/TIP/) was used to calculate
the immune activity score. We compared the immune
activity scores between the S70047-high and -low
expression groups to establish the relationship between
S100A7 expression and immune activity.

Finally, we performed a pan-cancer correlation analysis
between S10047 expression and immune checkpoints.
We also compared immune checkpoint scores between
the S100A47-high and -low expression groups.

Association with mfA, m°C, m'A, and DNA
methylation
A correlation analysis was performed between

S10047 expression and m°A, m’C, m'A, and DNA
methylation. DNA methylation data were down-
loaded from the Gene Set Cancer Analysis database
(http://bioinfo.life.hust.edu.cn/GSCA/). The m°A, m°C,
and m'A gene sets were downloaded from the literature
(https://doi.org/10.3389/fimmu.2022.918140).

Gene mutation, tumor and tumor

heterogeneity analysis

stemness,

TMB and MATH were used to predict the efficacy of
tumor immunotherapy and tumor heterogeneity. The
“maftools” package was used for calculating TMB and
MATH scores in breast cancer [18]. We also downloaded
microsatellite instability, neoantigen, and purity scores
from the literature to examine the relationship between
S100A47 expression and tumor heterogeneity [19, 20].

Six tumor stemness scores—RNA  expression-
based stemness score (RNAss), epigenetically regulated
RNA expression-based stemness score (EREG.EXPss),
DNA methylation-based stemness score (DNAss), epi-
genetically regulated DNA methylation-based stemness
score (EREG-METHSss), differentially methylated probes-
based stemness score (DMPss), and enhancer elements/
DNA methylation-based stemness score (ENHss)—were
downloaded from the literature [21]. The relationship
between S100A7 expression and tumor stemness was
analyzed using Spearman’s method.

We downloaded the level 4 single nucleotide variation
dataset for TCGA samples processed using Mutect2
[22] and the level 4 copy number variation dataset
for all TCGA samples processed using GISTIC [23].
Samples with synonymous mutations were filtered, and
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logo(x + 0.001) transformation was applied to each
expression value. Finally, tumors with less than three
samples in a single cancer were excluded. The data so
processed were used to study the relationship among
single nucleotide variation, copy number variation, and
S100A47 expression.

We also evaluated the relationship between gene
mutation and S7/00A47 expression. The “maftools”
package was used to analyze mutation-related data
and to visualize this relationship in breast cancer. All
these results were visualized using the “ggplot2” and
“gopubr” packages.

Experimental material

Cell Counting Kit-8 (CCKS8) was purchased from
MedChemExpress (Monmouth Junction, NJ, USA).
CellTiter 96® Aqueous One Solution Reagent Kit for
measuring the cell viability was obtained from Promega
Co. (Madison, WI, USA). Lipofectamine 3000 was
bought from Invitrogen Co. (Carlsbad, CA, USA). The
S100A7 expression plasmid with the green fluorescent
protein tag (pGensil-1-S100A7) was designed by Sangon
Biotech Co. (Shanghai, China).

Cell culture

MCF7 and MDA-MB-231 cells were purchased from
the Cell Resource Center, Institute of Basic Medicine,
Chinese Academy of Medical Sciences and Peking
Union Medical College. They were cultured in DMEM
(containing 4.5 g of glucose; Gibco, Waltham, MA,
USA) containing 10% fetal bovine serum (FBS; Gibco)
and 1% penicillin/streptomycin (Gibco) at 37°C in a
humidified incubator having 5% CO,.

Cell transfection

MCF7 and MDA-MB-231 cells were seeded in 6-well
plates and transfected at 90% confluence with the
indicated plasmid using Lipofectamine 3000, according
to the manufacturer’s instructions. Briefly, 2.5 pg of the
plasmid was mixed with 5 pL of P3000 in 125 pL of
serum-free DMEM. Separately, 5 pL. of Lipofectamine
3000 was mixed in 125 pL of serum-free DMEM.
These two mixtures were complexed for 15 min at room
temperature before they were added to the cells. The
transfection efficiency was evaluated 48 h later under an
inverted fluorescence microscope.

Reverse transcription-quantitative PCR
Total RNA was extracted from MCF7 and MDA-

MB-231 cells using TRIzol reagent (Takara, Dalian,
China), and ¢cDNA was synthesized according to the

instructions of the Reverse Transcription Kit (Takara).
Based on the Ct value, the expression of the target gene
was calculated by the 2722t method.

CCKS8 assay

MCF7 or MDA-MB-231 cells in their growth phase were
seeded in 96-well cell culture plates at a density of 5000
cells/100 pL of medium and cultured for 24 h at 37°C. The
drug concentrations tested on MDA-MB-231 cells were
0,1,2,4,5, and 8 mg/L, whereas those tested on MCF7
cells were 0, 0.1, 0.2, 0.25, 0.4, and 0.5 mg/L. After 48 h
of culture, the cells were incubated with 10 uL of CCKS8
reagent for 2 h, following which the absorbance was
measured at 450 nm. The inhibition rate was calculated
according to the following formula: inhibition rate =
(1-experimental group/control group). Finally, the half-
maximal inhibitory concentration (ICso) was calculated.

We also used the CCKS8 assay to evaluate cell
proliferation. MCF7 and MDA-MB-231 cells were
seeded in 96-well cell culture plates as described
above. The absorbance was measured at 450 nm at O h,
24 h, 48 h, and 72 h to evaluate the susceptibility of
S100A47 expression to breast cancer cell proliferation
and chemosensitivity. We calculated the percentage of
cell viability. Cell viability was calculated as follows:

_ ODA450(treatment group) — OD450(blank)
0D450(control group) —ODA450(blank)

x100%

Cell viability (%)

Treatment group: Containing cells and different
concentrations of drugs (include 0) in knockdown or
control groups.

Control group: Only containing cells in knockdown or
control groups.

Blank: Both cells and drugs were not contained in
knockdown or control groups.

Transwell assay

To test the migration ability of breast cancer cells,
suspensions of MCF7 and MDA-MB-231 cells were
prepared in DMEM without FBS at a density of 2 x 10*
cells/mL. The upper chamber of the Transwell was filled
with 100 pL of this suspension, while the lower chamber
was filled with 500 pL. of DMEM containing FBS. The
excess cells were retrieved with a sterile cotton swab,
fixed in 4% formaldehyde, and stained with 0.1% crystal
violet to count the number of migrating cells.

To investigate the invasiveness of MCF7 and MDA-MB-
231 cells, the stroma was diluted in DMEM without
FBS at a ratio of 1:7 (Beyotime, Guangzhou, China).
An aliquot of 50 pL was aspirated into the upper chamber
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and allowed to rest for 3—4 h. The rest of the procedure
was the same as that described for the migration assay.

Wound healing assay

For this experiment, 1 x 10° cells per well were seeded
in 6-well plates. After cell transfection and overnight
incubation, the cells were scratched using a 10-pL pipette
tip and photographed using a powered microscope with
a 4x magnification at 0 h and 24 h.

Statistical analysis

T-test was used to compare two groups of measurement
data. The Wilcoxon rank-sum and Kruskal tests were
employed to identify the differences in three clusters.
Univariate Cox regression was used to assess the
differences between counting data. Log-rank test was
used to evaluate the prognosis of cancer. P < 0.05 was
considered statistically significant.

Availability of data and materials

The data can be downloaded from TCGA
(https://portal.gdc.cancer.gov/). The codes used during
the current study are available from the corresponding
author on reasonable request.

RESULTS

810047 was highly expressed and associated with
poor prognosis in pan-cancer

We found that S10047 was expressed at a significantly
higher level pan-cancer (in glioblastoma multiforme,
glioma, brain lower grade glioma, uterine corpus endo-
metrial carcinoma, breast invasive carcinoma, esophageal
carcinoma, stomach and esophageal carcinoma, colon
adenocarcinoma, prostate adenocarcinoma, stomach
adenocarcinoma, lung squamous cell carcinoma, thyroid
carcinoma, rectum adenocarcinoma, ovarian serous
cystadenocarcinoma, testicular germ cell tumors, all,
kidney chromophobe; Figure 1A). S10047 was highly
expressed in breast cancer as well (Figure 1B-1D).

We also explored the relationship between S10047
expression and pan-cancer prognosis. Log-rank test and
univariate Cox regression were used to conduct survival
analysis. We found that S/0047 was related to the
prognosis of multiple types of cancer (Figure 2A).
S10047 expression was closely related to the overall
survival of patients with skin cutaneous melanoma
(Figure 2B), kidney renal clear cell carcinoma (Figure
2C), liver hepatocellular carcinoma (Figure 2D), and
the disease-specific survival of patients with kidney
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Figure 1. The pan-cancer expression of S100A7. (A) SI00A7 expression from TCGA + GTEx microarray data. (B) SIO0A7 expression
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breast cancer and normal breast tissues from TCGA-BRCA data. Abbreviations: TCGA: The Cancer Genome Atlas; GTEx: Genotype-Tissue
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renal clear cell carcinoma (Figure 2E) and skin

cutaneous

melanoma (Figure 2F).

What’s more,

S100A47 expression was closely related to the overall

survival of patients with bladder urothelial carcinoma

Enrichment analysis revealed that S70047 was
related to multiple cancer development pathways

We performed enrichment analyses to investigate the

potential pathways affected by S10047 pan-cancer and

(Figure 2G).
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in breast cancer. GSEA showed that SI10047 was
related to multiple cancer development pathways,
such as Notch signaling (Figure 3A). The same
analysis was performed in breast cancer, and all
potential pathways as well as those with the most
significant changes were displayed (Figure 3B, 3C).

We also compared the differences in potential
pathways between the S70047-high and -low
expression groups. Overall, we discovered that S10047
was closely related to various biological activities, such
as the cell cycle, metabolism of various substances,
and cancer development (Figure 3D).
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Figure 3. GSEA of DEGs between S100A7-high and -low expression groups pan-cancer. (A) Pan-cancer GSEA. (B) The GSEA results
in breast cancer were shown using a word cloud map. (C) Top three potential pathways according to GSEA results in breast cancer.
(D) Pathway score in the S100A7-high and -low expression groups in breast cancer. Abbreviations: GSEA: Gene Set Enrichment Analysis;
DEGs: differentially expressed genes.
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Gene Ontology and Kyoto Encyclopedia of Genes development, the extracellular region, regulation of

and Genomes enrichment analyses showed that the molecular function, and the interleukin-17 pathway
upregulated genes were closely related to system (Figure 4A, 4B), whereas the downregulated genes were
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Figure 4. GO and KEGG pathway enrichment analyses of upregulated and downregulated genes in the two groups based on
the median S100A7 expression in breast cancer. (A) GO functional enrichment analysis of upregulated genes based on the S100A7
median expression grouping. (B) KEGG pathway enrichment analysis of upregulated genes based on the S100A7 median expression
grouping. (C) GO functional enrichment analysis of downregulated genes based on the S100A7 median expression grouping. (D) KEGG
pathway enrichment analysis of downregulated genes based on the SI00A7 median expression grouping. (E) PPl network of the DEGs
between S100A7-high and -low expression groups pan-cancer. Abbreviations: GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and
Genomes; PPI: protein—protein interaction.
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closely related to RNA processing, the nucleolus,
signaling receptor activity, and the nicotine addiction
pathway (Figure 4C, 4D). The protein—protein interaction
network of all differentially expressed genes was charted
to understand the interaction among them (Figure 4E).

S10047 affects immunomodulators, immune cell
infiltration, immune activity score, and immune
checkpoints

We examined the relationship between S10047 and
tumor immunity. Spearman’s correlation analysis showed
that S10047 was closely related to immunomodulators
pan-cancer (Figure 5A). In breast cancer, S10047
was associated with immunomodulators (Figure 5B),

A

from the The Cancer Genome Alas database

o]

=

immunomodulator related-genes expression
~

the major histocompatibility complex (Figure 5C),
chemokines (Figure 5D), and receptors (Figure 5E).

Multiple methods were used to assess the correlation
between immune cell infiltration and S70047 expression
pan-cancer. S10047 was associated with B cells, CD4"
T cells, CD8" T cells, cancer-associated fibroblasts,
macrophages, neutrophils, and mast cells (Figure 6).
The immune, stromal, and ESTIMATE scores were also
related to S100A7 expression pan-cancer (Figure 7A)
as well as in breast cancer (Figure 7B-7D).

Further, the immune activity score was higher in the
S10047-high than in the S100A47-low expression group
(Figure 7E).
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Figure 5. Correlation between S100A7 expression and immunomodulators in pan-cancer. (A) Correlation between S100A7
expression and immunomodulators in pan-cancer. The expression of genes related to immunomodulators (B), MHC (C), chemokines (D),
and receptors (E) in the two groups based on the median S100A7 expression in breast cancer. “ns” represents not significant. *P < 0.05; **P
<0.01; """P < 0.001. Abbreviation: MHC: major histocompatibility complex.
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further verified the close association between S710047
expression an

between the S70047-high and -low expression groups

Finally, correlation analysis showed that S/0047 was
related to immune checkpoints pan-cancer (Figure 7F).
A comparison of the expression of immune checkpoints
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Figure 6. Correlation between S100A7 expression and immune cell infiltration pan-cancer. “x” represents P > 0.05, which was

not statistically significant.



S$100A47 is associated with methylation, gene mutation,
tumor heterogeneity, and stemness

We also studied the relationship between methylation
and S100A47 expression in cancer. SI00A7 expression
was closely correlated with the m°A, m°C, and m'A
modifications (Figure 8A). It was also associated with
the DNA methylation sites c¢g00325910, cg02892624,
and cg17421062 pan-cancer (Figure 8B). Moreover, the
expression of m°A-, m’C-, and m'A-related genes
differed between the S10047-high and -low expression
groups (Figure 8C).

Next, we analyzed the differences in the gene mutation
landscape of S710047 between the S100A47-high and

-low expression groups (Figure 9A). Copy number
variation was similar between the two groups pan-
cancer (Figure 9B), but single nucleotide variation
was associated with S7/0047 expression (Figure 9C).
In the S100A47-high expression group, the genes most
susceptible to mutation were TP53, PIL3CA, TTN,
GATA3, and CDH1 (Figure 9D).

Finally, we explored the relationship between S710047
expression and tumor stemness and heterogeneity.
S10047 expression was associated with tumor
heterogeneity (TMB, MATH, microsatellite instability,
neoantigen, purity, ploidy, homologous recombination
deficiency (HRD), and loss of heterozygosity (LOH)
scores; Figure 10A). In breast cancer, the tumor
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Figure 7. Correlation between S100A7 expression and immune infiltration as well as immune checkpoints pan-cancer, and
the relationship between S100A7 expression and immune activity scores in breast cancer. (A) Correlation between S100A7
expression and immune infiltration pan-cancer. Correlation between S100A7 expression and the ESTIMATE score (B), immune score (C),
and stromal score (D) in breast cancer. (E) Relationship between SI00A7 expression and immune activity score in breast cancer. STEP1:
Release of cancer cell antigens; STEP2: Cancer antigen presentation; STEP3: Priming and activation; STEP4: Trafficking of cells to tumors;
STEPS: Infiltration of immune cells into tumors; STEP6: Recognition of cancer cells by T cells; STEP7: Killing of cancer cells. (F) Correlation
between S100A7 expression and immune checkpoints pan-cancer. The expression of genes related to inhibitors (G) and stimulators (H) of
immune checkpoints in the two groups based on the median SI00A7 expression in breast cancer. “ns” represents not significant. *P < 0.05;

**P<0.01; ""P < 0.001.

www.aging-us.com

AGING



heterogeneity indicators that most correlated with
S10047 expression were HRD, TMB, and LOH (Figure
10A). The tumor stemness indicators RNAss, ENHss,
DMPss, DNAss, EREG-METHss, and EREG-EXPss
were also associated with S70047 expression (Figure
10B). In breast cancer, DMPss and EREG-EXPss were
associated with S700A47 expression (Figure 10C).

S10047 promotes breast cancer cell proliferation,
invasion, migration, and chemoresistance in vitro

We performed in vitro experiments to verify the
functions of S100A7 in cancer. The CCKS8 proliferation
assay showed that S7/0047 knockdown inhibited
the proliferation of MCF7 and MDA-MB-231 cells
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(Figure 11A), which was accompanied by a
downregulation of the proliferation biomarkers Ki67
and proliferating cell nuclear antigen (Figure 11B).

The Transwell assay demonstrated that S/0047 was
associated with the invasion and migration of breast
cancer cells (Figure 11C). The migration biomarkers
matrix metalloproteinases-2 and -9 were also down-
regulated after S/0047 was knocked down (Figure
11D). The wound healing assay showed that S710047
knockdown inhibited the migration of MCF7 and
MDA-MB-231 cells (Figure 11E).

We also used Taxol to explore the relationship between
S100A47 expression and sensitivity to chemotherapy.
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The CCKS8 assay showed that the ICso of breast cancer
cells to Taxol diminished when S70047 was knocked
down (Figure 12A). The wound healing assay further
showed that S710047 knockdown inhibited the migration
of breast cancer cells after Taxol treatment, indicating
that S100A7 contributed to chemotherapy resistance in
breast cancer (Figure 12B, 12C).

DISCUSSION

In this study, we first established the level of
S100A47 expression pan-cancer and its relationship
with patient prognosis. Subsequently, we explored the
relationship between S7100A47 expression and immune
characteristics, methylation, tumor heterogeneity, tumor

READ(N-90.11%)4 ® tu
BLCA(N=407,0.5%)= 7 ‘ |
] FIOCY O IFERTRRPGE AL P ETETES
2 NV and cancer type.
;8 @rame_Shift_Ins
MutCounty, L | J o
b T oo iy O [ i | b o
Group ®r
Survivalstaws _ B 1 1R 11 101 IR | 10l | [ =T [ETET] 1110 Il | Il L O U O O 1 I L o O (0 | In Frame Del
A . ol
Slaiiﬂ” LI T O T T T T T T 1nmi [T 3T T I oy W T T LT TN T T U O A OO, AT T T T Osplice Site
g8 I WNTiwgiiiry el gy | I[N @ipey Juvi |y jis 1] | SUNIUEN Y | W g peyioel AR yw rhiau b meey i QTN T FRWT 1 ] In_Frame_Ins

M
N | |ENUNIAN | NUMW N O U O O N VO O 0| OSSR OO UV | OO | O SO N O N O | RV (TN | O TN T 0 O () OO I N 110 O
11 1200 NN 0 | I T [ Y W

e
i

T ITIT T
w1 (AT
ol Tl i IIUHI

T | |

| }!II ||
| | |H||
[URIITETR IiE1 |l
LT [Tl
T SR |

me LT REATHD

I [

IR 1 l

SYNEL || m ‘ ||| 1 | H | | ‘
wes [ LAEAL AU AR

o A IO AR |
- I | |
|IHI| |HHII\ I II‘I | | |
Ll A | I
APOB | “ | “ ” |

I

WHIIIIIIIII\III\III
Il

T

e |

KMT2C
MAP3KI

DMD

HMCN1 l

RYR2

MUC4

USH2A

NCORI

S MutCount

Group:
[ 200 @High
Orow
40.6% Survival status:
Alive
LA oo I @~
Age:
Il (i e
@ No more than 45
Il i T ol s
1
| 1 0 vl :
[ &
| [ TR | S | &
T
LNVALAIRCIGNTY B I .
| ! e
ITERERITATN | Tl e 3
L LM i
7.0% l M:
®o
|| AP Y P | s
LI ] A s
6.8% I 0
IR LR ‘ : o
6.6% o2
| HCAEATAOY || oo .
| [ | [ 1] e
.l.umA
o || L
PR | ] e i
I Y I | G
ML TR TP A A |
H | | | e
AR R AR I |
| UNACAREAIRUMRERTAITIVARINY
HI T

Il

Figure 9. Relationship between gene mutation and S100A7 expression. (A) The pan-cancer gene mutation landscape of SI00A7.
The relationship between S100A7 expression and CNV (B) and SNV (C) pan-cancer. (D) The gene mutation landscape in the two groups
based on the median S100A7 expression in breast cancer. “ns” represents not significant. *P < 0.05; **P < 0.01; ***P < 0.001. Abbreviations:

CNV: copy number variation; SNV: single nucleotide variation.

www.aging-us.com

5593

AGING



stemness, and gene mutations. Finally, we confirmed
the potential functions of S100A7 and examined its
influence on chemosensitivity using an in vitro breast
cancer cell model.

S100A7 is related to the progression of multiple types
of cancer. It promoted the progression of non-small cell
lung cancer by interacting with c-Jun activation domain-
binding protein-1 [24]. SIO0A7 was associated with
poor prognosis in ovarian cancer [25]. Overexpressing
S100A7 in cervical cancer cells promoted their migration
and invasion without affecting their proliferation [5].
In this study, we showed that S10047 promoted the
proliferation, migration, and invasion of breast cancer
cells, which is consistent with the results reported in
other types of cancer. Therefore, S10047 seems to play
an important role in the progression of multiple types of
cancer.

The niche surrounding the tumor, called the
"tumor microenvironment” (TME), originates from the
nearby mesenchymal stroma and consists of complex
tissues forming discrete cell types that maintain a
favorable environment around the tumor [26]. The
TME is an important factor affecting tumor progression.
The mesenchymal ecosystem is constituted by the
mesenchyme, infiltrating immune cells, inflammatory
cells, endothelial cells, adipocytes, and fibroblasts,
all of which are important parts of the TME. Cancer
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cells communicate and interact with each other to
promote and maintain cancer characteristics. The TME
promotes cancer progression by releasing signals and
transforming them into pathological entities [27].

Immune checkpoints play an important role in the
TME. Physiologically, they maintain self-tolerance and
regulate the degree and duration of inflammation.
However, tumors exploit these pathways to escape
being killed by immune cells [28, 29]. Immune
checkpoint molecules are mainly expressed on immune
cells and can maintain immune homeostasis. Immune
checkpoint inhibition depends on pre-existing factors in
the TME, such as the abundance and activation status of
CD8" T cells, the presence of other immune cells, and
local cytokine signaling. Immune checkpoint inhibition
therapy can directly affect and alter the TME [30].
To explore the relationship between S700A47 and the
TME, we performed a pan-cancer immune checkpoint
analysis. S10047 was related to the expression of
programmed cell death-ligand-1 in multiple types of
cancer. S10047 was also correlated with other immune
checkpoints, suggesting that it may affect their potential
function.

Immunomodulators are an important part of the TME.
The immune system is a complex network dedicated
to protecting an organism from harmful substances,
eliminating invading pathogens or malignant cells,

XXX XX X X XX X X|X X X X RNAss
- {_| 05
X|X|X X x x XXX X X|X|X X|X|X XXX X| X |X|ENHss 025
0
X|X X XX X X XX XXX XXX X X| [X[X|X|X DMPss
0.25
X|X|X X X X|x X|x XXX X X|X XX X X|X|X|X DNAss
X|X|X X X X X|x XX X X x| X XX X X|X|X | X EREG-METHss
X|X X|X x X XX X X[ X|X|X|X ‘ XX X |X | X EREGEXPss
P8R2882888253%520Ecm223388288437256¢
Q 0322 ISGgm< o> 6982
S F A R L T A FEE R LRI R
g 8
g
8
group E- High Low
1.00 ns ns - ns ns
o
;—075 1
H -
2
£050
3
g — |
5 L1
Foml . =
L
= T ‘
0.00
2 = 2 = 2 =]
& ol Gy & d
& N K Ny & K
k2 S S § i
o &
& ¢

Figure 10. Correlation between S100A7 expression and the tumor stemness and heterogeneity pan-cancer. (A) Correlation
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maintaining specific memory lymphocytes, and depends on its two major branches: the innate and the

eliminating autoreactive immune cells to develop self- adaptive immune system, each of which is equipped
tolerance. The homeostasis of the immune system with unique cells and molecules to perform its specific
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Figure 11. S100A7 promotes the proliferation, migration, and invasion of breast cancer cells in vitro. (A) The CCK-8 assay
showed that knockdown S100A7 reduced the proliferation of MCF7 and MDA-MB-231 cells. (B) RT-qPCR showed that knockdown of S100A7
reduced the expression of the proliferation biomarkers Ki67 and PCNA. (C) The Transwell assay showed that knockdown of S100A7
attenuated the migration and invasion of MCF7 and MDA-MB-231 cells. (D) RT-gPCR showed that knockdown of SI00A7 reduced the
expression of the migration biomarkers MMP2 and MMP9. (E) The wound healing assay showed that knockdown of S100A7 decreased the
migration of MCF7 and MDA-MB-231 cells. P < 0.05; P < 0.01; *™P < 0.001. All experiments were repeated thrice. Abbreviations: CCK-8: Cell
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function. These two types of immune responses are
regulated by a series of cytokines, also known as
immunomodulators, that are released upon receiving
certain stimuli [31, 32]. In this study, we found that
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prostate adenocarcinoma and thyroid carcinoma. S10047
was also correlated with the expression of programmed
cell death-ligand-1 in multiple types of cancer. Due
to tumor heterogeneity, the effect of S100A7 on
immunomodulators, immune activity and infiltration
varies across in different tumor types. What's more, the
regulatory effects of SIO0A7 on immunomodulators,
immune activity, and infiltration could vary across
different types of cancer. Previous studies had
confirmed that SI00A7 expression could facilitate the
infiltration of tumor-associated macrophages through
multiple mechanisms in breast cancer, for example, it
facilitated the infiltration of CD163-positive tumor-
associated macrophages through activation of cPLA2
[33]. Furthermore, SI00A7 could facilitate the secretion
of immunomodulators, including IL-6, in tumors and
tumor-associated immune cells, thereby enhancing
tumor infiltration [34]. Additionally, Previous evidence
had shown thatS100A7 could interact with advanced
glycosylation end product receptor (RAGE) and Toll-
like receptor 4 (TLR4), thereby exerting paracrine
effects and promoting the infiltration of macrophage in
breast cancer [35]. However, accumulating evidence
suggested that SI00A7 was negatively correlated with
immune infiltration and immunomodulators in the lung
cancer, for instance, expression of SIO0A7 could inhibit
PD-L1, leading to down-regulating CD68+ macrophage
infiltration [36]. These results highlight the important
role played by SI/00A47 through its interaction with
immunomodulators.

Methylation affects the development of cancer.
DNA methylation refers to the transfer of active
methyl groups to specific bases in a DNA chain. S-
adenosylmethionine serves as the methyl donor, and
the process is catalyzed by DNA methyltransferase
[37]. Aberrant DNA methylation is closely related to
the occurrence and development of tumors. The
methylation of tumor suppressor genes and DNA
repair genes leads to their silencing, which eventually
results in increased gene damage. On the other hand, a
reduction in the overall methylation of the genome
activates proto-oncogenes and retrotransposons and
reduces chromosome stability [38]. RNA methylation
involves the methylation of adenine (A), guanine (G),
or cytosine (C) on an RNA molecule. The most
common RNA methylations are m®A, m'A, and m°C
[39]. m°A, which involves the addition of a methyl
group to the N atom at position 6 of adenosine, is
the most abundant chemical modification of RNA
transcripts. The main function of the m®A modification
is to affect the translation and stability of the RNA.
The methylation happens at the N1 site of adenosine in
m'A, while it happens on the fifth C atom of cytosine
in m°C [37-39]. RNA methylation plays an important
role in regulating biological processes like tumor cell

proliferation and apoptosis. Besides, it can affect
tumor progression and prognosis by affecting the
function of tumor immune cells and the TME. This
study showed that S10047 was closely related to
methylation in multiple types of cancer, suggesting
that it may play an important role in executing this
modification.

Tumor stemness and heterogeneity are important
factors affecting the development and treatment
of cancer. Stemness is defined as the potential of
the cells of origin to self-renew and differentiate.
Cancer stem cells are cancer cells with characteristics
associated with normal stem cells, in particular the
ability to give rise to all tumor cell types. Cancer stem
cells are thought to be responsible for tumor growth
and maintenance because they are usually resistant
to conventional chemotherapy and radiotherapy and
are involved in tumor metastasis and recurrence
[40]. A single clone may show functional variation in
the population [16], reflecting tumor heterogeneity,
which crucially impacts the potential function and
behavior of tumor cells and ultimately affects cancer
progression and its response to treatment. We
demonstrated that S710047 was closely associated with
the indicators of tumor heterogeneity (TMB, MATH,
purity, HRD, and LOH) as well as those of tumor
stemness (RNAss, DNAss, and EREG.EXPss) in
multiple types of cancer, implying that S/0047 could
play an important role in influencing these two
features of tumors.

Chemotherapy can effectively kill rapidly growing
tumor cells and is widely used in cancer treatment.
However, some patients still face poor prognosis, and
about 90% of treatment failure cases are related to
chemotherapy resistance. Several factors underlie the
development of chemotherapy resistance, including
methylation, the TME, tumor heterogeneity, and tumor
stemness [27, 41]. Since S100A7 was closely associated
with all these factors, we hypothesized that it might be
involved in the development of chemotherapy resistance
in breast cancer. Through in vitro experiments, we
found that the ICso of breast cancer cells to Taxol
decreased when S10047 was knocked down, indicating
that S70047 was indeed closely related to chemotherapy
resistance in breast cancer.

CONCLUSION

This study elucidated the relationship between S10047
expression and tumor stemness, tumor heterogeneity,
methylation, and chemotherapy sensitivity. These results
provide a reference for exploring novel mechanisms of
S100A7 pan-cancer as well as in breast cancer, and they
can help inform regimens of personalized treatment.
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