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INTRODUCTION 
 

Acute kidney injury is a common clinical illness 

characterized by sudden loss of renal function. This 

condition can lead to renal fibrosis and end-stage renal 

failure with a high risk of death. In recent years, AKI 

has accounted for 67.2% of multiple organ injuries 

caused by global emergencies and natural disasters 

[1, 2]. The causes and mechanisms of AKI remain to be 

understood [3–6]. Increasing evidence has shown that 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Cordyceps sinensis extract protects against acute kidney injury 
by inhibiting perforin expression in NK cells via the STING/IRF3 
pathway 
 

Shuang Li1, Wei Pang2,*, Yuzhu Wang1,*, Yiting Zhang3,* 

 
1General Department of Western Medicine, Yangjing Community Health Service Center, Shanghai 200135, China 
2Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 
Shanghai 200092, China 
3General Department of Traditional Chinese Medicine, Yangjing Community Health Service Center, Shanghai 200135, 
China 
*Equal contribution 
 
Correspondence to: Yiting Zhang, Yuzhu Wang, Wei Pang; email: etingzhang@163.com, https://orcid.org/0009-0005-6766-
2660; wyz704518@163.com, https://orcid.org/0009-0008-9180-3269; pangwei9111@163.com, https://orcid.org/0009-0000-
9751-9973 
Keywords: AKI, NK cells, perforin, cordyceps sinensis, 2’-deoxyadenosine 
Received: October 10, 2023 Accepted: February 13, 2024 Published: March 21, 2024 

 
Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative 
pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an 
important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps 
sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with 
chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. 
Whether 2’-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, 
particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI 
by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential 
gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-
time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and 
protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. 
We found the high doses of the 2’-deoxyadenosine treatment significantly alleviated FA-induced renal damage 
in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin 
release in vitro. The results showed that 2’-deoxyadenosine could mitigate AKI by downregulating the activity 
of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon 
genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical 
use of CS in treating patients with AKI. 
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immune cells and cytokines are involved in the 

regulation of AKI [7–10]. The release of interferon-

gamma (IFN-γ) and tumor necrosis factor-alpha  

(TNF-α) can induce other inflammatory cytokines  

and responses, which are associated with the damage 

of renal tubular cells and kidney tissue [11, 12]. 

Furthermore, IFN-γ produced by activated natural 

killer cells partially activates the perforin pathway, 

causing glomerular endothelial cell injury and AKI 

with hematuria [13]. Stimulator of interferon genes 

(STING, also known as MITA, MPYS, ERIS, and 

TMEM173) is an important protein that connects DNA 

sensors and downstream factors in the innate immune 

signaling pathway [14]. The second messenger, cyclic 

adenosine monophosphate (cGAMP), directly activates 

STING and its key synthase loop, GMP-AMP synthase 

(cGAS), subsequently recruiting STING to TANK-

binding kinase 1 (TBK1) and activating downstream 

signaling molecules, such as IFN regulator 3 (IRF3), 

to promote type I IFN gene expression [15–17]. 

However, the exact mechanism of NK cell activation 

via the STING/TBK1/IRF3 pathway in AKI has not 

yet been elucidated. 

 

Cordyceps sinensis, a traditional Chinese medicine, has 

been used to improve health, especially after prolonged 

treatment of kidney diseases [18, 19]. Several studies 

have confirmed that CS plays various roles in inhibiting 

tumor growth, treating inflammation and oxidative 

stress, promoting the proliferation of tubular epithelial 

cells in vitro, and accelerating the repair of damaged 

cells [20, 21]. In addition, CS reduces renal vascular 

resistance and improves nephrotoxicity-induced renal 

dysfunction in mice via antioxidant, anti-apoptotic, and 

anti-autophagic mechanisms [22, 23]. However, the 

mechanism by which CS repairs acute renal dysfunction 

and the main components, each active ingredient  

of CS, have not been thoroughly investigated. 2’-

deoxyadenosine and 3’-deoxyadenosine (cordycepin), 

the major active components of CS, have been used  

as valuable chemical markers for CS quality control 

[24]. In this study, we aimed to evaluate the effects  

of a CS extract comprising 2’-deoxyadenosine on the 

prevention of AKI. 

 

MATERIALS AND METHODS 
 

RNA-seq transcriptome analysis 

 

Screening and processing of the original sequence 

data 

Using the GEO datasets of the National  

Center for Biotechnology Information (NCBI; 

https://www.ncbi.nlm.nih.gov/), datasets GSE145085 

and GSE145085 and the biological project 

PRJNA605973 related to AKI were obtained.  

Eight public FASTQ files in PRJNA605973 were 

downloaded: SRR11066831, SRR11066835, SRR 

11066839, SRR11066843, SRR11066847, SRR 

11066851, SRR11066855 and SRR11066859. Public 

FASTQ files were downloaded from the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena). Trim-

galore (v0.6.5-1) was used to trim the original 

sequence. FastQC and MultiQC were used to obtain 

gene quality control reports. Raw sequence reads were 

aligned with the human genome hg19 using Subjunc 

(v2.0.1). Gene expression levels were quantified using 

featureCounts (v2.0.1) based on the GENCODE 

human gene model version 19 (GRCh37.p13), and  

the expression matrix was obtained. 

 

Differential gene expression and enrichment 

analyses 

 

The expression matrix was assessed using  

intergroup and principal component analyses (PCA). 

Differential gene expressions between the cisplatin and 

untreated groups were predicted by a linear model 

using the Bioconductor package “DESeq2” [25]. Gene 

ontology (GO) and Kyoto Encyclopedia of Genes  

and Genomes (KEGG) metabolic pathway enrichment 

analyses were performed using the Bioconductor 

package “clusterProfiler” to obtain the key pathway 

information and other related information, visualized 

using R language [26]. 

 

Protein-protein interaction (PPI) network analysis 

 

The PPI network was analyzed through the STRING 

pathway (https://string-db.org). 

 
Isolation and purification of CS 

 
CS (trade name Corbrin Capsule), also known as 

Bailing Jiaonang in the Chinese Pharmacopoeia  

(Lot number: 2001103), was obtained from Hangzhou 

Zhongmei Huadong Pharmaceutical Co., Ltd. 

(Hangzhou, China). 2’-deoxyadenosine was purchased 

from MedChemExpress (HY-W040329, USA). CS 

powder contains a variety of water- and alcohol-

soluble nucleoproteins, including proteins, amino acids, 

mannitol, nucleosides (such as adenosine and cordy-

cepin), nucleobases, sterols, saturated and unsaturated 

fatty acids, purines, and pyrimidines. Therefore, 

alcohol, hydrolysis, and enzymatic hydrolysis have 

been used for CS extraction. Alcohol extraction: CS 

powder (10 kg) was soaked in 80% medicinal alcohol 

for 2 days, and the alcohol extract was obtained by 

filtration and concentration under reduced pressure. 

Hydrolysis: Ten times the volume of pure water was 

added to the residue, which was then boiled for 2 h. 

This step was repeated to obtain the aqueous extract, 
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which was then concentrated under reduced pressure, 

heated, and concentrated in the upper compartment of 

an electric furnace. Trypsin was added to the residue 

after water extraction, and enzymolysis was performed. 

The supernatant was separated by centrifugation,  

and the enzyme was eliminated. Subsequently, the 

three concentrated solutions were combined and 

homogenized to obtain 9.8 L of bacterial solution 

(1.02 g/mL), which was sterilized using UV light. 

Owing to the incomplete extraction process, CS  

was lost during the operation. If 3% was used to 

compensate for the loss, the concentration of the CS 

extract was calculated as 1.05 g/mL. Nucleosides and 

nucleobases in CS were analyzed using a high-

performance liquid chromatography (HPLC) system 

(Agilent Technologies, Santa Clara, CA, USA) [27]. 

An ULtimate AQ-C18 (4.6 mm × 250 mm, 5 µm) 

column was employed to purify nucleosides and 

nucleobases. The mobile phase was composed of  

0.1% (v/v) phosphoric acid solution as eluent A  

and methanol as eluent B. Gradient elution was 

conducted as follows: 0–5 min, 0% B; 5–10 min, 20% 

B; 10–15 min, 50% B; 15–16 min, 0% B. The column 

temperature was 40°C, the flow rate was 1.0 mL/min, 

and the injection volume was 5°L. UV/vis spectra 

were measured over a wavelength range of 200–400 

nm, and the peaks of the nucleosides and nucleobases 

were captured at 260 nm. Among the quantified 

nucleoside and nucleobase compounds, adenosine was 

the most abundant in CS (2136.96 g/mL, followed by 

2’-deoxyadenosine (203.36 g/mL) (Figure 1) (Tables 1 

and 2). 

 

Herb formulation ingredient collection and active 

ingredient-associated target prediction 

 

The TCM Systems Pharmacology Database and 

Analysis Platform (TCMSP) is a unique platform that 

provides pharmacological information on traditional 

Chinese medicine, including herbs. According to the 

literature recommendations of TCMSP, OB ≥ 30%  

and DL ≥ 0.18 were selected as screening thresholds. 

DrugBank data, a network-based tool for predicting 

the most likely targets of small molecules, was used  

to screen the relevant targets of each chemical 

component [28–31]. 

 

Animals and treatments 

 

A total of 30 male C57BL/6 mice (Charles River, 

Wilmington, MA, USA, approved by the Laboratory 

Animal Welfare and Ethical Review Board of 

Shanghai Jiao Tong University School (Number: 
XHEC-STCSM-2022-051), weighing 25–30 g and 

aged 8–10 weeks, were randomly and equally divided 

into five groups (n = 6 per group): normal control 

(NC) group, folic acid (FA) group, and low-dose 2’-

deoxyadenosine-treated (L-Deo) group, medium dose 

2’-deoxyadenosine-treated (M-Deo) group, and high-

dose 2’-deoxyadenosine-treated group (H-Deo). Mice 

in the FA group were intraperitoneally injected with a 

single dose of folic acid (100 mg/kg dissolved in 0.9% 

NaHCO3) to induce kidney injury. Renal injury was 

also induced in the FA + CS group (n = 10), similar to 

that in the FA group. Nevertheless, the mice were 

immediately treated with CS extract (150 mg/kg), and 

CS injection lasted for two consecutive days following 

folic acid injection. Mice in the NC group (n = 10) 

were injected with equal amounts of saline. The mice 

were then placed on a thermostat to maintain the body 

temperature at 36.5–37°C and sacrificed 48 h after 

disposal. The left kidneys of the mice were harvested 

and snap-frozen for the isolation of RNA or proteins, 

and the right kidneys were perfused with phosphate-

buffered saline (PBS) and fixed in 10% buffered 

paraffin for histological examination. 

 

Cells and culture conditions 

 

NK92 cells (ATCC) were stimulated for 4–8 days  

with or without IL-2 (1000 IU/mL) in RPMI 1640 

medium supplemented with 10% fetal calf serum, 

penicillin (100 U/mL), streptomycin (100 g/mL), 

glutamine (2 mM), sodium pyruvate (1 mM), HEPES 

(10 mM), and 2-ME (0.5 mM) under a 5% CO2 

atmosphere at 37°C. Stimulated NK cells were used  

as effector cells. 

 

Biochemical assay and enzyme-linked 

immunosorbent assay (ELISA) 

 

Mouse blood was collected in a tube containing 

heparin using the tail-clamping method, and plasma 

was collected by centrifugation. According to the 

manufacturer’s protocol, SCr and BUN plasma 

concentrations were determined using kits from the 

Nanjing Jiancheng Institute of Biological Engineering 

(C011-2-1, C013-2-1). Kidney injury molecule-1  

(Kim-1) and neutrophil gelatinase-associated lipocalin 

(NGAL) levels were measured using an ELISA Kit 

(Abcam, ab213477, ab199083, USA). 

 

Histology and immunohistochemistry (IHC) 

 

Mouse kidney tissue was fixed in 4% paraformaldehyde 

for 3 days and dehydrated using an alcohol gradient. 

The tissue was then immersed in an ethanol–xylene 

(1:1) mixture in xylene for 15–20 min until the tissue 

became transparent. Transparent tissue was placed in a 
mixture of paraffin and xylene (1:1) for 1 h, followed 

by paraffin embedding. Paraffin sections were cut into 

5-μm-thick sections and dried in a 37°C incubator. The 
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immunohistochemistry kit was purchased from  

MXB Biotechnologies (KIT-9710 and DAB-0031, 

China). Renal tissue paraffin slices were washed with 

water and subjected to antigen retrieval. The slices 

were then incubated with primary antibodies against 

Kim-1 (Abcam, 1:200, ab78494), NGAL (Abcam, 

1:200, ab70287), and the appropriate biotin-conjugated 

secondary immunoglobulin G (1:1000, S0001, Affinity, 

USA). After mounting the slices, co-stained images 

were captured using a Nikon Eclipse 90i fluorescence 

microscope. 

 

Immunofluorescence staining 

 

Fluorescein-labeled antibodies were used against the 

corresponding antigens. PBS (0.01 mol/L, pH 7.4) was 

replaced every 10 min to maintain specimen humidity. 

The specimens were covered with fluorescent-labeled 

antibodies and stored in an enamel box for 30 min. The 

glass slide held on the glass stand was rinsed with PBS 

solution (0.01 mol/L, pH 7.4) in three cylinders, each 

washed for 3–5 min under oscillation. Excess moisture 

was absorbed from the glass slide, and a drop of 

glycerol was added to cover the glass. The slides were 

observed under a fluorescence microscope. The primary 

perforin antibody was purchased from Thermo Fisher 

Scientific (1:500, #MA5-12469, USA), and secondary 

fluorescent immunoglobulin G was purchased from 

Abmart (1:1000, M21014S, China). 

 

Western blot analysis 

 

Kidney tissues were lysed using 

radioimmunoprecipitation assay (RIPA) buffer

 

 
 

Figure 1. HPLC chromatogram of CS. A representative HPLC chromatogram was acquired at 260 nm of (A) component-rich extract 

obtained from CS and (B) standards. Peaks were tentatively identified as: 1, adenine 2, uracil; 3, hypoxanthine; 4, uridine; 5, adenosine; 6, 
2’-deoxyadenosine; 7, guanosine hydrate; 8, thymidine. 
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Table 1. Peak and area of components of CS using multiplier and dilution factor with ISTDs. 

Compounds RetTime (min) Area (mAU×s) Content (mg/mL) 

Adenine 4.828 93.84496 390.848 

Uracil 5.261 25.54213 73.408 

Uridine 9.876 144.6443 1342.176 

Adenosine 10.316 317.055 2136.96 

2’-Deoxyadenosine 10.603 17.71727 203.36 

Guanosine hydrate 11.702 234.1245 20.25 

Thymidine 13.659 12.78851 1.46 

 

 

Table 2. Peak and area of standards using multiplier and dilution factor with ISTDs. 

Compounds RetTime (min) Area (mAU×s) 

Adenine 4.783 6206.14 

Uracil 5.526 7423.013 

Hypoxanthine 6.436 3677.84 

Uridine 9.875 1316.039 

Adenosine 10.288 3366.058 

2’-Deosyadenosine 10.91 6287.043 

Guanosine hydrate 11.705 745.9741 

Thymidine 13.631 2487.645 

 
containing a protease inhibitor cocktail (Sigma-

Aldrich, PE0230, USA). Samples were vortexed and 

centrifuged at 15,000 × g, 4°C for 25 min. The whole-

cell lysate was collected and separated using SDS-

PAGE (100 V, 1.5 h), transferred to a PVDF membrane 

(20 V, 30 min), and blocked for 2 h. The membrane 

was then probed with primary antibodies for 1 h at 

37°C and with the corresponding secondary antibody 

at room temperature for 30 min. Immunoreactive bands 

were detected using enhanced chemiluminescence and 

quantified using ImageJ software. Primary antibodies 

against STING (1:500; #13647), IRF3 (1:500; #4302), 

and P-IRF3 (1:500; #29047) were purchased from Cell 

Signaling Technology (USA). Anti-perforin antibody 

(1:500, #MA5-12469) was obtained from Thermo 

Fisher Scientific. Antibodies against Kim-1 (1:1000, 

ab233720) and NGAL (1:1000, ab63929, ab188551) 

were obtained from Abcam. 

 

qRT-PCR analysis 

 

Total RNA was extracted from the kidneys using 

TRIzol and Zymogen RNA extraction kits (Takara, 

RR820A, China). cDNA was synthesized using the 

PrimeScript RT Reagent kit (Takara, RR047A, China) 

in accordance with the manufacturer’s instructions. 

Gene-specific primers (Life Technologies, Carlsbad, 

CA, USA) were designed, and quantitative real-time 

PCR was performed on an ABI 7500 system. A com-

parison threshold was used to calculate the absolute 

mRNA number. Quantitative PCR mRNA data were 

normalized to that of the GAPDH signal used as  

an internal control (Table 3). The normalized delta 

threshold cycle value was calculated according to the 

manufacturer’s instructions. 

 

Statistical analysis 

 

Data are expressed as mean ± standard error (SE). 

Comparisons between time points were performed using 

one-way analysis of variance (ANOVA), followed  

by Tukey’s honest significant difference (HSD) test. 

Differences were considered statistically significant at 

P < 0.05. 

 

Data availability statement 

 

The authors confirm that the data supporting the 

findings of this study are available within the article. 

 

RESULTS 
 

Transcriptome analysis of AKI revealed that AKI 

was affected by immune regulation 
 

Quality control of the pruned gene sequence  

data revealed standard quality (Supplementary Figure 

1). After comparing and enumerating the pruned  

gene data, the differentially expressed genes (DEGs) 

with statistical significance were screened using the
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Table 3. Primer sequences used in real-time PCR analysis. 

Target gene Forward primer (5′–3′) Reverse primer (5′–3′) 

mus-STING AGGAGGAGGTTACCATGAATG ATACCACTGATGAGGAGTCTTG 

mus-Irf3 TGTGATGGTCAAGGTTGTTCC GATAGGCTGGCTGTTGGAGAT 

mus-Perforin CACAGTAGAGTGTCCGATGTA CTTGGTTCCCGAAGGAGCAGAT 

mus -IFN-γ ATATCTGGAGGAACTGGCAAA GGTGTGATTCAATGACGCTTAT 

mus-GAPDH TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG 

homo-STING CGAACTTACAATCAGCATTACAA CAGCCATACTCAGGTTATCAG 

homo-Irf3 TAAGCCAGACCTGCCAACCTG GGTCCTCTGCTAAACGCAAC 

homo-Perforin AGTGCCGCTTCTACAGTTTC GGTGCCGTAGTTGGAGATAAG 

homo-IFN-γ TCGGTAACTGACTTGAATGT TTACTGGGATGCTCTTCG 

homo-Kim-1 GACAGAGTCTTCAGATGGCCT GAGCAAGAAGCACCAAGACAG 

homo-NGAL TTGGGACAGGGAAGACGA TCACGCTGGGCAACATTA 

homo-GAPDH GCACCGTCAAGGCTGAGAAC ATGGTGGTGAAGACGCCAGT 

 

Bioconductor package DESeq2 (P < 0.05) (Figure 2A). In 

the volcano plot, 399 DEGs were upregulated, and 1126 

DEGs were downregulated (Figure 2B). A heat plot of the 

top 30 upregulated and top 30 downregulated genes was 

constructed (Figure 2C). The upregulated DEGs were 

selectively enriched by GO using P < 0.05 as screening 

criteria. Our data showed that GO cell components were 

mainly enriched in the secretory granule lumen, apical 

plasma membrane, cytoplasmic vesicle lumen, and vesicle 

lumen (Table 4, Figure 2D–2F). The KEGG analysis 

showed enrichment of cytokines and cytokine receptors, 

inflammatory factors, tumor necrosis factor, apoptosis, and 

other pathways (Table 5, Figure 3A, 3B). Notably, NK 

cell-mediated cytotoxicity pathways were also enriched. 

However, the association between AKI and NK cell-

mediated cytotoxicity has rarely been investigated. The 

correlation between NK cell-mediated signaling and AKI 

requires further investigation (Figure 3C). 

 

2’-deoxyadenosine administration attenuated 

tubular injury in AKI mice induced by FA 

 

To explore whether 2’-deoxyadenosine can reduce the 

injury level by regulating the immune response in vivo, 

we established a mouse model of AKI induced by FA. 

We treated it with different doses of 2’-deoxyadenosine. 

Two days after FA administration, the average SCr  

and BUN levels were significantly higher in the FA 

group than in the NC group. The SCr and BUN levels  

in the FA+H+Deo group were significantly lower  

than those in the FA group (Figure 4A, 4B). Similar 

features were observed for NGAL and Kim-1 in the FA-

induced AKI mouse model (Figure 4C, 4D). Therefore, 

we selected high doses of 2’-deoxyadenosine for sub-

sequent experiments. 

 

To illustrate the therapeutic effect of high-dose 2’-

deoxyadenosine in AKI mice, we stained kidney 

samples from mice with H&E and PAS. Morphological 

changes in FA-induced AKI mice primarily manifested 

in the proximal tubules of the subcapsular region of  

the renal cortex. Obvious edema and vacuoles in the 

renal proximal tubule epithelial cells dilated the renal 

tubule lumen, and swelling of the mesangial spaces  

and cells in some glomeruli suggested kidney damage. 

The specimens in the FA+H-Deo group exhibited 

milder pathological damage than those in the FA group, 

suggesting that the substantial damage to the kidney 

caused by FA injection was markedly prevented  

with the high doses of 2’-deoxyadenosine treatment 

(Figure 4E, 4F). IHC staining of the specimens 

confirmed that the AKI markers NGAL and Kim-1 

expression levels were remarkably higher in the AKI 

group. This upregulation was blocked by high doses  

of 2’-deoxyadenosine treatment (Figure 4G, 4H). The 

western blotting analysis consistently indicated the 

preventive function of high doses of 2’-deoxyadenosine 

treatment against AKI (Figure 4I–4K). 

 

2’-deoxyadenosine reduced perforin expression 

through the STING/IRF3 signaling pathway in the 

FA-induced AKI mouse model 

 

Perforin plays a major role in NK cell-mediated TEC 

injury. NK cell infiltration in kidney tissues was 

detected by immunofluorescence staining for the NK 

cell marker perforin (Figure 5A). These observations 

were further confirmed at the protein and mRNA levels 

by WB and qRT-PCR, respectively. FA mice showed 

significantly increased perforin expression compared 

with the NC group. These effects were alleviated by 

high doses of 2’-deoxyadenosine treatment (Figure  

5B–5D). Bioinformatic analysis of PPI revealed an 

interaction between STING (TMEM173) and its down-

stream signaling molecules, TBK1, IRF3, and type  

I IFN (Figure 5E). IFN-γ (type II IFN), an important 
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inflammatory indicator of kidney injury, was mainly 

released from NK and NKT cells. Through qRT-PCR 

analyses, we observed high expression of STING in AKI 

mice, and found that high doses of 2’-deoxyadenosine 

can reduce the expression level (Figure 5F). Treatment 

can also effectively reduce the release of inflammatory 

 

 
 

Figure 2. Differential transcriptome analysis of AKI samples. (A) Correlation of heatplot of differences between groups: a significant 
difference was observed between cisplatin and untreated groups in all the differently expressed genes (P < 0.05). (B) Differential gene 
volcano plot: 399 differentially expressed genes were up-regulated and 1126 differentially expressed genes were downregulated. The 
cutoff for logFC is 2.957. (C) Heatplot of the top 30 up-regulated genes and the top 30 downregulated genes. (D) Top 30 GO enriched 
analysis results in the dotplot (P < 0.05). (E) Correlation of the GO enriched analysis results in the goplot (P < 0.05). (F) Correlation of 
differently expressed genes in the GO enriched analysis in the cnetplot. 
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Table 4. Top 15 enriched results in GO analysis. 

ID Description GeneRatio BgRatio 

GO:0034774 Secretory granule lumen 17/246 322/19559 

GO:0016324 Apical plasma membrane 18/246 361/19559 

GO:0060205 Cytoplasmic vesicle lumen 17/246 326/19559 

GO:0031983 Vesicle lumen 17/246 328/19559 

GO:0062023 Collagen-containing extracellular matrix 19/246 427/19559 

GO:0045177 Apical part of cell 18/246 433/19559 

GO:0035580 Specific granule lumen 7/246 62/19559 

GO:0042581 Specific granule 9/246 160/19559 

GO:0009897 External side of plasma membrane 15/246 417/19559 

GO:0031093 Platelet alpha granule lumen 5/246 67/19559 

GO:0005788 Endoplasmic reticulum lumen 11/246 308/19559 

GO:0001533 Cornified envelope 4/246 45/19559 

GO:0045121 Membrane raft 11/246 329/19559 

GO:0098857 Membrane microdomain 11/246 330/19559 

GO:0098589 Membrane region 11/246 343/19559 

 

 

Table 5. Top 30 enriched analysis results in KEGG. 

ID Description GeneRatio BgRatio 

hsa04060 Cytokine-cytokine receptor interaction 24/140 295/8102 

hsa04657 IL-17 signaling pathway 13/140 94/8102 

hsa04061 Viral protein interaction with cytokine and cytokine receptor 13/140 100/8102 

hsa05323 Rheumatoid arthritis 11/140 93/8102 

hsa04978 Mineral absorption 8/140 59/8102 

hsa04668 TNF signaling pathway 10/140 112/8102 

hsa05150 Staphylococcus aureus infection 9/140 96/8102 

hsa04064 NF-kB signaling pathway 9/140 104/8102 

hsa04621 NOD-like receptor signaling pathway 11/140 181/8102 

hsa05134 Legionellosis 6/140 57/8102 

hsa05130 Pathogenic Escherichia coli infection 10/140 197/8102 

hsa04080 Neuroactive ligand-receptor interaction 14/140 341/8102 

hsa05164 Influenza A 9/140 172/8102 

hsa04610 Complement and coagulation cascades 6/140 85/8102 

hsa04960 Aldosterone-regulated sodium reabsorption 4/140 37/8102 

hsa05143 African trypanosomiasis 4/140 37/8102 

hsa04062 Chemokine signaling pathway 9/140 192/8102 

hsa05146 Amoebiasis 6/140 102/8102 

hsa04115 p53 signaling pathway 5/140 73/8102 

hsa05133 Pertussis 5/140 76/8102 

hsa04670 Leukocyte transendothelial migration 6/140 114/8102 

hsa04976 Bile secretion 5/140 90/8102 

hsa04650 Natural killer cell mediated cytotoxicity 6/140 131/8102 

hsa04530 Tight junction 7/140 169/8102 
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hsa04210 Apoptosis 6/140 136/8102 

hsa05418 Fluid shear stress and atherosclerosis 6/140 139/8102 

hsa00360 Phenylalanine metabolism 2/140 17/8102 

hsa00982 Drug metabolism-cytochrome P450 4/140 72/8102 

hsa04918 Thyroid hormone synthesis 4/140 75/8102 

 

 
 

Figure 3. Natural killer cells participate in immune regulation of AKI. (A) Top 30 KEGG enriched analysis results in the dotplot  

(P < 0.05). (B) Heatplot of the regulated genes. (C) NK cell-mediated cytotoxicity pathways. 
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factors IFN-γ released by NK cells (Figure 5G). To verify 

the in vivo results of the inhibitory effect of high doses of 

2’-deoxyadenosine on the STING pathway, we evaluated 

the levels of STING and IRF3 phosphorylation in kidney 

homogenates and found that they were downregulated 

upon high doses of 2’-deoxyadenosine injections  

by western blotting (Figure 5H–5J). These results  

confirmed the suppressive effect of high doses of

 

 
 

Figure 4. 2’-deoxyadenosine administration attenuated the development of FA-induced AKI in mice. (A, B) Renal function of 

all mice was assessed by SCr and BUN. (C, D) Kim-1 and NGAL results of the mice were measured by ELISA. (E, F) Representative H&E and 
PAS of renal tissues obtained from specimens in different group. (G, H) Expression of Kim-1 and NGAL was determined by IHC. (I–K) Protein 
levels of NGAL and Kim-1 protein expression in the kidney were evaluated by western blot analysis. *P indicates a significant difference 
between the NC group and the FA group. #P represents the difference between the FA+Deo group and the FA group. P < 0.05. Values are 
shown as means ± SD from three independent experiments. Representative images are shown from a total of six animals per group. 
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Figure 5. 2’-deoxyadenosine protected against AKI by inhibiting perforin expression in NK cells by regulating STING/IRF3 
signaling pathway in vivo. (A) Immunofluorescence studies of perforin expression on NK cells after FA treatment. DAPI staining was 

used to determine the number of nuclei. Anti-perforin staining was used to determine perforin expression (×400). (B, C) Protein levels of 
perforin in the kidney were evaluated by western blot analysis. (D) The mRNA levels of perforin in the kidney were evaluated by qRT-PCR 
analysis. (E) Bioinformatics of STING (TMEM173) and its regulated IRF3 from STRING PPI database. (F, G) The mRNA levels of STING and IFN-γ 
in kidney were evaluated by qRT-PCR analysis. (H–J) Protein levels of STING, p-IRF3/IRF3 expression in kidney were evaluated by western 
blot analysis. *P indicates a significant difference between the NC group and the FA group. #P represents the difference between the 
FA+Deo group and the FA group. P < 0.05. Values are shown as means ± SD from three independent experiments. Representative images 
are shown from a total of six animals per group. 
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2’-deoxyadenosine on perforin and IFN-γ release via 

inhibiting STING/TBK1/IRF3 expression. 

 

2’-deoxyadenosine protects against AKI by 

inhibiting perforin expression in NK cells via the 

STING/IRF3 pathway in vitro 

 

To confirm the mechanism by which high doses  

of 2’-deoxyadenosine inhibited perforin and IFN-γ 

expressions in NK cells via STING/IRF3 signaling  

to attenuate AKI, we performed in vitro experiments. 

TCMSP analysis demonstrated that the composition  

of CS was consistent with the purification results. 

Based on the DrugBank database, the related targets of 

2’-deoxyadenosine were identified as PTGS1 (COX-

1), PTGS2 (COX-2), and MTAP (Figure 6A). PPI 

analysis revealed a strong correlation between PTGS1 

(COX-1), PTGS2 (COX-2), STAT3, STING, TBK1, 

and IRF3 (Figure 6B). Furthermore, we explored 

whether 2’-deoxyadenosine could inhibit NK cell 

activation by inhibiting STING and IRF3 by targeting 

the inhibition of COX-2 and downstream STAT3. 

 

Since IL-2 secreted by T lymphocytes is responsible 

for stimulating the growth and differentiation of  

T cells, B cells, and NK cells [32], we used 1000 

IU/mL IL-2 to treat NK cells in vitro to determine the 

source of perforin and IFN-γ release. Strikingly, 

activation of NK cells resulted in significantly 

increased expressions of COX-2, STING, p-IRF3, and 

perforin and decreased STAT3 by western blotting, 

whereas concurrent exposure to 2’-deoxyadenosine 

inhibited these protein expressions and elevated 

STAT3 expressions (Figure 6C–6H). Next, we 

examined the mRNA expression of inflammatory 

factors by qRT-PCR. As indicated in Figure 6I–K, 

the mRNA levels of IFN-γ, TNF-α, and CCL2 

(chemokine monocyte chemoattractant protein-1, 

MCP-1/CCL2) were significantly elevated in IL-2-

treated NK cells compared with those in the naïve 

NK group and were remarkably relieved by treatment 

with 2’-deoxyadenosine. 

 

DISCUSSION 
 

Drug-induced nephrotoxicity is a relatively common 

complication, occurring in 20% of patients with  

AKI. FA-induced AKI is a typical representative  

of nephrotoxic AKI and is a generally accepted  

model for studying the mechanisms underlying AKI 

[29, 33]. Body damage caused by FA is limited  

to the kidneys, thus eliminating mixed extra-renal 

factors. Local inflammatory responses triggered by  

FA administration in the kidney reflect upstream 

signals associated with inflammatory diseases, which 

are essential for tissue remodeling observed in many 

other forms of organ injury [34]. AKI induced by FA 

and other drugs, such as cisplatin, simulates important 

aspects of nephrotoxic AKI, including renal tubular 

epithelial cell injury, apoptosis, inflammatory cell 

infiltration, and immune system activation. Previous 

studies have demonstrated that kidney-infiltrating 

macrophages and neutrophils significantly increase after 

injury, indicating that innate immunity plays a major 

role in renal tubular dysfunction [35]. Bioinformatics 

analysis revealed that AKI-related immunomodulatory 

DEGs were enriched in NK cell-mediated cytotoxicity 

pathways. The function of NK cells in AKI progression 

has rarely been studied; thus, understanding the new 

trends in renal regenerative medicine and the correlation 

between AKI and NK cell signaling is imperative. 

 

IFN-γ and TNF-α produced by NK cells form essential 

components of the innate immune response [36]. 

Zhang et al. showed that NK cells can kill TECs  

in vitro and that perforin plays a crucial role in  

the cytotoxic function of NK cells, promoting the 

development of kidney ischemia–reperfusion injury 

(IRI) [37]. NK cell activation occurs through specific 

pathways. However, the involvement of the STING/ 

IRF3 pathway in NK cell-mediated TEC killing has 

not yet been confirmed. 

 
STING is an essential signaling adaptor that links 

cytosolic DNA to the TBK1/IRF3 signaling axis, which 

induces a STING-dependent type I IFN response [38]. 

STING is an innate immune sensor consisting of cyclic 

dinucleotides [39]. Bioinformatics analysis revealed  

an interaction between STING and IRF3 (Figure 5E). 

It has been indicated that cGAMP and STING can 

activate NK cells [9, 40, 41]. IRF3 is responsible  

for the expression of several chemokines, including 

Rantes and IP-10, in NK cells. Activated NK cells 

express receptors for these chemokines [42]. 

 
CS has gained increasing attention recently owing  

to its renoprotective effects [43–45]. However,  

the mechanism by which CS protects against AKI, 

particularly the active components of CS, requires 

further investigation. In this study, we verified that the 

main active ingredient of CS treatment significantly 

improved renal function as assessed by the reduction 

of SCr and BUN levels, morphological amelioration  

at 48 h after FA stimulation, and alleviation of  

NGAL and Kim-1 deposition, which are biomarkers 

for early-stage AKI diagnosis [46–49]. Further, we 

isolated and predicted the targeting proteins of CS 

extract 2’-deoxyadenosine, including PTGS1 (COX-1) 

and PTGS2 (COX-2) (Figure 6A), which were key 

mediators of the inflammatory response. Because 

COX-2 is induced by inflammatory stimuli, it has 

traditionally been considered the most suitable target for 

5898



www.aging-us.com 13 AGING 

 
 

Figure 6. 2’-deoxyadenosine inhibited the activity of NK cells by regulating the STING/IRF3 signaling pathway in vitro. 
(A) Related target of 2’-deoxyadenosine with PTGS1 (COX-1), PTGS2 (COX-2), and MTAP based on DrugBank and TCMSP analysis. (B) 
Bioinformatics of PTGS1 (COX-1), PTGS2 (COX-2), STAT3 and its regulated STING/IRF3 from STRING PPI database. (C–H) The protein levels of 
COX-2, STAT3, STING, IRF3, and perforin in NK cells were evaluated by western blot analysis. (NK: naive NK cells. NK+IL-2: NK cells+IL-2 
group. NK+IL-2+deo: NK cells+IL-2+2’-deoxyadenosine group. NK+deo: naive NK cells+2’-deoxyadenosine group). (I–K) The mRNAs levels of 
IFN-γ, TNF-α and CCL2 expression in NK cells were evaluated by qRT-PCR analysis. (NK: naive NK cells. NK+IL-2: NK cells+IL-2 group. NK+ 
IL-2+deo: NK cells+IL-2+2’-deoxyadenosine group. NK+deo: naive NK cells+2’-deoxyadenosine group.) *P indicates a significant difference 
compared with the NK group. #P represents the difference compared with the NK+IL-2 group. P < 0.05. Values are shown as means ± SD 
from three independent experiments. 
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anti-inflammatory drugs. Compared with COX-2+/+  

mice, phosphorylated STAT3 protein levels increased 

significantly in COX-2−/− mice after inflammatory 

stimulation. Activation of the STING pathway is 

essential for the sensitizing effect of STAT3 inhibition on 

STING signaling [50, 51]. Other studies have confirmed 

that CS can suppress the expression of COX-2 [52, 53]. 

Strikingly, we found that 2’-deoxyadenosine inhibited 

COX-2 expression and promoted STAT3 expression, 

which in turn downregulated the protein expression of 

STING/p-IRF3/perforin signaling (Figure 6C–6H). These 

results demonstrated that 2’-deoxyadenosine treatment 

alleviated NK cell activation through the COX-2/ 

STAT3/STING/IRF3 pathway. Collectively, these data 

suggest that perforin plays a central role in NK 

cell-mediated kidney injury in vivo and NK cell damage 

in vitro. Further investigation of the potential functions  

of NK cells in AKI and the relevant regulatory 

network requires the development of therapeutic agents 

that specifically target NK cell activation signaling 

pathways. 

 

CONCLUSION 
 

CS extract 2’-deoxyadenosine alleviated AKI by 

improving renal pathophysiological changes and 

inhibited the expression of perforin and IFN-γ released 

from NK cells via the STING/IRF3 signaling pathway, 

thereby reducing the damage to renal tubular epithelial 

cells. This study highlights the previously unrecognized 

role of NK cells in FA-induced AKI, which may lead  

to novel and clinically useful approaches for improving 

renal injuries induced by various causes of kidney 

inflammation, including nephrotoxic AKI, renal IRI, 

and transplantation. 
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Supplementary Figure 1. Gene sequence quality control report. 

 

 

5904


