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INTRODUCTION 
 

Diabetic foot ulcers (DFUs) represent one of  

the most devastating complications of diabetes, 

posing a significant challenge in healthcare. Patients 

frequently endure ongoing pain, infection, and lengthy 

rehabilitation, thereby imposing substantial financial 

and physical burdens. Beyond the medical expenses 

entailed in treatment, DFUs can diminish work 

capacity, lower quality of life, and give rise to mental 

health concerns, thereby subjecting patients and  

their families to considerable psychological stress [1]. 
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ABSTRACT 
 

Background: Diabetic foot ulcers (DFUs) pose a serious long-term threat because of elevated mortality and 
disability risks. Research on its biomarkers is still, however, very limited. In this paper, we have effectively 
identified biomarkers linked with macrophage excretion in diabetic foot ulcers through the application of 
bioinformatics and machine learning methodologies. These findings were subsequently validated using external 
datasets and animal experiments. Such discoveries are anticipated to offer novel insights and approaches for 
the early diagnosis and treatment of DFU. 
Methods: In this work, we used the Gene Expression Omnibus (GEO) database’s datasets GSE68183  
and GSE80178 as the training dataset to build a gene model using machine learning methods. After that, we 
used the training and validation sets to validate the model (GSE134431). On the model genes, we performed 
enrichment analysis using both gene set variant analysis (GSVA) and gene set enrichment analysis (GSEA). 
Additionally, the model genes were subjected to immunological association and immune function analyses. 
Results: In this study, PROS1 was identified as a potential key target associated with macrophage efflux in DFU 
by machine learning and bioinformatics approaches. Subsequently, the key biomarker status of PROS1 in DFU 
was also confirmed by external datasets. In addition, PROS1 also plays a key role in macrophage exudation in 
DFU. This gene may be associated with macrophage M1, CD4 memory T cells, naïve B cells, and macrophage 
M2, and affects IL-17, Rap1, hedgehog, and JAK-STAT signaling pathways. 
Conclusions: PROS1 was identified and validated as a biomarker for DFU. This finding has the potential to 
provide a target for macrophage clearance of DFU. 
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Frequent exacerbation of DFU is often attributed to 

extensive changes associated with diabetes, including 

neuropathy and vascular issues [2]. The prevalence of 

diabetic foot ulcers (DFUs) ranges from approximately 

15% to 25% throughout the lifespan of a diabetic 

patient. Notably, the incidence of DFUs increases 

from 19% to 34% if the patient has a history of  

foot injury or infection. Alarmingly, amputation may 

eventually be necessary in about 17% of these cases 

[3]. In 2019, direct global healthcare expenditures 

related to diabetes amounted to approximately $700 

billion. It is estimated that these costs are projected  

to rise to $825 billion by 2030, with healthcare costs 

associated with diabetic foot problems accounting for 

one-third of total diabetes management spending [4]. 

Diabetic foot ulcers (DFUs) have a very complicated 

etiology that is typically brought on by peripheral 

vascular diseases and distal neuropathy that affect the 

lower limbs. Treatment choices are made even more 

complex and difficult by the concurrent infection  

that occurs in over half of DFU cases [4]. Therefore, 

in order to improve the outcome and prognosis for 

patients with DFU, it is imperative to study novel 

DFU biomarkers and avoid the creation of chronic 

wounds [4]. 

 

One of the main cells that control the healing  

process of wounds is the macrophage [5]. Without 

macrophages, wounds will not heal as quickly,  

blood vessel creation will be hindered, collagen 

deposition will be lowered, and cell proliferation  

will be slowed down [5]. It has been demonstrated 

that trauma-induced macrophages can change during 

the phagocytosis of apoptotic cells from a pro-

inflammatory M1 phenotype to an anti-inflammatory 

M2 phenotype, contributing to the elimination of 

apoptotic cells [5]. Excessive blood glucose levels  

can cause high levels of advanced glycosylation  

end-products (AGEs) being produced, which are 

formed when proteins or lipids are exposed to  

sugar and undergo glycosylation [6]. AGEs and 

macrophages expressing high levels of the receptor 

for AGE (RAGE) accumulate in the diabetic wound 

environment. Research conducted in vitro has 

demonstrated that AGEs decrease the phagocytic ability 

of M1 macrophages. One of the main mechanisms 

causing macrophages to change into M2 phenotypes  

is efferocytosis of phagocytosed apoptotic cells [7]. 

Better wound healing is achieved when anti-RAGE 

antibodies are administered in vivo to wounds, as  

this increases phagocytic activity (efferocytosis)  

and encourages macrophage transition to the M2 

phenotype. This shows that AGE concentrations in 
wounds can prevent phenotypic change and expedite 

healing [8]. The intracellular macrophages extrac- 

ted from diabetic mouse wounds exhibit impaired 

efferocytosis function, causing an increase in 

apoptotic cells in the wound [9, 10]. Moreover, the 

efferocytosis of apoptotic cells drives macrophages 

towards the M2 phenotype, which could be the main 

driving factor for wound healing transition [11]. 

However, currently there is a lack of relevant research 

on the key targets of macrophage efferocytosis in 

DFU. 

 

Precision medicine is swiftly evolving into an 

approach that customizes medical care for specific 

small groups or even individual patients, considering 

their genetic, environmental, and habit factors. This 

approach heavily depends on advancements in systems 

biology and omics disciplines [12]. The key is to 

understand and treat diseases by integrating multi-

modal or multi-omics data from individuals, in order 

to make informed decisions tailored to each patient. 

Meanwhile, the rapid development of computer 

science has led to the emergence of technologies 

capable of storing, processing, and analyzing these 

complex datasets. In vivo administration of anti-

RAGE antibodies to wounds enhances phagocytic 

activity (efferocytosis) and promotes the shift of 

macrophages to the M2 phenotype, thereby promoting 

better wound healing. This suggests that high levels  

of AGEs in wounds impede phenotypic shift and 

timely repair [13].  

 

Through the use of clinical annotations and  

high-throughput transcriptome sequencing data, the 

Diabetic Foot Unit (DFU) program enables us to 

investigate alterations in transcriptional patterns  

and related molecular pathways linked to DFU  

in biological research [14]. Numerous researches  

have examined molecular markers linked to the 

development of DFU using gene expression data 

taken from the Gene Expression Omnibus (GEO) 

database [15, 16]. Advancements in high-throughput 

sequencing technologies and the incorporation of 

machine learning in medicine have led to the 

emergence of novel methodologies for investigating 

molecular targets across various diseases [14, 17]. 

Through the application of bioinformatics technology, 

genes related to DFU that are associated with 

macrophage efferocytosis have been identified. In 

order to accurately identify the biomarkers associated 

with DFU, we utilized machine learning algorithms 

and screened key gene models.  

 

Following this, candidate genes displaying strong 

correlations with immune infiltration were validated 

using a separate, independent validation dataset. 
Subsequently, animal experiments were conducted to 

affirm the crucial genes identified. Figure 1 depicts 

the study’s flowchart. 
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MATERIALS AND METHODS 
 

Raw data 

 

The GEO database provided the microarray data for the 

mRNA expression profiles associated with DFU. This 

work made use of the GEO datasets GSE68183, 

GSE80178, and GSE134431 as well as the matching 

platform files GPL16686 and GPL18573. The training 

datasets in this study were GSE68183 and GSE80178, 

while the validation set was GSE134431. Three DFU 

patient samples and three control samples were included 

in GSE68183. Three samples of normal skin and nine 

samples from DF patients are included in GSE80178 

[18]. The GSE134431 dataset comprised ulcer samples 

from 13 patients with diabetic foot (DF) and skin 

samples from 8 DF patients [19]. Comprehensive details 

regarding the mentioned datasets are provided in Table 

1. The associated genes of macrophage efferocytosis 

(MERGs) were obtained from the GeneCards database 

(Supplementary Table 1). 

 
Data filtering and processing 

 
By using the probe annotation file, the downloaded 

probe matrix was transformed into a gene expression 

matrix. When a gene corresponded to more than one 

probe, the gene’s final expression level was determined 

 

 
 

Figure 1. Flow chart of this study. 
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Table 1. Dataset information. 

Dataset Platform Count DFU Control 

GSE68183 GPL16686 6 3 3 

GSE80178 GPL16686 12 9 3 

GSE134431 GPL18573 21 13 8 

 

by averaging these probes [20]. The batch effect 

between the GSE68183 and GSE80178 datasets was 

reduced using the SVA software after the datasets had 

been normalized. Principal component analysis (PCA) 

was then employed to evaluate batch effect removal. 

 

Analysis of differentially expressed genes (DEGs) 

 

We aligned the MERGs and conducted a comparative 

analysis on them. We identified pertinent differential 

MERGs, and furthermore, we conducted a differential 

analysis based on the expression of core genes. 

 

Construction and validation of prediction models 

using various machine learning methods 

 

We used the “caret” R package to build machine 

learning models based on two different MERGs clusters, 

including Support Vector Machine (SVM) [21], Extreme 

Gradient Boosting (XGB) [22], Generalized Linear 

Model (GLM) [23], and Random Forest (RF) [24]. 

Receiver operating characteristic (ROC) curves assess 

the diagnostic utility of these biomarkers. The “total 

score” represents the cumulative score of the predictor 

variables. In addition, we utilized calibration curves  

and decision curve analysis (DCA) to assess the 

predictive power of the histogram model. In addition, 

we performed variance analysis and ROC validation for 

each gene in the model, utilizing both the training and 

validation sets. 

 

A generalized linear model (GLM) is an extension  

of a linear model that better accommodates different 

types of data distributions by using a link function  

to establish a relationship between the expected value  

of the response variable and a linear combination of  

the predictor variables. XGBoost (Extreme Gradient 

Boosting) is a machine learning library based on the 

gradient boosting decision tree algorithm, known for 

its efficient implementation. XGBoost can be used to 

solve a variety of tasks such as classification, regres-

sion, and sorting, and has achieved notable success in 

several machine learning competitions. Support Vector 

Machines (SVMs) are powerful supervised learning 

models that are primarily used to solve classification 

and regression problems. By transforming the data  

into an optimization problem and finding the optimal 

separating hyperplane on the training data, SVMs  

are able to perform pattern recognition and regression 

analysis efficiently. Random Forest (RF) is an integ-

rated learning algorithm that improves the accuracy 

and robustness of classification or regression by 

constructing multiple decision trees and combining 

their outputs. Due to its excellent performance and ease 

of use, Random Forest has become one of the preferred 

algorithms in many machine learning practices. 

 

Pathway and functional enrichment analysis 

 

The R package clusterProfiler was utilized to do 

enrichment analysis for the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [25] and Gene Ontology 

(GO) [25]. Moreover, to identify possible pathways, 

Gene Set Enrichment Analysis (GSEA) was carried out 

[25]. Gene set variation analysis (GSVA) is a non-

parametric, unsupervised analytical method mostly used 

to assess gene set enrichment in sequencing data [25]. 

 

Immunocyte infiltration analysis 

 

The CIBERSORT method and the immune cell  

LM22 gene set were utilized to determine the relative 

abundance of 22 different lymphocyte subtypes in both 

the normal sample and each diabetic foot patient [26].  

 

Correlation analysis between diagnostic biomarkers 

and immune cells 

 

We performed a Spearman correlation analysis with  

the aim of exploring in depth the association between 

diagnostic biomarkers and infiltrating immune cells. 

This analysis can help us better understand the role of 

biomarkers in immune cell infiltration, thus providing 

more comprehensive information and guidance for 

disease diagnosis and treatment [27].  

 

Data availability 

 

All data generated have been incorporated into the 

published manuscript. The gene expression datasets 

produced during this investigation are accessible in the 

NCBI Gene Expression Omnibus (GEO) database under 

the accession numbers: GSE68183, GSE80178, and 

GSE134431. For additional information, please reach 
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out to the authors at Hongshuo Shi’s email address: 

jf17510413109@163.com. 

 

RESULTS 
 

GEO data processing 
 

In this paper, we merged two DFU datasets, GSE68183 

and GSE80178, and the datasets included a total of  

6 normal skin samples and 12 DFU samples. In Figure 

2A, we show the gene expression level assessment and 

PCA results of each sample before and after removing 

the batch effect. In Figure 2B, we calculated the 

chromosomal locations of MERGs and indicated them 

with circles. We identified 21 differentially expressed 

MERGs (deMERGs). Among these MERGs, KNG1, 

TREM2, FPR2, IL1RN, ALOX12, SIAH2, EGLN3, 

LINC01587, SIRT6, and SIRPA were expressed at 

higher levels in DFU. In contrast, SIRT1, WDFY3, 

FN1, EDIL3, HMGB1, TLR3, PROS1, FGL2, FPR3, 

 

 
 

Figure 2. Dataset preprocessing and difference analysis. (A) Principal component analysis (PCA) analysis before batch effect removal; 

(B) Heatmap of deGlnMRG; (C) The location of MERGs on chromosomes; (D) The expression levels of MERGs; (E) Gene relationship network 
diagram of deMERGs; (F) Correlation analysis of deMERGs. Red and green colors represent positive and negative correlations, respectively. 
The correlation coefficient was expressed as the area of the pie chart. 
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AXL, and C3 were expressed at significantly lower 

levels in DFUs than in normal controls (see Figure 2C, 

2D). Subsequently, correlation analysis of these genes 

was performed in this paper (see Figure 2D, 2E). 

 

Building and evaluating machine learning models 

 

In this study, a machine learning model was constructed 

utilizing deMERGs (refer to Figure 3A). Residual 

distribution analysis indicated that SVM exhibited the 

highest residuals among the four models (see Figure 

3B). ROC analysis demonstrated that SVM achieved an 

AUC value of 1.000, outperforming the other machine 

learning models (see Figure 3C). Figure 3D presented 

the top 10 significant feature variables for each model 

based on root mean square error. To assess the 

predictive performance of SVM models (LINC01587, 

EDIL3, FGL2, PROS1, and TREM2), line plots were 

plotted (see Figure 3E). Detailed model information  

can be found in Table 2. Prediction accuracy of the  

line plot models was evaluated using calibration curves 

and decision curve analysis (DCA). Calibration curves 

illustrated the minimum error between actual DFU 

cluster risk and predicted risk (see Figure 3F). Decision 

curve analysis demonstrated high accuracy of the  

line graphs, making them valuable for clinical decision-

making (see Figure 3G). 

 

Differential validation of model genes 

 

In the training set, we observed higher expression  

levels of EDIL3 (Figure 4A), FGL2 (Figure 4B),  

and PROS1 (Figure 4C) in the normal group, whereas 

TREM2 (Figure 4D) and LINC01587 (Figure 4E) 

showed higher expression levels in the DFU group.  

The ROC curves for these genes are depicted in  

Figure 4F. In the variance analysis of the validation  

set, we found that PROS1 (Figure 4G) expression was 

down-regulated in DFU, consistent with the results  

from the training set, while the expression pattern of 

EDIL3 (Figure 4H) was opposite to that observed in  

the training set. Consequently, PROS1 may serve as a 

key marker in DFU. The ROC curves of PROS1 in the 

validation set also demonstrated its strong diagnostic 

ability (Figure 4I). 

 

Analysis of DEGs associated with PROS1 and 

enrichment analysis 

 

Based on the expression levels of PROS1, we 

conducted a differential analysis of genes in the  

training set. The results of this analysis were visualized 

through volcano plots (Figure 5A), heat maps (Figure 

5B), and correlation heat maps (Figure 5C). Enrichment 

analysis revealed genetic biological processes involving 

pattern specification (GO: 0007389), embryonic organ 

morphogenesis (GO: 0048562), and embryonic organ 

development (GO: 0048568) (Figure 5D). KEGG 

enrichment analysis indicated that differentially 

expressed genes were implicated in pathways such  

as the IL-17 signaling pathway (hsa04657), Rap1 

signaling pathway (hsa04015), and hedgehog signaling 

pathway (Figure 5E), suggesting a close association 

between PROS1 and inflammation. GSEA analysis 

demonstrated that the cell cycle, melanogenesis, and 

RNA degradation pathways were activated in the PROS1 

 

 
 

Figure 3. Construction of machine learning models. (A) The cumulative residual distribution of the four models; (B) Residual boxplots 
of the four machine learning models, where the red dots indicate the root mean square of the residuals; (C) ROC analysis of four machine 
learning models with 5-fold cross-validation in the test set; (D) The important features in SVM, RF, XGB, and GLM; (E) Construction of a 
nomogram to predict DFU risk based on a 5-gene SVM model; (F, G) Calibration curves. 
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Table 2. Model information. 

Variable Permutation Dropout_loss Label 

LINC01587 0 0.379102009 SVM 

EDIL3 0 0.382035832 SVM 

FGL2 0 0.383280431 SVM 

PROS1 0 0.398267204 SVM 

TREM2 0 0.402331623 SVM 

 

high-expression group (Figure 5F). Conversely, in the 

PROS1 low-expression group, pathways related to 

bladder cancer, cytokine-cytokine receptor interactions, 

and youth maturity-onset diabetes were active (Figure 

5G). GSVA analysis further indicated that PROS1  

was closely linked to glyoxylate and dicarboxylic acid 

metabolism, as well as aminoacyl tRNA biosynthesis 

(Figure 5H). 

Analysis of immune function and immune cell 

infiltration 

 

Immunofunctional analyses revealed that PROS1  

may be associated with immune checkpoints, T-cell 

synergistic suppression, T-helper cells, Tfh, Th1 cells, 

Th2 cells, and tumor-infiltrating lymphocytes (TILs) 

(Figure 6A). Compared to controls, DFU samples 

 

 
 

Figure 4. The analysis of genetic differences and diagnostic efficacy of model genes. (A) Differential expression of EDIL3;  
(B) Differential expression of FGL2; (C) Differential expression of PROS1; (D) Differential expression of TREM2; (E) Differential expression of 
LINC01587; (F) The ROC curve of SVM model; (G) Validating the differential expression of PROS1 in the experimental group; (H) Validating the 
differential expression of EDIL3 in the experimental group; (I) The ROC curve of PROS1 in the validation group. 
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exhibited an increase in B-cell naïve and dendritic cell-

activated phenotypes, along with a decrease in the 

number of T-cells CD4 memory-resting, regulatory T-

cells (Tregs), follicular helper T-cells, macrophage M1, 

and resting mast cells (Figure 6B). The distribution of 

immune cells and the results of principal component 

analysis (PCA) are illustrated in Figure 6C, while the 

distribution of immune cells is demonstrated in Figure 

6D. Further analysis of the relationship between the 22 

immune cells in all samples revealed a significant 

positive correlation between macrophage M1 and T-cell 

CD4 memory resting phenotypes, whereas B-cell naïve 

phenotypes exhibited a significant negative correlation 

with macrophage M2 (Figure 6E). 

 

The correlation analysis between the gene PROS1 and 

immune cells is depicted in Figure 7A. We observed 

significant positive correlations between PROS1 and 

macrophage M1 (r = 0.74, p = 0.005) (Figure 7B), resting 

mast cells (r = 0.75, p = 0.008) (Figure 7C), and activated 

NK cells (r = 0.64, p = 0.03) (Figure 7D). Additionally, 

PROS1 exhibited a negative correlation with resting  

NK cells (r = -0.65, p = 0.02) (Figure 7E) and activated 

dendritic cells (r = -0.60, p = 0.04) (Figure 7F). 
 

DISCUSSION 
 

DFU stands out as a prevalent complication of  

diabetes, imposing significant burdens on patients  

while also presenting challenges to overall health, 

nursing protocols, and the social fabric [28]. The role  

of macrophage efferocytosis in DFU has also received 

extensive attention from researchers [28]. Leveraging 

machine learning and bioinformatics methodologies,  

the current study aimed to pinpoint PROS1 as a 

potential crucial target for DFUs from the standpoint  

of macrophage phagocytosis. The reliability of these 

findings is bolstered by the diminished expression of 

PROS1 observed in the validation set of DFU patients 

and in animal experimentation. 

 

 

 

Figure 5. Differential analysis and enrichment analysis of genes related to PROS1. (A) Volcano plot for differential analysis.  
(B) Differential analysis heatmap; (C) Correlation analysis heatmap; (D) Differential gene GO analysis; (E) Differential gene KEGG analysis; (F) 
GSEA analysis of downregulated genes; (G) GSEA analysis of upregulated genes; (H) PROS1-related GSVA analysis. 
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Figure 6. Immune analysis. (A) Immune functional analysis of the PROS1 gene; (B) DFU immune infiltration analysis; (C) PCA analysis of 

immune infiltration results; (D) Immune cell distribution; (E) Immune cell correlation analysis. 

 

 
 

Figure 7. Immune cell correlation analysis of PROS1. (A) Correlation analysis; (B) PROS1 correlation analysis with Macrophages M1;  

(C) PROS1 correlation analysis with mast cells resting; (D) PROS1 correlation analysis with NK cells activated; (E) PROS1 correlation analysis 
with NK cells resting; (F) PROS1 correlation analysis with dendritic cells activated. 
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The difficulties in healing diabetic wounds can be 

attributed to complex factors, such as impaired blood 

vessel formation, abnormal inflammatory response, and 

dysfunctional macrophage efferocytosis [28]. Diabetes 

patients experience altered macrophage function, 

leading to a reduced ability to clear infections. 

Furthermore, their functionality during the later stages 

of repair is also affected, resulting in delayed healing 

processes [28]. In a mouse model mimicking diabetes, 

impaired phagocytosis of apoptotic cells resulted  

in the accumulation of apoptotic cells in wounds  

and maintained an inflammatory microenvironment 

[9]. Moreover, research indicates that efferocytosis 

effectively facilitates the transition of pro-inflammatory 

M1 macrophages to reparative M2 macrophages [29]. 

The transformation of macrophages plays a crucial 

role in inducing the efferocytosis function. Diabetic 

wounds produce various inflammatory factors and 

chemotactic factors in the wound microenvironment, 

such as AGE, MCP-1, DAMPs, and IL-1β, which 

mutually induce the NLRP3 and IL-1R1 signaling 

pathways. These events impede macrophage polarization 

and directly affect the process of the efferocytosis 

function [30, 31]. This study identified and validated 

that PROS1 may be a crucial gene influencing the 

macrophage efferocytosis phenotype in DFU. 

 

PROS1 is located on chromosome 3q11.1 and is a 

vitamin K-dependent plasma protein that activates 

protein C to activate coagulation factors V and VIII 

while promoting the clearance of early apoptotic cells 

[32]. The members of the Tyro3/Axl/Mer (TAM) 

receptor tyrosine kinase (RTK) family serve as vital 

regulators of the innate immune system, playing a 

pivotal role in the efficient clearance of apoptotic 

materials during normal homeostatic processes [33, 

34]. Gas6 and Pros1, the extensively researched TAM 

ligands, act as intermediary molecules, connecting 

phosphatidylserine (PtdSer) exposed on the surface of 

apoptotic cells with TAM receptors on macrophages. 

This interaction subsequently initiates phagocytosis 

[35]. PROS1 also serves a significant function in  

the process of blood clotting. The components of the 

hemostatic and fibrinolytic systems play an essential 

role in the wound healing process. In addition to  

their direct contribution to the formation of a clot, 

which acts as a barrier against bleeding and pathogens, 

their interaction with inflammatory cells also lays  

the foundation for antimicrobial activity, extracellular 

matrix degradation, migration and proliferation of 

keratinocytes, and wound contraction [36]. TAM 

receptors play a crucial role as key regulators of 

inflammatory responses. PROS1 functions as a ligand 
for TAM receptors. When PROS1 is deficient, there  

is an increase in the expression of pro-inflammatory 

cytokines such as TNF-α and CCL3 [37]. The 

expression of PROS1 shows a positive correlation  

with neutrophil count, activity, and oxidative burst, 

suggesting its potential as a therapeutic target for 

conditions like decompensated liver cirrhosis and 

sepsis [38]. PROS1 emerges as a promising targeted 

drug candidate for the treatment of inflammatory 

disorders, including spinal cord injury and ankylosing 

spondylitis [38]. In this study, PROS1 was found to be 

downregulated in the group with DFU, suggesting its 

potential as a protective factor against DFU. However, 

the specific protective role of PROS1 in DFU remains 

unclear and requires further investigation. 

 

Numerous research studies have suggested potential 

associations between PROS1 and signaling pathways 

such as IL-17, Rap1, hedgehog, and JAK-STAT.  

The wound healing process is intricately regulated  

by a complex network of cytokines and growth factors 

that govern intercellular interactions. Specifically, 

inflammatory signals play a pivotal role in dictating 

various aspects of tissue repair and regeneration. 

Dysregulation of these signals often results in abnormal 

inflammatory responses, leading to the failure of  

re-epithelialization. These factors are crucial in the 

development of slow or non-healing skin ulcers,  

which are increasingly recognized as a significant 

global health concern [39]. Bioinformatics analysis has 

revealed that interleukin 17A (IL-17A) is prominently 

upregulated in wound tissues, primarily synthesized by 

Th17 cells. Research indicates that IL-17A plays a 

critical role in promoting wound epithelialization  

[40]. Rap1, belonging to the Ras family of small 

GTPases, is a highly conserved cytoplasmic protein.  

It governs signaling pathways crucial for cellular 

cytoskeleton organization and cell-cell adhesion  

[41, 42]. Rap1 is mobilized to the wound perimeters 

and tricellular junctions where it becomes activated. 

Researchers found that heightened Rap1 activity leads 

to enhanced recruitment of myosin to the wound 

edges, thus expediting the process of wound healing 

[43]. The Hedgehog pathway is essential for precise 

morphogenesis and embryonic development [44]. 

Recent studies have indicated that the use of Hedgehog 

pathway agonists can alleviate impaired angiogenesis 

in diabetic mice. In addition, metformin downregulates 

autophagy through the Hedgehog signaling pathway, 

thereby alleviating high glucose-induced endothelial 

dysfunction [45]. Research has shown that the 

Hedgehog signaling pathway promotes endothelial cell 

proliferation and accelerates skin wound healing [46]. 

Cytokines and growth factors play a crucial role in the 

wound healing process by initiating various signaling 

pathways, including JAK/STAT [47]. Up-regulation of 
the JAK/STAT pathway is essential in chronic wounds, 

particularly when its normal function is compromised, 

especially in environments characterized by cellular 
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aging and reduced growth factor/receptor efficacy. 

When epidermal growth factor binds to its receptor, it 

triggers dimerization and tyrosine autophosphorylation 

of the receptor, thereby activating the JAK/STAT 

pathway. This mechanism fosters cell proliferation and 

migration, which are pivotal in wound healing [48]. 

 

Recently, the fusion of bioinformatics and machine 

learning has emerged as a crucial tool for identifying 

novel biomarkers associated with diabetic foot  

ulcers (DFUs) [49]. Prior research has hinted at 

MAPK3’s potential as a biomarker linked to tissue 

damage in DFUs [16]. However, investigations into 

macrophage secretion and its correlation with DFUs 

remain scarce. Our study leveraged machine learning 

and bioinformatics techniques to re-evaluate PROS1 

and shed light on its associated functions and 

mechanisms. Validation sets and animal experiments 

both demonstrated a reduction in PROS1 expression 

within the DFU group, affirming the robustness of  

our findings. Despite these promising outcomes, it’s 

important to acknowledge certain limitations. Firstly, 

the clinical data were sourced from public databases, 

and some sample information was incomplete, notably 

the absence of clinicopathological characteristics in 

the GSE series. Secondly, while RNA sequencing data 

supported our bioinformatics analysis, future studies 

should validate these findings using clinical samples for 

enhanced reproducibility and generalizability. However, 

the acquisition of clinical samples posed challenges 

within our limited timeframe. Lastly, further exploration 

is warranted to unravel the precise mechanism of 

PROS1’s action in DFUs. 

 

CONCLUSIONS 
 

The occurrence and progression of DFU result  

from intricate interactions among multiple factors, 

encompassing targets, immune cells, signaling pathways, 

and diverse biological processes. These regulatory 

mechanisms are collaborative and bidirectional in 

nature. In aggregate, this study has pinpointed PROS1 

as a potentially significant regulator in DFU through  

the utilization of machine learning and bioinformatics 

methodologies. Subsequently, the pivotal role of PROS1 

in macrophage efflux in DFU was confirmed through 

validation with external datasets, thus solidifying its 

significance as a biomarker. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. The related genes of macrophage efferocytosis. 

MERTK MEG8 NFE2L2 CD14 PLGRKT GPR101 LOC124904141 

TIMD4 LINC01151 TLR3 TGM2 MIR7-3HG GPR18 LOC124904142 

CD300LF SMILR ALDH2 S1PR5 C3 GAS5 LOC124904143 

PLAUR LINC01150 GAPDH GABARAP CASP1 MIRLET7C LOC124904144 

AXL CERNA3 IL1RN IL33 CASP3 MIRLET7D LOC124904146 

GAS6 ENSG00000255325 IL6R DYNLT1 GATA2 LINC01587 LOC124907963 

MIAT PPARG PTPN6 MIR126 ANXA2 MIR125A LOC124907964 

HAVCR1 CALR CLU ST2 SIRPA MIR216A LOC124907965 

SMAD5-AS1 APOE IL1B MPO ALOX12 MIR409  

HMGB1 NCF1 EGLN3 NLRP3 IFNB1 SNHG14  

RHOA IGF2R NTN1 ANXA1 XRCC4 MIR190B  

CD274 RMRP LGALS3 FPR2 QPCTL MIR379  

CD47 ITGB3 TNFSF13B MSR1 XKR4 RAB4B-EGLN2  

PLG ITGAV CRK WDFY3 MIR33A MIR1293  

TYRO3 TREM2 IRF3 LINC02605 MIR33B RNU2-1  

MIR34A UCP2 NRF1 SIRT6 TMEM256-PLSCR3 PWAR4  

FN1 ACKR2 SFTPD RAB17 PWAR1 TRA-TGC7-1  

PROS1 MBL2 UBE2D3 SERPINA1 LINC01672 MBL3P  

ITGB5 MIR21 SIAH2 PLCG1 PWAR6 TRA-TGC5-1  

SCARB1 NRP2 ALOX15B VTN SOD2-OT1 LOC124904135  

PHACTR1 TGFB1 LGR6 ABCG1 PGR-AS1 LOC124904136  

SIRT1 TGFB3 CD5L ABCC11 TRE-TTC3-1 LOC124904137  

ABCA1 IL6 FGL2 EDIL3 LOC106694316 LOC124904138  

ADAM9 TLR9 FPR3 SCARF1 MTOR LOC124904139  

KNG1 MFGE8 ID3 MIR148B ELANE LOC124904140  
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